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This paper establishes within S-matrix theory the connection between spin and statistics; namely, that
the multiparticle-state vectors are symmetric or antisymmetric for permutation of identical particles ac-
cording as the particle concerned has integral or half-integral spin. The proof given, which is simpler than
previous S-matrix proofs, depends on the cluster-decomposition property, crossing symmetry, and Hermitian
analyticity. A considerable part of the paper is concerned with establishing a suitable framework to for-
mulate the erst of these properties, cluster decomposition. To this end we develop from first principles the
idea of the tensor product f g which, for any two state vectors f and g, represents the composite state
(f and g).

I. INTRODUCTION

' 'HK principal aim of this paper is to establish
within an S-matrix framework the results well

known in quantum 6eld theory as the connection
between spin and statistics. In 6eld theory, where
rigorous proofs have been known for some years, these
results concern the commutation relations between
two 6elds with space-like separation and may be
summarized as follows'. First, the theorems of Dell'
Antonio and of t,uders, Burgoyne, and Zumino imply
that, according as its spin is integral or half-integral,
any nonzero field must commute or anticommute both
with itself and with its adjoint. Second, the theorem of
Araki, which we call the relative statistics theorem,
establishes the effect of commuting diferent fields.
This theorem depends on the concept of normal com-
mutation relations; namely, that any two fields shouM
anticommute if both are fermion and commute if either
or both are boson. The theorem establishes not that all
fields must commute normally but that abnormal
relations are restrictive in that they imply certain
selection rules (not implied by normal relations) and,
further, that any abnormal theory is physically equiva-
lent to some normal theory.

We show that the corresponding results in S-matrix
theory have a quite diferent status. In the first place,
the concept of a 6eM has no place in S-matrix theory
where the primary concerns are the S matrix and the
Hilbert spaces of initial and final states, in terms of
which S is defined. The operation which corresponds
to commuting field operators is the permutation of

*Work supported by the U. S. Air Force Office of Scienti6c
Research and Development Command under Contract No.
AF49 (638)—1545.

f Permanent address: Centre d'Etudes Nucleaires Saclay, 91-
Gif, France.

)Permanent address: Department of Physics, University of
Colorado, Boulder, Colorado.

~ For details and original references see either R. F. Streater
and A. S. Wightman, P.C.T., Spin and Stutistics und All That
(W. A. Benjamin, Inc. , New York, 1964), p. 146 ff. ; or R. Jost,
The Genera/ Theory of Quantized Fields (American Mathematical
Society, Providence, Rhode Island, 1965), p. 105 6.

variables in the multiparticle state vectors —com-
mutation of a field with itself corresponding to permu-
tation of identical particles, commutation of a 6eld
with its adjoint to permuting a particle with its anti-
particle, and commutation of two distinct fields to
permuting two distinct particles. Our principal result
is the expected one, that multiparticle state vectors are
symmetric or antisymmetric for permutation of identical
particles according as the particle concerned has integral
or half-integral spin. (This result we call the spin-
statistics theorem. ) On the other hand, permutation of
two distinct particles (including particle and anti-
particle if these are distinct) is an operation which
a prion has no meaning. Thus, it is certainly not
possible to prove a result analogous to the relative
statistics theorem of field theory. However, in the
course of proving the spin-statistics theorem we 6nd
that it is possible and convenient to define the oper-
ation of permuting distinct particles and that the
natural way to do this corresponds to the normal
commutation relations of the relative statistics theorem;
namely, that permutation of two fermions introduces a
factor —1 while permutation of two bosons or a boson
and a fermion leaves the state vectors unchanged.

Our proof of the spin-statistics theorem is essentially
the same as the unpublished proof given by Stapp' in
1962 and depends on the cluster decomposition property
of the S matrix, on crossing symmetry and on Hermitian
analyticity. To the extent that all of these properties
are much better understood now than formerly the
present proof is both clearer and more convincing. '
The particular point which we wish to emphasize is
that previous discussions of the spin-statistics theorem
in S-matrix theory (and of crossing symmetry and
Hermitian analyticity) have all started from a certain

H. P. Stapp, University of California, Lawrence Radiation
Laboratory Report No. 10289, 1962 (unpublished).

'Some improvements on Stapp's original proof have been
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Lawrence Radiation Laboratory Report No. 16816, 1966 (un-
published). We would like to thank Dr, Olive for a helpful
correspondence.
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postulated form of the cluster decomposition property.
And the form in which this property is postulated
depends on the validity of the relative statistics theorem
which, as we have just argued, is not ts priori valid or
even meaningful. The assumption is of course a per-
missible hypothesis if one wishes to discuss only crossing
symmetry, Hermitian analyticity or even the cluster
property, but is obviously inadmissible when one
wishes to establish the connection between spin and
statistics. Thus, in addition to presenting an improved
proof of the spin-statistics theorem it is the purpose of
this paper to establish from first principles a framework
for the formulation of the cluster property.

The cluster decomposition property expresses the
observed fact that experiments which are well sepa-
rated in space or time are independent. 4' Thus, if
$f'+—f] and [g'+—g] are any two experimental
processes we can consider the two processes ff'&—f]
and Lg,'~ g,] (where g, denotes the state g trans-
lated through the four-vector x) as a single composite
process Lf'&g '&—f&~g,]. For large enough separation
x the probability of the composite process should be
simply the product of the probabilities for the two
separate events; i.e.,

To express this condition in quantum-mechanical
language it is necessary to answer the following ques-
tion: If f and g are vectors representing states f and g,
what is the vector (which we denote fag) which
represents the single composite state (fkg)? It is this
question which we examine in Sec. III.

It is of course well known that fag is just the
"tensor product" of f and g and that, if f and g are
written in the form

f= Ot(f)~vac),

where Qt(f) is the appropriate polynomial in the
particle creation operators, then'

(1 2)

But it is by no means obvious that the recipe expressed
by Eq. (1.2) is a necessary consequence of the physical
properties of the composite state (f&g). For example,
why should the product fsg be bilinear t as (1.2)
obviously is]? And is the relation between fg and

gsf as prescribed by (1.2) physically significant, or

4 E. H. Wichmann and J. H. Crichton, Phys. Rev. 132, 2788
(1963).' J. R. Taylor, Phys. Rev. 142, 1236 (1966).' li f and g both contain definite numbers of particles, Eq. (1.2)
expresses the familiar result that the wave function for f3g is
just the symmetrized product of the wave functions f and g. We
must of course establish the form of fag not only in this simple
case but also in the general case when f and g are both super-
positions of several number eigenstates.

just a matter of convention? In Sec. III we show that
the physical properties of the correspondence of states
f, ft~ (f8rg) determine an essentially unique bilinear

map of the representative vectors, f, g~ fag and

that, by suitable choice of the arbitrary phases involved
the product fg can be put in the form (1.2).

Having established a correct form for the product
vector f g we can immediately write down the
quantum-mechanics, l form of the cluster property (1.1).
This is given in Sec. IV where we enumerate our
assumptions on the S matrix. In addition to the cluster

property, these are crossing symmetry and Hermitian
analyticity. The recent work of Olive and others' has
indicated that the latter two properties can be proved
on the basis of the cluster property and some general
assumptions of analyticity. The proofs which have so
far been given all contain somewhat unsatisfactory
assumptions concerning the existence of certain analytic
continuations. However, for our purposes it is sufficient

that, given the correct form of the cluster property and
assuming that the relevant continuations are possible,
the forms of crossing symmetry and Hermitian ana-

lyticity are completely determined.

Finally in Sec. V we use the assumptions of Sec. IV
to prove the spin-statistics theorem; namely, that the
multiparticle wave functions are symmetric or anti-
symmetric for permutation of identical particles ac-
cording as the particle concerned has integral or half-

integral spin. Any particle for which this is not true
can have no interactions either with itself or with other
particles; i.e., all scattering amplitudes involving the
particle are identically zero.

II. REPRESENTATIO5 OF STATES

We shall assume that the initial and final states in
terms of which the 5 matrix is defined are represented

by wave packets which correspond to vectors in Hilbert
spaces X'" and X'"'. The discussion of this and the
next section applies equally to either space and we
shall for brevity speak of a single space BC. We make
the classical assumption that any physically realizable
state determines a unique ray (i.e., a vector unique up
to a phase) in 3C and we assume that R is divided into
orthogonal superselection sectors within which every
vector represents a physically realizable state. We shall

further assume that the superselection classes are, as
appears to be the case, defined by discrete, additive,
commuting quantum numbers.

We consider a theory with at most a countably
infinite number of stable particles labeled by the
integers 3=1, 2, , in which case the space K is the
Fock space corresponding to these particles. A state
containing definite numbers of the various particles
can be characterized by the sequence

' D. I. Olive, Phys. Rev. 135, 3745 (1964).
8 J. R. Taylor, J. Math. Phys. ?, 181 (1966).
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where as& denotes the number of particles of type t. We
shall assume that all particles have positive mass, in
which case all such states have only a finite number of
particles (P, I,(~). Within the sector SC of states
with particle numbers n a state is specified by a wave
function

f(~ ) =f(P

tlat

' ' '
yP tnr I P sty

' ' '
qPsns i

' ' ' ) yi

depending on the momenta and spins (which we leave
implicit) of all the particles involved.

The space 3C is the direct sum

and the general state f is characterized by a sequence
of wave functions

The superselection rules imply that the particle numbers
n for which f, is nonzero must all lie in a single super-
selection sector. For scalar product in X we shall use

&fig&=Z

where

co&, denotes the energy corresponding to the momentum
p~; with the appropriate mass, and

n!=g ts, !.
t

We first remark that the question of permuting
variables representing identical particles is one which
demands immediate discussion, if analytic properties
are to be considered at all. This is because a continuous
variation of variables can carry the function
f( .p, q ) into f( q,p. . ) provided p and q
represent identical particles. Indistinguishability of the
particles and our assumption that there is a unique
ray for a given state' imply that these two functions
must be equal within a phase. Interchanging variables
twice implies that the function must be either sym-
metric or antisymmetric in p and q. That for a given
type of particle the wave functions must be always
symmetric or always antisymmetric is not immediately
obvious and in fact can only be established after our
discussion of the tensor product. However, the argu-
ment is straightforward and may be mentioned here:
If, for example, two-proton wave functions were anti-
symmetric while three-proton wave functions were

It is this assumption which eliminates the possibility of
parastatistics. LSee O. W. Greenherg and A. M. I.. Messiah, Phys.
Rev. 136, B248 (1964).j The argument here is, of course, just the
usual one to be found in any textbook on quantum mechanics.

totally symmetric it would be impossible to construct
a state made up of a given two-proton state plus a
third proton arbitrarily far away. This is contrary to
experience and we conclude that in either 3C'" or K'"'
a given type of particle may be uniquely characterized
as a boson (all symmetric wave functions) or a fermion
(all antisymmetric wave functions). As yet of course
we have no guarantee that a particle could not be a
boson in X,'" but a fermion in K'"' or vice versa.

Secondly we would remark that in the formalism so
far there is absolutely no meaning attached to the
interchange of distinct particles. The particles have
been written in an agreed (if arbitrary) order, t=1,
2, , and state vectors have been defined in this order
only. It is clearly unnecessary to define them in any
other order, and equally clear that if we wished they
could be defined in any new order just as we please.
When we have considered the formation of the tensor
product we shall see that there is a natural way to define
vectors in which distinct particles have been permuted.

Finally, it is sometimes desirable to label initial and
final states not by vectors in 3C but by a density matrix
p acting on K. In the first place this is necessary as a
matter of principle since experiments are usually done
not with pure states but with statistical mixtures,
which can only be represented by density matrices.
Secondly, even if one is considering a pure state, the
density matrix has the marked advantage over the
representative vector that it contains no arbitrary
phase.

Accordingly any state, or mixture of states, is rep-
resented by a density matrix

P= {Pmn) p

where each element

Pmn pmng j Q )

depends on the two sets of variables I' and Q, and
is symmetrized for interchange of identical p's and of
identical q's. The superselection rules imply that only
those elements p „ for which m and n belong to the
same superselection class are nonzero.

III. TENSOR PRODUCT OF STATES

A. Linearity

Given the structure of the Hilbert space of state
vectors we can now consider our central preliminary
problem; namely, if f and g are vectors representing
two states f and g how one can calculate the vector
(written fg) which represents the single state (f&g).
Clearly the mapping of f, g onto f g defines a mapping
g of 3C)(X into X and our problem is to discover the
properties of this map. To this end we consider first
states f and g whose space wave functions (i.e., the
Fourier transforms of the momentum space wave
functions for some 6xed time) are contained in disjoint
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parts of space. For such states we claim that the
mapping g must satisfy

1&f'g'Ifg& I

= l&f'If&&g'lg&l (3 1)

This condition expresses the idea that if f and f' do
not overlap g and g' and so cannot interfere, and if f
has probability P of being observed in the state f'
while g has probability Q of being observed in the state
g', then the state represented by fg must have
probability PQ of being in the state f'lag'.

The condition (3.1) fulfills for the map 8 the role
of the usual condition on symmetry transformations
to which Wigner's theorem" applies. This means, as
we show in detail in Appendix A, that the mapping 8
which is a priori a mapping of rays in X, f, g —+ (fkg)
can be represented as a biBneur map of the repre-
sentative vectors f, g~ fg+BC For n.onoverlapping
states this map is also biunitary; i.e., if f and f do
not overlap g and g'

&f'g'I fag&= &f'If&&g'I g&

Given that the mapping can be chosen bilinear
we have only to determine its effect on a set of basis
vectors. Accordingly we consider states f and g lying
in the number sectors K and BC„and require that
their image fag lie in K +„. (For example, if f is a
state of 27r' while g is m'+E+ then fg is 3n'+E+.)'
Thus, f8 g is a vector with particle numbers m+n and
an appropriately symmetrized wave function. We show

in Appendix A that linearity of together with the
requirement that the probabilities of observing given
positions, momenta, and spins be the same for fag as
for f and g separately leads to the unique (and. expected)
result

(fag) (P~+') =a(m n)3f (Pm)g(P') (3 3)

where S denotes the usual operation of symmetrization
for each particle type separately and Ia(m, n)I=1.
Since the map 3 is bilinear it follows from (3.3) that
for any states f and g the product f g is given by

A (m', m, n', n) =a(m', n') a*(m,n) . (3.S)

The superselection rules imply that A (m', m, n', n) is
dined only when I' and I belong to the same super-
selection sector and similarly n' and n.

B. Commutativity of

Because there is a unique density matrix corre-
sponding to any state the condition (3.5) becomes

ptso =08p. (3 9)

In order to combine this condition with (3.7) we note
6rst that

g(f-g-) = (—1)" '"'g(g.f-) (3.10)

where Pr denotes summation over fermions only. In
the same way

g(p- .-~- .-) = (—1)"' """+ '"'g(~",.~- .-)
Thus Eqs. (3.7) and (3.9) imply that

A (m', m, n', n) = (—1) ' '"'+ '"')A (n', n, m', m). (3.11)

Setting m'=n' and m=n and recalling that (—1)"
= (—1)"' for any integer I, we obtain

1)z&(m~'pm~)

The conditions (3.5) and (3.6) are rather incon-
venient because of the undetermined phase factors
which they contain. For this reason it is convenient
to rewrite the conditions in terms of density matrices.
The existence of the bilinear map on the state
vectors implies a corresponding bilinear map on the
density matrices. From Eq. (3.4) it follows that for
any density matrices p and a

(p30.), = P A (n', n, m' —n', m —n)
n', n

X g(pn', no'm' n', I n), (3.7)
where

(fg)~=+ a(n, m —n)S(fng~ —~). (3.4) or

The coefficients a(m, n) in (3.4) are not completely
arbitrary. In addition to satisfying the condition

Ial =1, they must be such that the two vectors fg
and g3f represent the same physical state and likewise
the two vectors (fg) ah and fg (gh); i.e.,

fag=kgf (3.5)
and

(fg)h=Pf(gl) III =1 (36)

We now show that these two conditions imply that the

mapping is is unitary-equivalent to the familiar pre-
scription given in Eq. (1.2).

' E. P. Wigner, Group Theory (Academic Press Inc. , New York,
1959), p. 233.

Pr m, '=Pr m, mod 2. (3.12)

» The fermion superselection rule is usually proved by invoking
the spin-statistics theorem and using the superselection rule
separating states of integral and half-integral angular momentum.
It is important that we prove it directly here, since it plays an
essential role in forming the tensor product, before we prove the
spin-statistics theorem.

This means that whenever m and m' belong to the same
superselection sector they must contain the same
number of fermions modulo two. This is just the
familiar fermion superselection rule" and may be used
to simplify the condition (3.11) as follows: Since both
the pairs (m', m) and (n', n) satisfy (3.12)

Pf m. 'Ng'=Jr m,e, mod 2;
s, t
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therefore

P& (m, 'n, '+min, )=Jr (m, 'e, '+m, lg) mod 2.
t s+4

B(ml m nl n) ( 1)zs)g&(MI sg'+tÃ st)I

XA (m', m, n', n), {3.13)

Using this identity in the condition (3.11) we find that,
if we de6ne

Equation (3.16) implies then that

4 (m')4 (n') 4 (m)4 (n)
b (m', n') = b (m, n)

y(m'+n') (P (m+n)

Since this is true for any m', n', m, and I, subject only
to the conditions that m and m' belong to the same
superselection sector and likewise n and n', we can
separate variables to give

then the numbers 8 satisfy

B(~ ~) =B{~,~), (3.14)
it (m+n)

b(m, n) =t (M,iV)
y(m)y(n)

where we have introduced p and v to denote the pairs
(m', m) and. (n', n). Thus, commutativity of implies
that B(m', m, n', n) is symmetric with respect to the
interchange of (m', m) and (n', n).

where the separation constant t (M,S) has modulus
one and depends only on the superselection sectors M
and E defined by m and n. The tensor product (3.4)
can therefore be written

Substituting the expansion (3.7) we find that both the
coeKcients 2 (p, i ) and B(p,,i) must satisfy the following
equation:

B(x+Ii, v)B(X,IJ) =B{X,IJ.+i)B{IJ,,v) (3.15)

for any ), p, , Rnd P.
The solutions to Eqs. (3.14) and (3.15) are studied

in Appendix 3 where it is shown that the numbers

B(p,,i) must have the form

y(m'+n') qP(m+n)
B(m', m, n', n)=,(3.16)

4(m')4 (n') 4*(m)4'(n)

where P(m) is some function of m with
l g l

=1.
Substitution of this form into the expansion (3.7)

makes clear that if we change basis so that the vector
{p(n)f,(P)} becomes {f(F)} then in the new basis
the coeKcients J3 are all unity. However, our primary
concern is with the tensor product of two state vectors,
not density matrices, and this may be analyzed using
(3.16) in what follows.

D. Final Form for |3
In analogy with the coeKcient B defined by (3.13)

we introduce

b(m, n) = (—1)~'""'"'a(m,n)

in terms of which Lcf. (3.8)j
B(m', m, n', n) =b(m', n')b~(m, n). (3.17)

C. Associativity

We next show that by suitable phase changes among
the basis vectors the numbers B(p,i) can all be chosen
unity. We do this using the symmetry of B(p,p), Eq.
(3.14), and the associativity condition (3.6) which, in
terms of density matrices p, 0., and v, is

4 (m) (fg) ={(F G) 2 (—1)'"'"'~' "'

XS{P(n)f,y(m —n)g ). (3.18)

We 6rst remark that for each pair of superselection
sectors F and G there is an overall arbitrary phase in
the definition of fgg Thus we. can replace the product
f8g by the physically equivalent {(F,G)f8g, in which
case the factor t (F,G) disappears from Eq. (3.18). If
we then move to the new basis in which {P(n)f,(P)}
is denoted {f,{F)},Eq. {3.18) becomes

(J'g) =Q ( 1)ze)gine(mg —gi)g(f g ) (3 19)

which is the form we want.

E. Comments on the Form of

We first point out that the form (3.19) is precisely
that given by the usual creation operator formalism
(1.2). For example, if f and g are number eigenstates
with particle numbers m and n then we denote

f= «(f) lvac),

where «(f) is a monomial in the particle creation
operators art with (by convention) a, & to the left of
u, ~ if t&s. In order to write the vector

ct(f) Qt(g) lvac)

in this conventional order we must commute all oper-
ators a,t in 0',t(f) through all operators ait, s)t, in
«(g). The usual convention that any two fermion
operators anticommute, while two bosons or boson and
fermion commute, means that these commutations
introduce a factor (—1)x')" '"'. This means that the
operator St(f)«{g) creates precisely the state pre-
scribed by Eq. (3.19).Thus our proof that basis vectors
can be chosen so that f g has the form (3.19) provides
the justl6catlon for the usuRl creRtion opeI'RtoI
formalism.
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If we now examine the relationship between fg
and g(Q f we can see the sense in which the relative
statistics theorem holds in our formalism. From (3.19)
it is clear that both products are defined, and from
(3.10) and (3.19) that

fg =egsf,

where e= —1 of both f and g contain an odd number
of fermions and e=+1 otherwise. Thus, we have shown
that the bilinear product fg can be chosen' so that the
relation of fg to g f is as if the individual particles
permute according to the relative statistics theorem.
It must be emphasized that the theorem is substantially
a matter of convention. If f and g belong to different
superselection sectors the products f8g and g3f
contain iedepertdeet arbitrary phase factors and their
relationship is entirely a matter of choice." If, on the
other hand, f and g lie in the same superselection sector
their relationship is determined and is that given by
the relative statistics theorem.

Finally, since the product is actually associative,
we can, if we wish, use it to define state vectors in which
the particles appear in orders different from the con-
ventional order t=i, 2 . Thus, if ti(t2, the two-
particle vector lt~, t2) is defined from the outset, and
from (3.19) it is clear that

The vector
l t2, t~& has no u priori meaning but may be

defined as

I t2, ty) =
1
t2 tg&

and with this definition distinct particles obviously
commute in accordance with the relative statistics
theorem.

IV. ASSUMPTIONS ON THE S MATRIX

A. The S Matrix

The existence of a one-to-one correspondence
between initial and final states which preserves super-
position probabilities implies the existence of a unitary
operator S mapping the corresponding spaces X'" onto
X'"'. It is the properties of this S operator which are
the central theme of 5-matrix theory. Before outlining
the properties which we use we should mention the
relationship between X'" and X'"'. As we have already
said, both are Fock spaces for the set of all stable free
particles. We take for granted that the set of all initial
particles is the same as that of all final particles and
that the superselection operators are the same in X'"
and X'"' and commute with S. This means that the
only possible di8erence between X'" and X'"' is in
their symmetrizations; that is, some particles might be

"Indeed, when f and g belong to diBerent superselection sectors,
it is not even necessary to dehne both ft3g and gtaf.

bosons in X'" but fermions in X'"' or vice versa. In
fact this cannot happen because Lorentz invariance
implies that 5 leaves the one-particle states invariant,
and so an initial boson could not become a final fermion,
or vice versa, without violating the fermion super-
selection rule. This means that we can now identify
X' and X'"' and regard S as a mapping of a single
space X onto itself.

The principal concerns in 5-matrix theory are not
the experimental wave-packet elements (f'lSl f) but
the momentum-space S-matrix elements, defined as
distributions on some appropriate subset of the wave
functions of X. For these we use the notation of Ref. 8.
An m-particle momentum eigenstate is labeled by the
e-tuples

and

where the t; denote particle types and the p; the
corresponding momenta. The states are denoted either

(P,T)

or

As usual we omit spin labels and, whenever convenient,
we also omit either I' or T. The momentum space
S-matrix elements are then denoted (P', T'

l
S

l P,T),
and since they are defined as distributions on X they
have the same permutation symmetries as the wave
functions which define them. In the first instance
(P', T'lSlP, T& is de6ned only with the particle types
T and T' in conventional order, ti&~ f2~&; it is usual
and convenient to use the formalism of Sec. III to
define them with T and T' in any order.

Of the three properties of the 5 matrix —cluster
decomposition, crossing symmetry, and Hermitian
analyticity —which we use to prove the spin-statistics
theorem, the first determines the form of the other two.
It was to establish a suitable framework for this cluster
property that the formalism of Sec. III was developed.
In fact Sec. III simply justifies the formalism which
was assumed without comment in Ref. 5 on the cluster
property. Having justified this assumption we may
simply quote the results of Ref. 5.

B. Cluster Decomyosition

The cluster property as given in Eq. (1.1) expresses
the independence of well separated experiments. In
terms of the S-matrix elements Kq. (1.1) is

l
(f'sg*'[Sl fag*&l .- lSf'fSg'gl.

In Ref. 5 it is shown, using the superposition principle
and linearity of the product , that this limit if suitably
generalized to include separation into several inde-
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pendent experiments, " implies a corresponding limit
without the modulus signs, namely, '4

(0) IGQMML
t

rncMMr
t

0'8 g.'I sl fs g.):s,.,s,., (4 1) t est f
(b) ~M = kt ( 0

for any wave packets f, f', g, g'.

To apply the cluster property in S-matrix theory
one must translate Eq. (4.1) into its equivalent mo-
mentum space form. This translation is given by Kq.
(17) of Ref. 5; namely

&QI~IP)= 2 P-II &Q-, 'I TIP-, '& (42)
PartitiOns 21 i=1

Here Q and P label final and initial momenta and we
have omitted particle-type labels. The elements

(Ql TIP) denote the so-called connected parts and the
constant factors P,=&1 arise only because a general
partition of P= (P, i, ,P,„,) cannot be written in
the same order as P. The significance of these mo-
mentum-space cluster equations is best understood
from the pictorial representation shown in Fig. 1.

The wave-packet limit (4.1) implies more than Eq.
(4.2) (which in fact only defines the connected parts
(QITIP)); it implies that the connected parts have
the form

&QI TIP) ='~ (Z~-~p) &QIMIP&,

where the distributions &Ql MIP) contain no momen-
tum-conserving delta functions.

In S-matrix theory it is postulated that with an
appropriate spin basis the amplitude (QIMIP) can be
continued to give a unique analytic function of the
momenta Q and P. The spin basis for which this is
postulated is the so-called spinor basis described for
example in Ref. 8, and the amplitudes &QIMIP)
evaluated in this spinor basis are known as "M func-
tions" (or rather the connected parts of the M func-

~s =:— + g + ~T

FiG. 1.Three simple examples of momentum-space cluster equa-
tions. The bubbles on the left represent momentum-space S-matrix
elements ( ~S~E); those on the right represent the connected
parts (Q ~

T P), which are the interaction terms. The straight lines
are one-particle matrix elements, proportional to b3(p —g), and
represent unscattered particles. The constant factors P, which
multiply each term Lsee Eq. (4.2)g, are not shown; indeed, for all
terms which are shown explicitly, P =+1.

"This strengthening of the limit excludes the case of Coulomb
scattering, which satisfies the limit with modulus signs but not
(4.1). The limit (4.1) is almost certainly not true when massless
particles are involved, which is one reason why we exclude them
from consideration.

'4 It is 6rst shown that this limit holds with a constant phase
factor on the right and then that this factor can be removed by
suitable redefinition of S.

(c}

FiG. 2. (a) The crossing identity (4.3) with an initial t' particle
and a final t. (b) The identity (4.4) with an initial t and a final t.
(c) The two poles whose identity leads to the crossing equations
shown in (a) and (b). The argument is, brieQy, that the amplitudes
labeled 1 depend on variables independent of those for the ampli-
tudes 2. This means that corresponding amplitudes must be
separately equal within a constant factor X. The origin of the
factor (—1)"in (b) is explained below.

tions). It is analyticity of these amplitudes which leads
to the other two properties which we must describe;
namely, crossing symmetry and Hermitian analyticity.

C. Crossing Symmetry and Hermitian Analyticity

Crossing symmetry relates the amplitude for any
process [ ~,pf] with a particle f in the initial
state to that for the "crossed process" [, pt ~ —]
with the antiparticle t in the final state. Specifically,
it states the following identity between the two analytic
functions concerned:

pf&—=) «" —pflMI" & (43)
where X& is a constant depending on the particle type t
but independent of the momentum p and all other
variables concerned. This identity is illustrated in Fig.
2(a).

It is important to recognize that if one amplitude in
the crossing identity is evaluated in its physical region
then the other is certainly not. Thus if the left-hand
amplitude of Eq. (4.3) is physical then the momentum

p must be forward time-like; in this case the particle f,

on the right has backward time-like momentum and
the right-hand amplitude is certainly not physical.
Clearly the very concept of crossing symmetry is
meaningless without the idea of analyticity, which
allows amplitudes to be defined away from their
physical regions.

The crossing identity must therefore be interpreted
as follows: The two analytic functions concerned are
defined by analytic continua, tion from their (different)
physical regions. The identity (4.3) asserts that there
is some path joining these two physical regions along
which the identity hoMs. Strictly speaking this path of
continuation should be specified in the statement of
Eq. (4.3)."

'5 The situation can be compared to the example of two real
functions f(x) =+gx, (x)1) and g(x) =+gx, (0&x&1). Both
can be continued to give the same analytic function gs, and one
can legitimately write f(s) —=g (s). However, it is clearly necessary
to specify the path of continuation used, since along a path which
encircles the origin the identity is simply not true. (In fact,f= —

g on such a path. )
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The companion equation to Eq. (4.3), which relates
any process with an initial t to the crossed process with
a 6nal t, is

CROSSED
PHYSICAL

REGION

~PHYSICAL
REGION

The interpretation of this equation is the same as that
of Eq. (4.3). The important points to note are: (i) The
same factor X, appears in both equations. (ii) In Eq.
(4.4) there is an extra factor (—1)"& where s~ is the
spin of the crossed particle t (iii.) In Eq. (4.3) the
crossed variables are on the right of the states in which
they occur; in Eq. (4.4) they are on the left."

The proof given by Olive' of the two crossing equa-
tions is based on consideration of the one-particle poles
shown in Fig. 2(c). The argument is well known and
need not be repeated here. SuKce it to say, 6rstly, that
the factor (—1)"appears in Eq. (4.4) because in passing
from the identity of Fig. 2(c) to the separate identities
of Figs. 2(a) and 2(b) one must adjust spinor indices
so that in each equation they are all of the same type. '
To achieve this one uses the famous identity

where x and y are spinors in the representation D" of
the Lorentz group. Hence the factor (—1)".Second,
the different orderings of variables in Eqs. (4.3) and
(4.4) can easily be understood if one traces carefully
the origin of the two poles in Fig. 2(c) in the relevant
unitarity equations. (For more details see Ref. 8.)

The difhculty with Olive's proof is that it has so far
been impossible to guarantee that the desired con-
tinuation between the two poles of Fig. 2(c) is actually
possible. It is possible that some branch point could
intervene and carry the continuation o6 the physical
sheet, or even that a natural boundary of singularities
completely prevent continuation. This objection is of
course serious. However, for the present purposes it is
sufhcient to note that if one assumes that the necessary
paths of continuation exist then the form of the crossing
equations is uniquely determined by Olive's argument
to be that of Eqs. (4.3) and (4.4). Since it is the form
of these equations which leads to the spin-statistics
theorem, this is the assumption we make.

The argument which leads to crossing symmetry
makes clear that particle and antiparticle must carry
opposite values of all additive conserved quantum
numbers. In particular this means, because of the
fermion superselection rule, that particle and anti-
particle must both obey the same statistics; i.e., both
are bosons or both are fermions.

Here, we are taking advantage of the convention mentioned in
Sec. III which allows particles to be put in any order. Equations
(4.3) and (4.4) can, of course, be written with all particles kept in
a conventional order, but this introduces further minus signs."It is important in what follows that, as is easily check, ed, the
crossing equations take the same form for all types of index (upper
and lower, dotted and undotted), provided corresponding indices
are the same on each side.

FIG. 3. The complex plane of the energy p' of the crossed
particle, showing the four paths of continuation: (1) crossing,
(2) Hermitian analyticity, (3) crossing, and (4) Hermitian
analyticity.

The proof of Hermitian analyticity (HA) is quite
similar to that of crossing and is open to the same
objections. " We assume that the necessary path of
continuation exists (leading in this case from any point
P to its complex conjugate P~) and then the form of
HA is uniquely determined as

(Pm, rml M
l
Pg, ry) —= (Py*,ry [iv l

P2~, T2)*. (4 5)

Here again the identity should really be accompanied
by a specification of the path of continuation for which
it holds.

The proof of the spin-statistics theorem uses a
sequence of four analytic continuations; namely: (1)
crossing (43), (2) HA, (3) crossing (4.4) and fi.nally,
(4) HA. If we consider for a moment spinless bosons
(which means that variables can be reordered at will)
then the e6ect of these four continuations for any
process [ ~,Ptj is

(4.6)

Figure 3 shows the paths of continuation in the plane
of the crossed particle's energy p'. The complete con-
tinuation obviously comes back to its starting point.
If one assumes that it returns to its starting point oe
the same sheet, then Eq. (4.6) obviously implies that
l X~ l

= 1.As we shall see, when one takes proper account
of the order of variables and of spin, this same argu-
ment yields the spin-statistics theorem, and we there-
fore make this assumption.

The assumptions on crossing and Hermitian ana-
lyticity may be summarized as follows: Ke assume
that there exist paths of continuation for crossing and
HA. In this case it follows that crossing must take the
form of Eqs. (4.3) and (4.4) and HA that of (4.5). We
further assume that the sequence of continuations
shown in Fig. 3 defines a closed path (returning to its
starting point on the same sheet). It is obviously de-
sirable, in the long run, rigorously to verify these
properties. In the meantime they may be regarded as
quite reasonable assumptions in the framework of
S-matrix theory.

» The recent unpublished report of H. P. Stapp (Ref. 3) claims
to have removed some of the less acceptable features of both
ploofs.
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where e~=+1 if t is a boson, —1 if t is a fermion. " If
we assume that the sequence of continuations returns
to its starting point on the same sheet, this implies that

X(X,*(—1)"'(e,)"+" '= 1.

Since
l cl =1 this proves that lh, l

=1 and hence, since
(m+n) is even, that

s, = (—1)s« (5 2)

which is the normal connection between spin and
statistics.

To prove Eq. (5.2) we assumed that at least one
connected part (mtlM lnt) is nonzero. Thus a particle
t which obeys abnormal statistics [i.e., which violates
Eq. (5.2)] must satisfy

(mtlMlnt)—=0, all m and n.

We now prove that this condition implies that al/

connected parts containing one or more abnormal
particles are identically zero.

'9 Here, the notation (nt) denotes a state of n, particles of type t.
In this last section, we frequently omit all but particle-type labels.' In the third line, we use the fact that t and t obey the same
statistics and so, according to the conventions of Sec. III, per-
mutation of the t variable through the m particles t introduces the
factor (e~) .

V. THE SPIN-STATISTICS THEOREM

We first prove the spin-statistics. . . theorem for a
particle t on the assumption (discussed below) that
there is at least one process" [mt &—nt] with nonzero
connected part

(mtlMlnt)$0, some m and n. (5.1)

If the process [2 &—2] has nonzero connected part so
does the process [3~3], since the amplitude for
[3~3] has a pole whose residue is the product of
two amplitudes for [2~2]. By a similar argument,
if the amplitude for a process [m'+—n'] with (m'+n')
odd is nonzero, then there is always some other process
[m~n] with (m+n) even which also has nonzero
connected part. (See Fig. 4.) Thus if the inequality
(5.1) holds for any m and n one may suppose that
(m+n) is even and greater than 4.

We consider the nonzero amplitude (5.1) which, to
focus attention on one particle, we write as

( l
M l,pt), and perform the sequence of con-

tinuations described at the end of Sec. IV (see Fig. 3).

&" lMl",pt)=~«". —ptlMI") «ossing (43)
=x,( lMl, —p*t)*, HA (4.5)
="( )"&"IMI p*t—

~*(-1)"«p*t lMI
crossing (4.4)

HA/ )""" ""(e )" '& "IM I pt)

FIG. 4. If, for example, the amplitude for process L3 ~ 2j is
nonzero, then that for the process L5 ~ 3j has a pole of nonzero
residue and so cannot be identically zero.

We return to the momentum-space cluster equations
shown in Fig. 1. It is clear that if the connected parts
for all processes [mt~nt] are zero then the corre-
sponding S-matrix elements are the same as those of
the unit operator (times an unimportant phase factor)

(mtlSlnt)=(mtl nt). (5.3)

Now if S is any unitary operator and a a vector such
that

«»'ISlt 2')=&T'ISIS')

A simple extension of the argument used twice above
shows that in this case all S-matrix elements linking
the state (t, ) to states not containing t are zero.
The same is then true for the corresponding connected
parts.

This establishes that any connected parts con-
taining any number of abnormal particles t or t are
identically zero. It follows that abnormal particles can

"To prove this, choose an orthogonal basis including g. Then
Su=a+b, where b is orthogonal to a and, since S preserves the
norm, is actually zero.

then Sa=a." Thus Eq. (5.3) implies that S-matrix
elements linking states (nt) to arsy other states are zero.

If the S-matrix elements linking the state (nt) to all
other states are zero, so are the corresponding con-
nected parts; and likewise all connected parts related
to these by crossing. In particular, we can now assert
that for any abnormal particle t

(mt, m'tlMlnt, n't)—=0, all m, m', n, n'

This means that the corresponding S-matrix elements
are the same as those of the identity operator and we
can repeat the argument of the previous paragraph to
prove that the S-matrix elements linking a state
(nt, n't) with any other state are zero. The same then
holds for the corresponding connected parts and we
conclude that, because t is abnormal, any connected
part with two or more external lines labeled either t or
t is identically zero.

The only remaining possibility for the abnormal
particle t is that there are nonzero amplitudes with
just one externa, l line labeled t (or one labeled t). This
possibility is quickly disposed of. We have already seen
that all connected parts (t, lMlt, ) are zero,
which means that the corresponding S-matrix elements
have the form
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never transfer energy or momentum to other particles
(either normal or abnormal) or among themselves.
They are therefore completely unobservable. "

where

and

S~:g~fSg~

fS (gi+gm) =f8gi+fSg2,

fS (sg) =s(fSg)

(A2)

As usual each y is unique up to an over-all phase
factor. We may trivially extend ~ so that it is also
linear on the subspace (sf:s&C').

We next focus attention on some axed go in K'(R).
As f ranges over X(R) the vector f8 go de6nes a map
of X(R) into X which also satisfies the criteria of
Wigner's theorem. Thus, by adjusting the phases of
the y, we can make this map linear,

(fi+f2) 8go= fi8go+f28 go (A3)

»Pf course, if one envisages an S-matrix theory of strong
interactions only, then the result is that abnormal particles cannot
interact strongly. It would not preclude their having electro-
magnetic or weak interactions.

"The region CB is the closure of the complement of R. If there
are superselection rules, we must suppose that R(R) and X'(R)
are contained in any two fIxed superselection sectors. This allows
us to ignore superselection rules throughout the Appendix.

'4 That the map is linear, not antilinear, follows, because we
naturally choose the relationship between con6guration and
momentum spaces to be the same for all sectors.

APPENDIX A: LINEARITY OF THE
TENSOR PRODUCT

Definition of lag

Let R denote any closed region in conhguration
space and a(f) the one-particle space support of any
state vector f; i.e., the union of the projections of the
support of the spatial wave function of f into the one-
particle co., :figuration space. We define two nonover-

lapping subspaces of R,"
K(R) = (f:f&X,O (f)&R),
K'(R) = (g:g+X,n(g) QCR) .

We assume that for any rays f&X(R) and g&X'(R)
there is a unique ray (Ikg) corresponding to the state
I amd g and to it only; also that the representative
vectors satisfy Eq. (3.1)

I&f'Sg'Ifg&l =1&f'If&&g'Ig)I (A1)

for f, f'g X(R) and g, gC X(R). We show erst that
these assumptions lead to an essentially unique bilinear
(and biiinitary) map Ss of X(R)&&X'(R) into X.

For fixed f in X(R) the correspondence f, g~ (Kg)
gives a map oi K'(R) into K which satisfies the con-
ditions of Wigner's theorem. Thus for each f in X(R)
the correspondence can be represented by a linear'4

map Sr on X'(R)

Continuation of 13g to A11 Regions

For each closed region R the correspondence I, g~
(fkg) is now represented by the bilinear map Sz on
X(R)&&X'(R). We now show that the various Ss can
be joined together to give a unique bilinear image for
any nonoverlapping states f and g. To this end we
must show that the phases of the I3& can be adjusted
so that for any regions R and S the maps g and &3 q
coincide on their common domain (if any); i.e.,

for all
(A6)

AX(RA&), gCX'(RU5) . (A7)

The two vectors in (A6) represent the same physical
state and so are certainly equal within a phase,

fSzg=vssfSsg, iviisi —1.
Since both maps are bilinear, the factor gag is the same
for all f and g satisfying (A7). This means that if 8ii
and s coincide on any nonzero pair f, g then they
coincide on their whole common domain.

We first divide space by an arbitrary plane into two
regions I and II and choose an arbitrary compact
region III which intersects both I and II. (See Fig. 5.)
We now fix the phase of zzz arbitrarily and adjust
&3z so that

8 = 8 o X(I+III)&(X'(IUIII),

The image fSg of every pair f, g in X(R)&&X'(R)
is now completely determined (apart from one over-all
phase) and we must prove that the mapping so de6ned
is automatically bilinear. To this end it is obviously
sufhcient to verify that

(fi+fi)Sg= fiSg+fiSg
for any fi and f2 in X(R) and any g in X'(R), Since
this is already known to hold for g=sgo, it is suQicient
to prove it for g orthogonal to go. It is also sufhcient
to prove it for fi and f2 orthogonal. In this case, we
consider

(fi+f~)8 (go+g)
= (fi+fi)8go+(fi+ f2) Sg (by A2)
=fiSgo+f28 go+ (fi+fi) 8g (by A3). (A4)

But by (A1) and the orthogonality of fi, f2 and go, g
the left-hand side is equal to

~fiS (go+g)+Pf (go+g)
=cifiS go+&fi8g+Pf28 go+A f28 g,

(by A2) . (A5)

Because all vectors concerned are orthogonal we can
compare coeilicients in (A4) and (AS) and deduce first
that n=P= 1 and hence that

(f+f)g=f Sg+f g,
as required.
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Similarly we adjust 8» to coincide with !3i» on their
common domain.

We now define the product sg for any other c.losed
region R in terms of the three products i, », and
Si». If R is compact there are just four possibilities:

(1) RQI. We define Szz so that Szz= Sz on their
common domain. This definition ensures that if R and
5 are both contained in I, then Sg and 8 coincide
on their common domain, if any.

(2)

RADII.

We define similarly S zz so that Szz
= Sz,

where applicable. If RADII and SQI then R(RQS) is
empty. Thus, so far our definitions guarantee that z
and !38 coincide on their common domain whenever
this exists.

If R is contained in neither I nor II, then it overlaps
both. There are two cases to consider:

(3) IIIQR. We define S zz = 8 izz on X(III)XBC'(R).
If R and 8 both contain III they clearly coincide on
R(III)XR'(RUS) and hence everywhere on their
common domain. Further &3~ and si coincide on their
common domain since they do on K(I+III)
XK'(RUI). Thus if R contains III while SQI, then
8 zz

= Ss on K(RQS) XX'(RUS). Similarly if IIIQR
and SQII.

(4) III(LRQI or II. We choose any R' containing
both" R and III and define Szz=Szz on BC(R)
XK'(R'). It may be checked that this definition is
independent of the choice of R' and also that ~
coincides with &3g on their common domain for 5 in
any of the categories (1) to (4).

The map Szz is now defined and satisfies (A6) for all
compact regions R. Finally if R is closed but infinite it
is easy to see that 13~ can be defined to coincide with
g. where R' is any compact region contained in R.
This definition is independent of the particular R' used
and satisfies the consistency condition (A6). It com-
pletes the definition of a universal bilinear product

fSg for all nonoverlapping states.
Finally we note that condition (Ai) together with

bilinearity implies that the map!3 is actually biunitary;
i.e.

&f'g'I fg) = &f'I f&&g'I g&

provided f' and f do not overlap g' and g.

Linear Extension to Overlayying States

The bilinear product fSg has so far been defined
only for nonoverlapping states and it is natural to seek
a bilinear extension onto more general pairs of states.
If we anticipate for a moment the well-known answer
to this problem we can see immediately that the product
cannot be extended onto the whole space %XX. This
is because the map , although biunitary on nonover-

lapping states, is in general unbounded. Thus if f is a

"It is here that we use the compactness of R. This guarantees
that RUIII does not occupy all of space, which allows R' to be
chosen so that Cg' js nonempty.

Fee. 5. The three regions I, II, and III
used to de6ne the product Is.

f=Z f'

where o(f; )QI; . This is in fact a finite sum since
o(f) is compa. ct. We now define

f "g=Z f' g' (Ag)

(this sum certainly exists since it is actually finite) and

fS'g=lim fS za&g.

We note first that this limit certainly exists since"

llf "g—f '+"gll'«oust('Vg)

Second, if f and g have disjoint one-particle supports,
this limit is just fg as previously defined. Third, the
definition is clearly bilinear, and fourth, it is bounded,

2' The factor —,
' arises as follows: All terms in 13(")are present

in ( +». Since each cube of the partition a is divided into eight
cubes of the partition (ca+1), the number of extra terms in the
sum (AS) is multiplied by SX7 for each successive o.. The volume
of integration for each term is divided by 8&(8 each time. Hence,
the factor —,

' arises for each successive partition.

state of one boson, it is well known that IIfSfll =%2IIfII';
and states of n identical bosons can be chosen so that
llfSfll=L(2zs)!((zz!)'jz"llfll'. Thus, the map is un-
bounded and one can construct states f= ff„) for
which fSf does not exist (as a vector izz R) at all.
However, all states of physical interest are contained
in the manifold K' of states which contain only a finite
number of particles, and on K'&3C' the map does have
a bilinear extension. We show that on any pair

XX the map |3 has a unique bilinear extension
which is in fact bounded.

For simplicity we consider only the case of a one-
particle sector Kl say. The generalization to higher
sectors, though rather complicated, is quite straight-
forward. Accordingly we let f and g be any one-particle
state vectors (of the same type of particle) with bounded
wave functions of compact space support. Let (I z);=z"
denote a partition of space into unit cubes. By re-
peatedly halving the dimensions of all cubes we obtain
a sequence of partitions (I; ), u=i, 2, . with each
I; contained in some I;s for all n)P, and I; &0 as-
o.~ ~. For each n, we can write
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since

Ilfs "gll'=2 llf' (Sg'+f'g' ll'

particles we require that

I (fg)(P, q) I'= If(p)g(q) I' (A11)

=2 llf' ll'llg II'~&f' lg' &&f'lg'&

&2 llf' ll'llg II'+&f' Ig')&f'Ig &

= llfll'llgll'+1&f1 g& I'& 2llfll'llgll'

(which is just the result mentioned above). Since the
new operator g' is dined on a dense set in X~)&X~ it
can now be extended as a bounded bilinear operator
onto the whole of X~&(X~.

Finally the operator ' is the only bounded bilinear
extension of the original 8, for if " were some other
extension it is easily seen that

f 'g fs "—g=Z f'sg' ~o

with an identical condition on the space wave functions.
Since &3 is bilinear this implies that

(f g)*(P,q) (f'g') (P,q) =f*(p)f'(P)g*(q)g'(q)

Substitution of (A10) gives

K*(p,q P" q")K(P q, P', q')
=b(P P")b—(p P')b(—q q")b—(q q'), —

from which we conclude, by separation of variables,
that

K(p, q, p', q') =a(P,q)b(p p')b(—q q'), —(A12)

where la(p, q)l =1. Comparing this with the corre-

sponding equation for the space functions we see that

a(p, q) = const. (A13)

i.e., 8"='. We can now drop the prime from '
since it is the unique extension of .

A similar analysis can be applied to any pair of sectors
X )&X„with the expected result that &3 has a unique
bounded bilinear extension with the bound

( +.)llfsgll'&, llfll'llgll'
mint

The Product of Two Number Eigenstates

We finally prove for f in X and g in X, that fag
has the wave function

(fSg) (Pm+~) =a(m, n)sf(P~)g(Pn) (A9)

where lal =1 and 8 is the usual symmetrization
operator

=&'&-f(pi.-i . )g(Pi.-( +i) " )

where P„' denotes summation over all perrnutations
of identical particles for which the product is not
already symmetrized.

For simplicity we consider f and g to be one-particle
states (the generalization is completely straightforward)
in which case bilinearity of the product fag implies
that

APPENDIK 8: SOLUTION' OF THE
ASSO CIATIVITY EQUATIONS

The numbers B(m', m, n', n) = B(p,v) have unit modu-

lus and satisfy the equations

B(),v) =B(v,t ), (3.14)

and
B(X+@,v)B(l(,p) =Bp., Ii+v)B(II,,v), (3.15)

Substitution of (A12) and (A13) into (A10) gives the
required result (A9).

If f and g represent the same type of particle, then,
because of indistinguishability, the condition (A11)
becomes

I (fg)(P, q) I'=
I f(p)g(q) I'+ If(q)g(P) I'

(for nonoverlapping f and g). The result (A12) becomes

K(P,q, p', q') =a(p, q)b(p p')b(q q')— —
+b(q, P»(p q)b(q p)-, -

where the symmetry of K with respect to p and q

implies that

a(P, q) = +b(p, q).

Once again the corresponding equation in conhguration
space implies that a(p, q) is actually constant and we

obtain the desired result (A9).

B(m', m, n', n) =b(m', n')b*(m, n). (3.17)

(fs g) (P,q) = dp'dq'K(p, q,p', q')f(P') g(q') (A1o)

We now impose our final physical requirement on the
map ; namely, that at least for nonoverlapping
states, the probability of observing given positions,
momenta and spins must be the same for fag as for

f and g, separately. Thus if f and g represent distinct

The variables m, n, etc., run over the infinite, positive,
unit lattice of all possible particle numbers. The pairs
p= (m', m) lie on a lattice 2 defined by the condition
that m and m' belong to the same superselection sector;
this lattice is neither rectangular nor positively gen-

erated, but is closed under addition. We choose any
basis g&, g&,

~ ~ ~ for the lattice 2 and first solve Eq.



M. FROISSART AND J. R. TAYLOR

(3.15) for the lattice points p=ng; (for n a positive
integer). A special case of Eq. (3.15) is

B([m+15g, ng)B(g, mg) =B(g, [m+n5g)B(mg, ng) .

Iterating m times we find

B(mg, ng)

B(g, [m+n —15g)B(g, [m+n —25g) B(g,ng)

If fig (P, we choose any vp(P such that p+ vg(P and
we define

C'( )=C'(P+ )/C'( )B(f, )

It is easily checked using (3.15) and (82) that the left-
hand side is independent of the choice of v and from the
definition it is clear that B(fi,v) is given by (82) for
any p and v provided v and fi+v are in (P. Finally for
any fi, v&2 we can always choose p, o&(P such that
fi+p, v+o Q(P; expanding B(p+p, v+o) first by (82)
and second by using the identity (83) we find that

C ([m+n5g)
(81)

C (mg)C (ng)

C'(1 +v)
B(p,v) = all p, vga.

C (f )C'(v)
(84)

if we define the phase factors"

C'(f +v)
B(f,v) = pi vC(Ps —i ~

C'(f )C'(v)

Now for p,g(Ps i we define

(82)

C'(mg)= Q B(g,ng), C(g)=1, C(0)=1/B(0,g).
n=l

Equation (81) is the general solution to Eq. (3.15) on
the sublattices generated by a single generator g. We
first extend this solution onto the lattice 6' generated
by positive multiples of g~, g2, and then onto the
whole lattice Z. On the lattice (P& & positively generated
by g&, , gA, & we assume that the solution of Eqs.
(3.14) and (3.15) has the form

whence

C (m",m')C (m', m) C (n",n')C (n', n)

C (m",m) C (n",n)

C (l,m)C (m, n)
=expi(a I+b m+c n),

C (l,n)

Equation (84) is the most general solution to Eqs.
(3.14) and (3.15). We can siinp1ify the solution using
(3.17), which implies that

B(m",m', n",n')B(m', m, n', n) =B(m",m, n",n) . (85)

Substitution of (84) into (85) gives

C (m"+n", m'+n')C (m'+n', m+n)

C (m"+n", m+n)

for some real vectors a, b, c. Setting I=m and then
m=n we see that a= c=0. Thus

C'(p+ngs) =B( ngs)C'(p)C'(ngs)

then from the identity [which follows from Eq. (3.15)5

we immediately verify that for fs, vp(P& i
then (86) becomes, with n=ne

C (I +v+[m+n5gs)
B(p+mgs, v+ngk) =

C'(fi+mgs)C'("+ "g&)

C (l,m) =C (l,n)C*(m, n) exp(ib m). (86)

B(X+@,v+o) =B(X+v, y+o)B(X,v)B(fi,a).
Q3 If from each superselection sector we choose a repre-

B(),p)B(v,~) sentative lattice point no and define

y(m) =C (m, nii)

i.e., the solution (82) holds on (P&. Hence, by induction,
the solution (82) holds on (P.

~~ This definition of C (0) is independent of the choice of g. In
fact, as can be verified from (3.15), J3(0,p) is independent of v.

C(l,m)=d (l)de(m) exp(ib m).

Substitution in (84) gives

y(m'+n') di*(m+n)
B(m', m, n', n) =

d (m')4 (n') d*(m)4*(n)

which is precisely the solution quoted in (3.16).


