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extrapolation from the physical region to the resonance
location. In due course, it may be possible to estimate
the effective range from the empirical data in KN
scattering,?® in which case this uncertainty will be
greatly reduced.

In the =Y =0 sy,2 PB system, another energy range
of strong interactions is known, namely at the threshold
for An production in the KN system. Whether the sharp
rise and fall in this cross section is due to the influence

2 Kittel and Otter (Ref. 30) have very recently included a finite
effective range Ry just for the I =0 scattering length, to obtain an
over-all fit to the low-energy K——p scattering available from
Refs. 2, 4, and 6, together with the A/* and I' values observed for
Y¢*(1405). They obtained an acceptable fit for Ro=0.082-0.05 F,
in which case their zero-energy scattering length takes the value
Ag=(—1.5420.02)4 (0.532£0.03) F. When they also included the
400 MeV/c values for Ao and 44, they found that the only ac-
ceptable fit was for the Watson III solution, with Re=0.11
=+0.03 F. This analysis now needs to be repeated in view of the
KP—p data (cf. Ref. 27) now becoming available in the 400-
MeV/c region.

% W. Kittel and G. Otter, Phys. Letters 22, 115 (1966).
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of a resonance state, or whether it is due to a strong An
scattering interaction, is not yet settled.®® We may
remark here that this model does not account for this
effect, in either way. The A7 scattering amplitude ob-
tained is slowly varying, with the small value A,
=(—0.1240.157) F at threshold; the smallness of this
value is related to the fact that our model gives zero
diagonal potential for the Ay system. We conclude that
this An enhancement is generated by forces not included
in our model calculation.
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The saturation of the SU (6)w algebra at infinite momentum is discussed. A possible physical interpreta-
tion of the tensor generators of SU(6)w in terms of an assumption of partial conservation is critically
analyzed. The implied occurrence of singularities in the tensor amplitudes requires a careful definition of a
limiting procedure defining the tensor charges. A collinear limiting procedure, which relates the tensor
charges to the total magnetic moments, appears as the most convenient one. The matrix elements of the
tensor charges are then compared in the infinite-momentum limit with those of the electric dipoles, and
the following implications are exhibited: The charge radii of baryons are pure F; the D/F ratio of axial
charges equals the corresponding ratio for the total baryon magnetic moments; a simple relation exists
among the isovector total moment of the nucleon, the axial renormalization constant, and the charge radius
of the proton; and an extended form of universality holds for tensor and axial currents. We also discuss the
saturation of the unitary symmetric part of the commutators, particularly in connection with the possible

occurrence of Schwinger terms.

1. INTRODUCTION AND SUMMARY
OF RESULTS

CLASSIFICATION of the charges generating
the compact U(12) according to the behavior of
their matrix elements between states of infinite momen-
tum has been proposed,’+? leading to the distinction be-

1R. F. Dashen and M. Gell-Mann, in Proceedings of the Third
Coral Gables Conference on Symmetry Principles at High Energy,
(W. H. Freeman and Company, San Francisco, California, 1966).

2 S, Fubini, G. Segré, and J. D. Walecka, Ann. Phys. (N. Y.)
39, 381 (1966).

tween “good” and “bad” charges. The longitudinal
and time components of the vector and axial charges
and the transverse components of the tensor charges are
good charges. In the limit of infinite momentum the set
of nonequivalent good charges generates the algebra
of SU6)w-

In the present paper we analyze the consequences of
this algebra, avoiding particular hypotheses of approxi-
mate saturation. The starting point of the analysis will
be a connection between the tensor charges, following
from a hypothesis of partial conservation of tensor
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currents (PCTC).}2 Such a hypothesis is strongly sug-
gestive if one wants to assign a physical interpretation to
the tensor charges. On the other hand, its mathematical
formulation, in the strong form 9,J . (x) = T'(—[]?)J,(x),
seems necessarily to lead to the occurrence of singular
tensor amplitudes between states of equal mass, and
great care must be taken in the examination of the most
convenient limiting procedure. Our analysis shows the
convenience of a collinear limiting procedure, which
avoids singularities and provides for a relation between
the nucleon tensor amplitudes and the total magnetic
moments.

The assumption of definite commutation relations
both for dipoles and for tensor charges allows a number
of conclusions in this scheme. From the comparison of
the unitary-antisymmetric parts of these commutation
relations (which are free of Schwinger terms) we ob-
tain: (i) the F character of the charge radii of baryons;
(ii) the determination of the proportionality constant
occurring in the PCTC relation in terms of the proton
charge radius, namely, I'"%(0) = 3{7»*)¢z. The knowledge
of the proportionality constant appearing in the
PCTC allows one to derive in a purely algebraic way
relations like

(D/F)axial = (D/F)total magnetic moments
(o= pn)/2m= ga(5{rp%)az)"?
w*/2m=3V2G*(§(r,Yep) V.

Remarkably, such relations had been derived previously
only from saturation of the algebra of electric dipoles,
by a quite different approach using dynamical argu-
ments [see Ref. 16]. These relations compare fairly
well with experiment and they are of interest as they
are derived without assumptions of partial saturation.
Among our conclusions, we also point out the formal
elegance of the extended universality exhibited by the
relations

Oul w @ =my*(f/N2)$, (PCTC),
OuT us @ =mp*(f/V2)p@ (PCAC).

[Note added in proof. Recently, Costa, Savoy, and
Zimerman (to be published) have rederived the above
extended universality using the method of Kawarabay-
ashi and Suzuki. The extended universality has also
been used in a recent calculation of the =° lifetime by
Maiani and Preparata (to be published).]

The comparison of the unitary symmetric parts of
the commutators of dipoles and of tensor charges
encounters some difficulties because of the possible
existence of Schwinger terms. Although their exclusion
leads to acceptable and even pleasing results, such as
the sum rules of Drell and Hearn,* their presence is

3W. Krolikowski, Nuovo Cimento 42A, 435 (1966); 44A,
745 (1966) ; 46A, 106 (1966).
(13 S6.) D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
66).
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suggested from formal arguments. Such points do cer-
tainly deserve more discussion and various alternatives
are presented in the text.

In Sec. 2 we establish our notation and we discuss the
PCTC hypothesis. The connection between tensor
charges and electric dipoles is derived in Sec. 3, where
the limiting procedure for calculating the tensor ampli-
tudes is also discussed. In Sec. 4 we compare the unitary
antisymmetric parts of the commutation relations of
dipoles and of tensor charges and we also point out the
extended form of universality mentioned above. In
Sec. 5 we derive the relations between electromagnetic
and axial quantities. In Sec. 6 we compare the unitary
symmetric parts of the commutators and we discuss the
presence of Schwinger terms in the dipole commutator.
Finally in Sec. 7 we extend the analysis to the commuta-
tion relations between tensor and axial charges. Some
details of calculations are reported in the appendices.

2. TENSOR CHARGES AND THE ASSUMPTION OF
PARTIAL CONSERVATION OF TENSOR
CURRENTS

It has been recently proposed!—® that the tensor cur-
rents, whose space integrals are among the generators of
U(12),5 may be given a physical content through a
partial-conservation hypothesis (PCTC).

In the quark model the tensor currents are®

Juw@@)=—¥@)onGNW (), (@=0,---8) (1)

and the vector and axial currents have the form

T @ (%)= (@)ruGNW (%), 2

7 6@ (@) = @y rs AW (). ®)
We also define the following charges:
Ti(@)= _1/d3x J4i(a)(x) ) (4)
V= —i/d‘”’x i (), (5)
A(a)=—i/d3x J 459 (x), ©)
Ai(a)=_/d3x T @ (x). <)

The commutation relations between the above tensor
charges suggested by the quark model are

[T:@,T;®]=18:;fapyV P +iejidag, 4. (8)

5R. F. Dashen and M. Gell-Mann, Phys. Letters 17, 142
(1965); A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy.
Soc. (London) A284, 146 (1965); B. Sakita and K. C. Wali, Phys.
Rev. Letters 14, 404 (1965).

6 We use the metric where p-g=p-q—poq. The v matrices
are Hermitian and o= (1/22)[v,7»]-
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The PCTC hypothesis is generally written in the form
0w (%) = 0@ () , ©)

where ¢, (x) are the vector-meson fields and
a=a(—[]? is supposed to have a weak dependence on
the momentum transfer. On the hypothesis of vector
meson dominance in the vector currents we have

J, (@ (@) =gy (x)
0uT @ =TT, (x),

(10)
(11)

where I'=a/g is also supposed to be a weakly
momentum-transfer-dependent operator.

We shall always use in the following the PCTC
hypothesis in the form of Eq. (11). In a weaker form we
can simply state that the divergences of the tensor cur-
rents as well as the vector currents are dominated by
the vector meson pole, so that Eq. (11) is actually true
only for matrix elements at momentum transfer near
the meson pole. In this case the extrapolation procedure
from the pele to k?=0 is important, and the results
may depend on the form factors one is actually extra-
polating.? Under the stronger assumption of Eq. (11),
there is not such an ambiguity and the only point is to
know whether I'(0) is or is not zero. Let us consider the
application to nucleons. By Eq. (11) we can directly re-
late? the tensor form factors to the electromagnetic form
factors, as shown in Appendix 1. This makes it possible
to express the amplitudes of tensor charges in terms of
electromagnetic quantities only (see Appendix 2). It
turns out that the matrix elements of the transverse
components of the tensor current (i.e. of Js1, J3s, Ja,
and J4) between states of collinear momenta are pro-
portional to I'(k?) through a finite quantity. So I'(0)=0
would imply the vanishing of the good tensor charges in
the limit of infinite momentum. For this reason we
assume in the following I'(0)5<0.

An unpleasant feature of the adopted formulation of
PCTC is the need of singularities in the amplitudes of
tensor charges. This is made immediately evident by
taking »=4 in Eq. (11) and integrating over all space.
The right-hand side becomes proportional to the charge
operator, while the left-hand side has the form of a
space integral of a spatial divergence and would vanish
for a nonsingular behavior. For the Fourier transforms
we have limy.,¢ k7@ (k)= —iT'(0) V@, so that if we
take the momentum transfer k along the z axis the good
charges Ty and T are regular, while the longitudinal
charge T'; presents a kinematic singularity of the order
1/k.. We do not consider of physical relevance the
occurrence of this singularity; the tensor currents are
here introduced only as mathematical intermediaries
and only their divergence is supposed to bear a physical
significance. Furthermore the above singularity will
not affect the present analysis, as we shall only be con-
cerned with the transverse part of Eq. (11).
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3. CONNECTION BETWEEN TENSOR CHARGES
AND ELECTRIC DIPOLES

In this section we establish a connection between the
tensor charges and the electric dipoles, which will be the
starting point of the subsequent analysis of the com-
mutation relations.

From the definition of the electric dipoles

Di(“)=/d3x weJ 0 (x) (12)

by virtue of Eq. (11) [which also implies conservation
of vector current, (CVC)] and (4) we have

D@= / d3x J @ (x) = [T (13)
from which it follows
T,‘.(a) — I‘(Di(a)_l_ci(a)) , (14)

where C;® are conserved charges.

Equation (14) implies that the matrix elements of T';
and D; between states of different energy are propor-
tional, through some gentle function I'(%?), & being the
momentum transfer. In the limit of infinite momentum
k* approaches zero, so that it will be possible to de-
termine I'(0) by comparing the commutation relations
of the tensor charges with those of the electric dipoles,
as we shall see in the next section. To this end we also
need the diagonal matrix elements of 7', and D;. The
evaluation of these matrix elements between states of
the baryon octet is carried out in Appendix 2. For the
matrix elements of D; we find that, as is well known, they
are related to the anomalous magnetic moments, while
for the T, the evaluation needs a little care and may pre-
sent some ambiguity.? In fact the amplitudes of tensor
charges between states of equal masses are only defined
through a limiting procedure from nonzero momentum
transfer k= p’—p. The result is not unique. For k in
the z direction we find that the matrix elements of 7';
are related to the total magnetic moments, while for k
orthogonal to the z axis we find that they are related
to the anomalous moments, apart from an unphysical
singular term which may perhaps be eliminated by a
suitable regularization procedure.

We adopt here the first procedure (collinear limit) in
view of the following arguments:

(a) The matrix elements (p’|Q(k)|p), of the Fourier
transform Q(k) of the good charge densities, with a
finite momentum transfer k collinear to the external
momenta, are independent of k in the limit p — . The
generalized charges Q(k) coincide, in this sense, with
the true charges Q(0), whenever these are well defined,
and must of course essentially satisfy the same algebra.
Furthermore the matrix elements of the charges Q(k),
for collinear k, can be directly evaluated giving un-
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ambiguous results in all cases we are interested in. We
thus propose to define (p|Q(0)|p) as identical to
(p’'|Q(k)| ), at infinite momentum and for collinear k,
whenever any ambiguity may arise. No similar results
hold for transverse k and it may be seen that a limiting
procedure from a purely transverse k is not in general
justified because of possible singular terms, as in the
case of tensor charges (see Appendix 2). It may also
be seen that no troubles arise if we take k,5£0 and
infinitesimal transverse components &, k,. This is also
true for the electric dipoles.

(b) The collinear limit is the most suitable one, as
we are considering the algebra of those charges which are
good for collinear momenta. As a confirmation of this
point of view, the results of this procedure are in
agreement with the SU(6)w symmetry. In fact in the
limit of infinite momentum the transverse tensor
charges we are considering are equivalent to those
SU(6)w generators which behave like BoA% which
implies a vector character under W spin. The same be-
havior is also exhibited by the Sachs magnetic form
factor G, while the Pauli form factor F also contains a
W -spin scalar.

Another argument in favor of the total magnetic
moments is provided by an approximate saturation of
the tensor algebra with octet and decuplet intermedi-
ate states. In this case we obtain the results of SU(6)w
symmetry if we take the tensor amplitudes as propor-
tional to the total magnetic moments.?

4. COMPARISON OF THE COMMUTATION RE-
LATIONS OF TENSOR CHARGES TO THOSE
OF ELECTRIC DIPOLES

We want to compare the commutation relations
(8) for tensor charges to those for electric dipoles.
‘The latter are obtained from the charge densities
commutators

[Jo@(@),J0® (") Jagmar’
=4 faprd(x—X)T oM (2)+ S (w,x"), (15)

where by S@(x,x") we have denoted the possible
‘Schwinger terms. We remark that the necessity of such
terms has not been proved so far and they are generally
-omitted.

Equation (15) gives
[D®, D0 ]=ifus Ry P45, (16)

‘where

R,-,-(“’)=/d3x wixiJ oV (%) (17)

and S;;(® is antisymmetric under the interchange
(i,2) <> (4,8). By requiring an octet behavior of Jo (x)
under commutation with the SU(3) generators, we get
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the condition
/d"’x'S""ﬂ)(x,x’):/d% S@®(xx)=0. (18)

If we assume for S@®(x,x") a form
S @ (")

1 a 9
- 5I}—é(x— xX)——b(x— X’)]Rk @®(xa’), (19)

we find from Eq. (18)

i} g
<——~Rk (""”(x,x’)) = <———Rk("‘ﬂ)(x,x')) . (20)
r=2x' a ¢ =2’

Xy, Xk

This gives for S;;©® of Eq. (16)
1
Sijwﬂ)zg /d3x[x,~Rj<“B)(x,x)——iji("“”(x,x)] (21)

showing that S;;(* must be symmetric in a <> 8.

We now consider in detail the commutation relations
(8) and (16) that we can write in the spherical SU(3)
basis as

8 8 &,
[T;@,T;®]= —51']'\[3( >V(7)
a B v

8§ 8 &
+7:€ijk(5/3)1/2< )Ak(7)
a B v

. 478 8 1

8 8 8,
[D;@,D;®]= _\/3< )Rij(")-I-Sﬁ(“*‘” , (23)

a B8 v

where we have used the standard Clebsch-Gordan
coefficients for SU(3).” By virtue of the symmetry in
a, B, S:;;® has only components on the representations
1, 8, and 27 of SU(3) according to

8 8 1
Syjad) = ( )S,-jﬂ)
a B O

8 8 8§, 8 27
_|..< )Sﬁ(&v)_i_( )Sij(27'7). (24)
a B v a B v

7J. J. De Swart, Nuovo Cimento 31, 420 (1964); Rev. Mod.
Phys. 35, 916 (1963).
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From Egs. (22), (23), and (24) we get
T[T, T;®]—[D;(®,D;®]

a

8 8 8 8 8 8§ 5
= _\B( )(5ijF_2V(7)—Rij(7))+( )[ieﬁk<\/_) 11—2‘4]‘(7)_5”(8.1)}
a B v a B v 3

8§ 8 1 4 8 8 27
+( )(—ieijk——r—zAk(O)"Sij(l))“< )Sij(w,v)_ (25)
a B 0 V3 a B v

We now take the matrix elements of Eq. (25) between states of the baryon octet with momentum along the z
axis, and we insert in the left-hand side a complete set of intermediate states. For 4, j=1, 2, T; and D; are both
“good” operators, so that we may be hopeful about the possibility of saturating the commutators with states of
finite mass in the limit of infinite momentum. In this limit one has 22— 0, independently of the intermediate state,
so that in Eq. (25) I'=T(0) is actually a constant. Furthermore, since C; in Eq. (14) has nonvanishing matrix
elements only between states of the same four-momentum, and hence of the same mass, all the intermediate-state
contributions not coming from the octet cancel out in the left-hand side of Eq. (25). We thus obtain the remarkable
result that Eq. (25) supplies an exact sum rule by only retaining the pole terms.

We now use the Wigner-Eckart theorem and the orthogonality relations of the Clebsch-Gordan coefficients to

obtain the following equation:

£1(88Nn) £x(88N") (8N *8n')2_ £1(888¢)£1(888¢)
I

X (8/N)12(8¢¢"| Brr(8888) | Ny )[A 388 (ryr') — £1(88Nn) A ;55 (r,r) ]

= —V38x885a[ 0:;T%(r| V(887") | r')—(r| R:;(887") | r')]

+ syl iein(v/B)T(r| Ax(88y) [r')—(r| S:;®(88%) |#)]

+ o[ —ien(4/V3)T2(r | Ax @ (88) [/ )—(r| Si;V(88) | ') ]— dwar(r| Si; 47 (88) [ 7'},

(26)

where £1, £, and £; are sign factors and (8¢¢’| 8rr(8888) | Nnn”) are recoupling coefficients as defined in Ref. 7. We

have also defined

A () =2 [T7Xr| Tu(885) | s)(s| T5(885") | 7')—(r[ Di(885) | s)(s| D;(88:") [ ) ].

The quantities ¥ (88%) and the similar ones appearing in
Egs. (26) and (27) are reduced matrix elements in
SU(3) and are explicitly given in Appendix 3. Finally
7, 7', and s are helicity labels.

Letting N, 7, and 7’ take on all possible values, we
obtain from (26) a set of independent equations. Those
coming from the SU(3) symmetric parts will be dis-
cussed in Sec. 6. We consider here the antisymmetric
part which is free from Schwinger terms and gives rise
to definite predictions. For N=10 and N=10* we get
trivial results. Taking N=8, n=ga, n'=s we obtain

_#n/2m2=%<’n2>F1 ) (28)

or equivalently®
<rn2>GE= 0 (29)

Gr being the electric Sachs form factor. The result of
Eq. (29) can also be expressed by saying that the
charge radii of the baryons are pure F.

8 The charge radius is defined as
#(r®er=—((@/dg)Gr(g))?=0+Gr(0)/8m*

Gr(g®)=F1(g) — (¢*/4mH) F2(g?).

and

27

We next consider the case N=8, n=17"=ain Eq. (26).
By taking into account the preceding result, we get

I2=3(rs")ex- (30)

Inserting the experimental value for the proton radius®
we have I'=0.43 m,. We note that the relation (30)
can also be directly obtained by comparing the sum
rule of Cabibbo and Radicati'® with that obtained from
the unitary antisymmetric part of the commutation
relations of tensor charges.?

Equation (30) appears quite interesting as it relates
the proportionality constant of the PCTC relation to a
physical quantity. As a consequence, it is possible to
obtain by use of PCTC a number of relations between
measurable objects, some of which are considered in the
next section. In addition, the sum rules derived in Ref.
2 from tensor commutation relations acquire a more
direct physical meaning.

Another interesting aspect-of Eq. (30) is that it im-

9 We use the value (rp2)eg=0.72 F2 deduced from the fit by
T. Janssens, R. Hofstadter, E. B. Hughes, and M. R. Yearian,
Phys. Rev. 142, 922 (1966).

10 N. Cabibbo and L. A. Radicati, Phys. Letters 19, 697 (1966).
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plies a sort of extended universality, in connection with
partial conservation of axial currents (PCAC). In the
vector-meson-pole dominance scheme we can use
Hrp)~=my=? and g=my*/[2Gyyy(0)], where my is
the common mass of the vector meson nonet, g is the
constant defined in Eq. (10) and Gyyy is the nucleon-
vector-meson coupling constant. From (9) and (30)
we thus obtain

mys

S2Y)
2V2Gyyn(0)

which looks quite analogous to the Goldberger and
Treiman relation. If we insert in Eq. (31) the relation
2Gynyny=my/ f, obtained from the commutators of the
U(3)®U(3) chiral algebra,'* the PCTC relation can be
written in the form

Al @ my*(f/V2),( (32)
exhibiting a strong analogy!? to the PCAC relation
0u] us @ =mp,*(f/V2)$. (33)

We note that the universality expressed by Egs. (32)
and (33) is in agreement with a symmetry U(2)w in the
limit of degenerate meson masses. This can be seen as
follows. Let us take the matrix elements of (32) and (33)
between one-particle states moving in the z direction.
One gets

—iks(BJ5 @ [¥)—iku(B| T | 7)
=m*(f/N2) (Bl @|v) (34)

and

— iks(B] T 3@ | y)— ika(B] T 1@ | 7)
=m*(f/V2){Bl¢*[v). (35)

Since J a3, J 51, J35 transform like the x, ¥, z components
of a W-spin vector, and the same holds for —J 4, Ja1,
Jis and for —os, ¢1, ¢, Eq. (34) follows from Eq. (35)
by W-spin invariance for »=1, 2. A similar connection
is contained in a recent paper by Costa and Tonin.!3:14

5. RELATIONS BETWEEN ELECTROMAGNETIC
AND AXTAL QUANTITIES

In this section we consider some relations arising
from a comparison of the matrix elements of tensor and
axial charges in the limit p — .

1 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); 16, 384 (1966); M. Ademollo Nuovo Cimento 46A
156 (1966).

12 If we had limited to SU(2) symmetry in Eq. (32), my should
have been replaced by m, fora=1, 2, 3 and similarly for the other
1somult1plets Therefore we may suppose that in presence of mass
breaking in SU(3) we have my — my, in Eq. (32).

13 G. Costa and M. Tonin, Nuovo Cimento 424, 1015 (1966).

14 A relation similar to (11) holds in a U(6,6) scheme (Ref. 5)
with a pole-dominance assumption giving J R<“>= gpr®. On the
meson pole we have then 4,J (@ =mJ,® which differs by a factor
V2 from (11) with T=m/V2.
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Let us first consider the matrix elements of the baryon
octet. From the Lorentz behavior of the charges we ob-
tain for instance!®

(Bl T1@ l'Y)p-»eo= - <5 l A(yso2\) l ’Y>p->eo .

According to the usual models of baryons we suppose
that the W-spin generators coincide with the quark
spin operators between baryons at rest. So we get

BIT1 ) poe=—(B] 42| ) p=0.

Reducing with respect to the spin and SU(3) varia-
bles and using (A15) and (30), we get

(D/F)éxial'_‘= (D/F) total magnetic moments ,

(p—tn)/2m=ga(3{r»*)cp) 1z,

These relations coincide with those obtained, by a dif-
ferent procedure, by Buccella, Gatto, and Veneziano.!8

A relation analogous to (38) can be derived for N— N*
transition matrix elements neglecting the mass-difference
effects. We obtain in this case

w*/2m=3V2G*(3(r,%ep)"'?,

(36)

(36")

(37
(38)

(39)

where p* is the N—N* magnetic transition amplitude
(u¥exp=1.21p,)'7 and G* is the N— N* axial amplitude
(G*exp=1.50).1® Numerically (38) gives 0.50 F=0.58 F
and (39) gives 0.36 F=0.35 F. The agreement is fairly
good in view of the approximations introduced in the
pole model. One can also consider the ratio of (39) and
(38) in order to eliminate the constant IT' obtaining

1*/ (up—pn) =3V2(G*/g4) (40)

also in good agreement with experiment. Equation (40)
had been deduced, from dynamical arguments, by
Gatto and Veneziano.'?

We observe that the above results can also be achieved
under the stronger assumption of W-spin invariance,
with definite W-spin assignment of the baryons. In this
case the right-hand side of Eq. (36) can be connected,
by a W-spin rotation, to the matrix element of the axial
charge A3 always at infinite momentum. Consequently,
Eq. (39) and similar ones can be deduced without any
assumption of mass degeneracy.

15 The definition of 4 (yv402\?) is as in Ref. (1). Equation (36)
connects the matrix elements of the total magnetic moments to
those of the SU(6)w generators. An interesting application can be
done when the physical states (8| and |v) are supposed to belong
to reducible SU (6)w representations. See R. Gatto, L. Maiani, and
G. Preparata, Phys. Letters, 21, 459 (1966).

16 ¥, Buccella, G. Venemano and R. Gatto, Nuovo Cimento
424, 1019 (1966) 43A, 768 (1966)

"R, H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180
(1966).

18 C, H. Albright and L. S. Liu, Phys. Rev..140, B748 (1965).

19 R. Gatto and G. Veneziano, Phys. Letters 19, 512 (1965);
20, 439 (1966).
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6. CONSEQUENCES FROM THE UNITARY SYM-
METRIC PARTS OF THE COMMUTATORS

We now go back to Eq. (26) and consider the unitary
symmetric projections. For N=1 we get

(r[S®@88)[r')

3 4
= 1 —_ —]2 U ’
+1l:4\/§m2(2yp+yn 1) \/31 d]X, oX, . (41)
For N=8, n=17"=s, we have
(7| S12®(88D) [")
3 5
= —il:—(2up+un— 1)— <\/—>P—2d:|XTTG3XW . (42)
42 3
For N=8, =5, n'=a:
<1" S12(8)(88F) I?”)
35 5
= +i[ nt (\/—> I“2f]X,T0'3X,, . (43)
4m? 3
For N=27:
(7| 5127 (88)|7")
= —iEZ,up—f—u"—- 1] X 03X, (44)
44/ 6m?

Equation (44) requires S12®"5<0. Furthermore if Sy®
were zero we would have from (42) and (43) the
relations

(V3)f=—QT/4m*)(\/S)tn 5
(V3)d=QBT%/4m*) (2up+ua—1).

These relations would give d/f=0.65 against (¢/f)exp
~1.28, and g4=0.49. Therefore we are led to conclude
that S12® also has to be different from zero.

The presence of Schwinger-like terms in the commuta-
tors of the charge densities seems to be a consequence of
the SU(6)w algebra and the PCTC hypothesis. Such a
result may not be surprising as we are actually com-
paring the compact SU(6)w algebra with the algebra
of current densities, which necessitates infinite dimen-
sional representations.?’ One can escape the unpleasant
situation of having Schwinger terms by one of the fol-
lowing ways:

(a) Reject the PCTC hypothesis. In this case we can
no longer relate the electric dipoles to the tensor charges.

45)
(46)

2 (a) R. Dashen and M. Gell-Mann, Phys. Letters 17, 145
(1965); (b) Phys. Rev. Letters 17, 340 (1966). In our case of
dipole algebra and in absence of Schwinger-terms contributions,
the necessity of infinite-dimensional representations has been di-
r((icgtély) shown by (c) G. Veneziano, Nuovo Cimento 44A, 295

06). .
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(b) Modify the commutation relation of tensor
charges [Eq. (8)]. We may actually suppose that only
the unitary symmetric part of the commutator has to
be changed, maintaining the validity of the results of
Secs. 4 and 5. In this connection, we remark that the
two parts of the commutator test two different aspects
of the quark model, as stressed in Ref. 2. The unitary
antisymmetric part is related to the spin-} assignment
for the fundamental fields while the symmetric part is
related to the property of the quark fields to be a uni-
tary triplet. However, we want to emphasize that the
commutation relations (8) are equivalent, in the limit of
infinite momentum, to those of the SU(6)w algebra, so
that the choice of (b) may amount to invalidation of
such algebra.

It may be interesting at this point to examine the
consequences of the commutation relation (16) in the
absence of Schwinger terms. For the unitary symmetric
part we obtain four independent sum rules giving the
anomalous magnetic moments as integrals over a certain
combination of the total cross sections for oy absorption.
These are explicitly written down in Appendix 4. The
combinations corresponding to the channels vp and y»
give rise to the sum rules recently obtained by Drell
and Hearn* on the basis of general dispersion arguments.
This may be a point in favour of the absence of Schwinger
terms in the dipole commutators. From the discussion at
the beginning of this section it follows that the above
sum rules are not consistent with the analogous rules
from the commutators of tensor charges as given in
Ref. 2. Apart from the possibilities (a) and (b), men-
tioned before in order to eliminate this contradiction, a
third one could exist, namely: (c) Nonconvergence of the
continuum for the unitary symmetric part of the sum
rules. This is equivalent to the necessity of subtractions
in the dispersion integrals.

We conclude this section by some remarks about the
results one would have obtained, using for the tensor
pole terms the anomalous (instead of the total) mag-
netic moments. The main conclusions of the present
section would not be modified even in that case:
Schwinger terms in the dipole algebra would still be re-
quired for consistency; there would still be disagreement
between the algebra of tensor charges and the Drell-
Hearn sum rule, etc. On the contrary, the positive re-
sults of the preceding sections would be ruled out and
the consistency with SU(6)w symmetry would be de-
stroyed. In particular one would obtain (r,2)r=0 in-
stead of (29), and the D/F ratio of the anomalous
magnetic moments would be equal to that of the axial
amplitudes. These would be very bad results. Also Eqs.
(38), (39), and (40) would have to be accordingly modi-
fied, making worse the agreement with experiment.
Therefore we are led to the conclusion that, also @
posteriori, our choice of the collinear limiting procedure
is to be preferred.
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7. ANALYSIS OF THE COMMUTATION RELA-
TIONS BETWEEN TENSOR AND
AXTAL CHARGES

We now extend the analysis of the preceding sections
to the commutation relation

[T:®,4® =idus, Tz (47)
that we examine here in connection with
[Ds@, A ) =ifns,Dis+Re® . (48)
In Egs. (47) and (48) we have introduced
rar=—ten [E1u 0, 49)
Di5(7)= —z/d3x xi]45‘”) 5 (50)

and a term R;(*® which arises from possible Schwinger
terms in the commutators [Jo,J 5. Nothing can be said
in general about the symmetry in o, 8 of this term.

Following the method of Sec. 4 we take Egs. (47) and
(48) between states of the baryon octet and go to the
limit p — . By virtue of Eq. (14) the continuum can be
eliminated so that we are left with a set of relations in-
volving only matrix elements between the baryon octet.
Concerning the right-hand side of Eqgs. (47) and (48),
we note that the charges T';; are equivalent to the tensor
charges and give rise to the total magnetic moments,
whereas the operators Dy; have vanishing matrix ele-
ments in the absence of second-class axial amplitudes.

As a result we obtain that the additional term R;(®
has no components in the representations 10, 10*, and
27. On the other hand, the absence of the 8, component
would imply the vanishing of the total magnetic mo-
ments, and the absence of the 8, component would imply
the vanishing of the axial couplings. We conclude that
Schwinger terms both symmetric and antisymmetric in
a, B are required to save the consistency between Eq.
(47) and Eq. (48).

Alternative solutions are offered by following possi-
bilities analogous to (a) and (b) of the preceding section.
Concerning the point (b), however, it is now no longer
sufficient to modify the unitary symmetric part of the
commutation relation, and one would actually have to
destroy the whole SU(6)w algebra. With the alterna-
tive (a), of rejecting the PCTC hypothesis, one still
encounters a difficulty with the approximate saturation
of Eq. (48). Indeed, from the fact that in absence of
Schwinger terms the left-hand side of Eq. (48) vanishes
in the p — oo limit, it can be shown that if we only take
the contributions from the octet and decuplet inter-
mediate states we must have either vanishing anomalous
magnetic moments or vanishing axial couplings.?! A

21 Consequences of the [4,/,(x)] commutators, which are
equivalent to the [A4,D] for zero momentum transfer, have
been derived by S. Fubini, G. Furlan, and C. Rossetti, Nuovo
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similar unpleasant result is also obtained in the schemes
with mixing.!:1®

It appears from the present work that the SU(6)w
algebra at infinite momentum together with the PCTC
hypothesis provides a useful and consistent scheme,
giving reasonable results for approximate saturation
according to simple mixing schemes. On the contrary
the local U3)®QU(3) algebra seems to be in general
inadequate in the absence of Schwinger terms. The last
is in fact an infinite-dimensional algebra and it leads to
representations involving an infinite number of states.??
The SU(6)w algebra, supplemented with the PCTC
hypothesis, may provide an approximate compact ver-
sion of the infinite dipole algebra and the present analysis
shows that this attempt may in part be successful.

APPENDIX 1: RELATIONS BETWEEN TENSOR
AND VECTOR NUCLEON FORM
FACTORS

The tensor form factors are defined by?

(2m)3(popo’/mm') %P | T 1 (0) | p)
=a(p")[ (vulr— k) G1(k2) + 0 Ga(k?)
+i(kuP,— kP )Gy (k2)
+(7#P,—7VP“)G4(]€2)]M(D) 3

where k=p'—p and P=p'+p; spin and unitary spin
indices are omitted for simplicity. Between states of the
same particle G4(k?)=0. The conserved vector current is

(2m)3(popd /mm ) 1%(p"| T,(0) | p)

(A1)

’

=d(p’)[(i7y+kym )Fl(k2)

k2
Fa(k?
+i<r,wk,,~—(—l,]u(p). (A2)

m—+m

Comparing with Eq. (A1) by use of Eq. (11) we ob-
tain the following relations:

RLG1(R?)+ (m+m')Gs(k?) ]=T (k") F1(k%),  (A3)
(m+m")[G2(kH)+-k2G3(k?)
+ (' —m)Ga(k?) ]=—T(R*)F2(k%). (A3')

We observe that the total magnetic moment form
factor is
GM(kz) = F1(k2)+F2(k2)
=Tk [k2G1(k?) — (m+m")G2(k?)
+mP—m?)Gu(k?)].  (A4)

We note that for I'(0)0 and F(0)70 (e.g., the

Cimento 43A, 161 (1966) who however consider only a subset
of the possible relations. The extension to the whole set gives the
result mentioned in the text.

22 See Ref. 20 (b).
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case of a proton) the tensor form factors G1 and/or G;
must have a pole at £2=0. They can be regular for
m's“m since in this case F1(0)=0. These singularities,
however, cannot receive a physical interpretation, as
the tensor form factors are not separately connected,
at the moment, to measurable quantities. In the absence
of a more direct physical meaning of the tensor currents,
we may suppose that the invariant functions exhibiting
the simplest analytic properties are just the terms %Gy,
G, k2G3, and G4 appearing in Egs. (A3), (A3), and (A4)
above, none of which is singular for 22=0.

and we obtain
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APPENDIX 2: MATRIX ELEMENTS OF D; AND T;
A. Electric Dipole Moments of the Nucleon

It is well known! !0 that the electric dipole moments
of the nucleon are proportional to the anomalous mag-
netic moments in the limit of infinite momentum. For
later convenience we shall here report a detailed deriva-
tion of this result. We start from the definition

a
D;=—qlim — / exp(ik- x)J o(x)d?x (A5)
k>0 9k,

(¥ Di] p)=—i lim(a/3k) 2x) 50—+ | 740 )

= —i(2m)35(p—p)lim(a/0k) o+ TuO) | ), (46)

where | #’) and: | p) are nucleon states with momentum in the direction 3, and ¢=1, 2. The last step in (A6) can be
justified by taking wave packets for the nucleon wave functions and then going to the limit of plane waves.?® We
have also

1‘ l¢] —31'}’1, . . 1¢] B k Fz(kz) B A‘]
\m %(i"f‘k [70(0)| p)=(2m) ; lkl_)mo I:F1(k )Ek‘iu(p‘f‘ )’YW(P)""—Em—ﬂ(D)ww(D)] . (A7)
The spinor derivative can be calculated by use of the formula? (at first order in k)
w(p+k)=[I+iv4(y-k/2po) Ju(p) . (A8)
We thus get from (A6)
m Fl(O) Fz(O)
(¢'| Di| p)=—id(p— p’)——[i———d(p)wu(p)+—-ﬂi(p)mu(p)]
po Zﬁo 2m
F4(0)
= —i3(p—p')——(m/po)u(p)o:x(p) . (A9)
2m
In the limit p —c we have
(¢’ Ds| py=—08(p—p") (F2(0)/2m) &s:;X ;X (A10)

where X are Pauli spinors.

An alternative procedure consists in the use of CVC. In this case, to render the procedure unambiguous, we let
the nucleon masses be different and go to the limit of equal masses at the end. We thus obtain the same result as
before.

B. Nucleon Tensor Charges

Let us now consider the tensor charges. We write

T¢=E?0 /d“x exp(ik-x)Joi(x). (A11)
Using (A1) we obtain
@' Tl p)=— i&(p—p')l&r_s)(mm’/ Dopd) 12u(p+K)[(y ski—vik ) G1(k?)+04Ga(k?)
+i(ksPi—kiP 1) Gs(k?)+ (vaPi—v:P)Ga(k*) Ju(p) . (A12)

2 F, J. Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119, 1105 (1960). )
2t Equation (A8) corresponds to an infinitesimal pure Lorentz transformation. In order to maintain the same helicity a spatial
rotation is also needed. For k- p=0 we should have simply

o+ = (I—wﬁ)u@

which in the limit $ —« is equivalent to (AS8).
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The treatment of Eq. (A12) is not unambiguous and may depend on the limiting procedure. To make evident the
various situations that may arise we shall consider three different limiting procedures:

(i) We let k tend to zero parallel to p.
(ii) We let k tend to zero along the x; direction (where i is just the index of T).
(iii) We keep the initial and final mass different while performing the limit k— 0 (and no restriction on the
direction of k).

The method (i) seems to be the most direct one; it avoids the difficulties of cases (ii) and (iii), as we shall see. In
fact in case (ii) a divergent term will appear, which is clearly unphysical; while case (iii) presents some ambiguity
because F1(0) is one for equal masses and zero for different masses.

Following the prescription (i) we find from (A12) and (A4):

P’ T:] p)=—1i(p'—p)(m/po) k})ig’fll‘ | :i(p+k)[—'y,~k4G1(k2)+a4iG2(k2)]u(p)
=—16(p'—p)T(0)[Gu(0)/2m](m/po)a(p)osu(p), (A13)

and in the limit p —o:
' Ts| p)=—6("—p)T(0)(G1(0)/2m) essXTaiX.. (A14)

Such a result is analogous to that for the corresponding matrix elements of the electric dipoles, Eq. (A10), ex-
cept for the substitution of anomalous magnetic moments with total moments.
The method (ii) gives

m
@' Ti|p)=—1is (P‘D')}T . _glrl{llp w(p+k)[v4k:G1(k?) + 0 4,Go(k?) — th: P 4G3(k?) Ju(p)
o k0,

F2 0 Fl(k2)
— st~ = > Ltk ) | (a15)

m. P

In this expression the term proportional to F; is singalar; however this term is clearly unphysical, being a non—
spin—flip term. This divergence can formally be avoided by a suitable regularization procedure, as for example by
taking a symmetrized limit in k. One thus would obtain the anomalous magnetic moments. However, it seems to us
that the singularity is essentially required by PCTC, as noted in Sec. 2.

Finally, the method (iii) gives

@'| T:| py=—id(p'—p) Lim Gmm'/ popd YA ) L=k sGar(k%)+ o 0sGalk®) = v:P 4G a(k?) Ju(p)

= —48(p—p")T(0)[G2(0)/ 2m(m/ po)i(p)ossu(p) (A16)

which is identical to that of (A13). In the last step we have supposed that F1(k?) tends to the electric charge as k2
tends to zero, in spite of the fact that the masses are different.

APPENDIX 3: EXPLICIT FORM OF THE elements between baryon states and letting p — o, we
MATRIX ELEMENTS APPEARING IN obtain
EQUATIONS (21) AND (21') (| V(88n)|7) = 8,BX, X, (A18)
The reduced matrix elements are defined by (r| A4(88F) |#') = fX,FaiX (A19)
k - r OfAr!y
(8\r| AW [8)N") (r| Ax(88D) |7 )= dX,tei X, (A20)
8 N 8 O] N=aX, o X
-2 Melawissl, @ CAOEIm=odnx, (a2)
*Woa A (r|Rij(88n) |7 )= {r?)pin:iX, X, (A22)

For the operators V, Ay, Rij, T, and D; of Eq. (20) the (r| T:88n)|7"y=—T(0) (usot"/2m) X, 0 X , (A23)

index NV of the unitary representation is always 8 and is n_ ;

omitted, except for the unitary singlet axial charges (| D:(88n) 1) = — (uan’/ 2m) esiiXs"0 % (A24)

denoted by 4. where 404" are the total, and p,," the anomalous, mag-
From the definitions of Sec. 2, taking the matrix netic moments.
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In the right-hand side of the above relations we have
omitted the factor 6(p—p’). The D and F combinations
of the magnetic moments (both anomalous and total)
expressed in terms of those of proton and neutron are

pP=—3(/15)un (A25)
BE=V3(upt3ua) (A26)

and exactly the same combinations hold for the charge
radii. Finally the axial amplitude g4 of nucleon 8 de-
cay is given by

ga=(1/V3)f+(/3)d.

APPENDIX 4: SUM RULES FROM THE UNITARY-
SYMMETRIC PART OF DIPOLE
COMMUTATORS

(A27)

We start from the commutation relation
[Di,D,@TH[D®,D;@]=0,  (A28)

where Schwinger terms have been assumed to be absent.
We take Eq. (A28) between baryon octet states and
insert a complete set of intermediate states. The pole
term can be directly evaluated by (A17) and (A24). The
continuum can be written as?

2 [dv
Continuum = —— / —;ImC @), (A29)
™ 14

where C® is the forward Compton amplitude antisym-
metric in the v polarization and » is the photon labora-
tory energy. The optical theorem gives

4ra ImCP () =tlop(r)—aa(v)], (A30)

where a=¢?/4r and op and o4 are the total photon-
baryon cross sections for parallel and antiparallel spin
states, respectively. By performing the four independent
SU(3) projections we get

1 1
—\—/—8 m[(ﬂun ) +(Han ) ]

1 dy B
87r2a/‘“[UP(V)*UA(V)]u)—O, (A31)

14

25 For the definition of the invariant amplitudes and the dis-
persion method for deriving the sum rules see, e.g., Ref. (2).
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1 1 dy
——ptanT pan® — / —[op(r)—04()Js:y=0, (A32)
4m? 82 v
31
- —I:(,U'anD)z— (5/3) (l‘anF)z:I
10 4m?
dv
s / ;—EUP(V)*UA (»)]ssy=0, (A33)
31
e )
8 4m?
1 dy
[ Ztort-estilen=0, (139
872 v

where the SU(3) indices indicate the coupling between
the vy and the NN states, referring, respectively, to the
first and second subindices for the 8. The combination
corresponding to the yp channel is

8+ ——2T), (A35)
_—3‘( )+§\—/_5< sa, 15 ss S\/6 ’

giving rise to the sum rule

up—1\2 1 dv
= —[op(r)—ca(¥)]yp. (A36
<2m> 81r2a/ V[ 6) ¢)] (A36)
The combination for the vz channel is
4
-2/ 3)(1)—E(8ss)— (2/150/6)(2T),  (A37)

giving

Mn

2 1 dv
- / ost)—0a@) Ty (A38)

dm? 8nia v

The relations (A36) and (A38) have been derived by
Drell and Hearn* on the general assumptions of non-
subtracted dispersion relations and of a low-energy
theorem for Compton scattering. The comparison with
experiment of Eq. (A36) is not definitive and is also
discussed in Ref. 4.



