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The Fo*(1405) resonance state is considered in terms of a multichannel potential arising from vector
meson (V) exchange between the baryon octet (8) and the pseudoscalar Ineson octet (E).The interactions
are assumed to follow SU(3) symmetry; the only symmetry breaking included is that arising from the EB
threshold separations, due to the I' and 8 mass splittings. The resonance mass corresponds to a reasonable
value (f'/47r=1. 25) for the VI'P coupling; the width then calculated is 27 Me&, comparable with the
empirical value. The unitary impurities found in this Fo*(1405) state are quite small, the octet admixtures
being dominant and only 15 j& in total intensity. The effective range calculated for the ZN scattering length
is not large, being of order 1/mI). The relationship between the various choices possible for the definition of
the resonance energy is also discussed explicit1y for this case.

with the values (M*,l') = (1419.5, 26.5) MeV fo«he
Kim parameters and (M*,l') = (1414.5, 27) MeV for the

parameters of Kittel et a/. , not far from the values

M*= ].405 MeV, I'=35~5 MeV observed empirically6

for Fo*(1405).
Some doubts have been expressed in the literature

about the identification of the observed I'o*(1405) with

this virtual bound state. For example, Martin andKali~
and Martin' have argued that, with the (-', —) assign-

ment, the observed width corresponds to an e6ective
Fo*Zsr coupling constant, gr'/4sr=0. 065, which they
consider to be unreasonably small for strongly inter-

acting particles; for this reason, Martin has preferred

the assignment (~~+). There is no doubt that a direct

determination of the I'0* spin-parity would be very
desirable, using the Syers-Fenster method based on the

decay sequence Yo*~2+sr, Z+-+ psro, for some pro-

duction reaction leading to Y0* particles with nonzero

polarization.
The use of zero-range theory for the discussion of the

ZE interaction between 1405 and 1465 MeV (corre-

sponding to laboratory momentum pa about 200

MeV/c) may also be criticized. It is certainly true that
a more complete analysis of the phenomena in this

region should be based' on an energy-dependent two-

channel reaction matrix Eii~(E) for the I=O state, 'o"

l. INTRODUCTION

corresponding to vanishing of the denominator,

(1 2)1—ikA0 ——0.

This I'0* virtual bound-state resonance then has the
pal ametel s

(«s h 2)—
(1»)M*=(mz+m~) 1—

2risrcsrsir («'+ ho')'

'HE orZ resonance Fo~(1405) is now generally be-
lieved to have spin-parity (~~ —). Although there

exists a little direct evidence' consistent with this
interpretation, from the study of its decay mode, this
belief is based mainly on the determination of the I=o
KiV scattering length from the analysis of the E p-
reaction processes, for E interactions at rest and for
low momenta, ' in the approximation of zero effective
range. This scattering length, Ao «+ibo,——has a large
real part, with sign appropriate to the presence of a
bound state in the EE system. Kim' obtained the value
A =L(—1.67&0.04)+i(0.72&0.04)] F; Kittel ei ul. '
have given the value L(—1.57&0.04)+i(0.54&0.06)]F,
obtained using their own charge-exchange data and the
data of Sakitt et ul. 4 Kith the zero-range approximation
for the gE channel, the I=0EÃ scattering amplitude
Ao/(1 —ikAo) has a resonance pole at

I =
t (~~+~~)/~~~~lL2«~o/(«'+&, ')'3, (1.3b)

' A. Engler, H. K. Fisk) R. W. Kraemer, C. M. Meltzer, J. B.
Westgard, T. C. Bacon, D. G. Hill, H. W. Hopkins, D. K. Robin-
son, and E. O. Salant, Phys. Rev. Letters 15, 224 (1965).

' W. E.Humphrey and R. R. Ross, Phys. Rev. 127, 1305 (1962).' J. K. Kim, Phys. Rev. Letters 14, 29 (1965); Nevis Labo-
ratory Report No. 149, 1966 (unpublished).

4 M. Sakitt, T. B.Day, R. G. Glasser, N. Seeman, J. Friedman,
W. E. Humphrey, and R. R. Ross, Phys. Rev. 139, 8719 (1965).

'W. Kittel, G. Otter, and I. Wacek, Phys. Letters 21, 349
(1966).

6 A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L.
Bastien, J. Kirz, and M. Roos, Rev. Mod. Phys. 37, 633 (1965).

7A. W. Martin and K. C. Wali, Nuovo Cimento 31, 1324
(1964).

A. W. Martin, Nuovo Cimento 34 1809 (1964).
9 R. H. Dalitz and S. F. Tuan, Ann. Phys. (N. T.) 10, 307

(1960).
'OIn this paper, we shall denote by E~„(E) the reduced X

matrix (defined in Ref. 11) for the lowest n channels. The proper-
ties of Eg„(A), and the relationship between these Eg (E) for
diBerent n, are discussed in Ref. 11.. For energy E below the
(n+1) th threshold, the elements of Eg~(B) are all real.
"R.H. Dalitz, Rev. Mod. Phys. 33) 471 (1961).
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with real elements

(E) ~(E)
Kzo(E) =

t(e) ~~a))
(1.4)

'~ R. H. Dalitz, in Proceedings of the D6Z Annua/ International
Conference on IJigh-Energy Nuclear Physics at CFEN, edited by
J. Prentki (CERN, Geneva, 1962), p. 391.

"M. Ross and G. Shaw, Ann. Phys. (N. V.) 9, 391 (1960}.

With momenta k and q for the KIq and trZ channels,
respectively, the I=O KÃ scattering amplitude is then
given by

A, =n(E)+i{qP'(E)/[1 —iqy(E))) . (1.5)

For E&rlorr+m~, it is appropriate to use the single-
channel reduced E matrix

K»(E)=v(E) —( I
& IP'(E)/[1+ I

& In(E)j) (1 6)

related to the mZ scattering phase shift b~ as follows:

q cotbz ——ICgt '(E).
The trZ resonaeee energy (8z =90') is therefore given by
the equation"

1+ ik in(E) =0. (1.8)

From Eq. (1.5), we have the scattering amplitudes

&o= q&'(E)/[1+q'v'(E)3, (1.9a)

(1.9b)

From ao, bo alone, it is not possible to deduce n(E)
without some assumption concerning y(E). Hence there
may be some appreciable uncertainty in the location M~
assigned to the mZ resonance energy associated with a
given KS scattering amplitude. The expressions (1.3)
for (M*—-,'iF) give the location of the complex pole
associated with this resonance and common to all the
scattering amplitudes Tg~,g~, Tg~, g, T g, ~, etc.,
given by Eq. (1.2). With expression (1.5) for Ao, this
equation takes the following form,

[1—ikn(E))[1—iqy(E) j+q(E)k(E)P'(E) =0. (1.10)

The energy dependence of X(E) may be parametrized
approximately by the effective range expansion of Ross
and Shaw"

K '(E) =K '(Eo)+&(E Eo), (1.11)—
where R is an "eRective range" matrix. However, the
energy dependence of the reaction matrix E may be
quite weak, even in the neighborhood of the xZ reso-
nance corresponding to Eq. (1.8). It is true that the
redlced J"-matrix Eg~ for the xZ channel alone, given by
Eq. (1.6), necessarily has a pole at the resonance energy,
but this does not at all require that the two-channel E
matrix Eg2 nor the scattering length Ao related with it
by Eq. (1.5), should necessarily have any strong energy
dependence. This remark will be well illustrated by the
model to be discussed below,

In this paper, we wish to discuss a speci6c model for
the F'o*(1405) state, viz. , that it results from the
attraction generated by the exchange of a vector meson

(V) between the pseudoscalar octet (I') and the baryon
octet (8). We assume that these interactions obey
SU(3) symmetry, but we shall take into account the
SU(3) symmetry breaking which results from the mass
difterences within the P and 8 octets, since this gives
rise to the separation of the thresholds xZ, EX, qA. , and
E appropriate to the I=O PB states. This model
represents a generalization of the one-channel model of
Arnold and Sakurai, ' who considered V exchange be-
tween K and JtI, and who calculated the scattering
amplitude by the unitarized Born approximation
method (X/D with X given by the Born approxima-
tion). Das and Mahanthappa" have extended this Ã/D
calculation to include the mZ channel. However, for V
exchange, this X/D procedure is notoriously unreliable.
The singular nature of V exchange necessitates a sub-
traction and the solution obtained depends sensitively
on the subtraction point assumed. The function D(E)
thus obtained is far from constant on the left-hand cut
corresponding to the V exchange, so that the X/D
function obtained is not at all a reasonable approxima-
tion to the T matrix appropriate to V exchange; in fact,
it is well known that there exists no exact solution
corresponding to this situation, in consequence of the
singular nature of V exchange. Hence, wc have chosen
to use a multichannel potential model.

In Sec. 2, the equations for the multichannel sys-
tem are set up. They are approximated to provide a,

Schrodinger equation for convenient solution; it would
be desirable to solve the complete equations at some
later stage The o.ne free parameter (the VI'I' coupling
constant) is adjusted to place the I=O s-wave 7'
resonant state at the mass value observed for Fo*(1405).
The I=O and I=1 KX scattering lengths are then
calculated as function of the total energy E, and their
comparison with the empirical situation is discussed. In
Sec. 3, we discuss the SU(3) character found for the
calculated Vo*(1405) state, the relation between its
mass value and the I=0EE scattering length, and the
validity of the effective range expansion for this
scattering length.

To conclude the Introduction, we wish to emphasize
that our purpose in discussing this model has been to
provide an explicit demonstration that the assumptions
which underlie the usual phcnomenological analysis of
EE interactions and the discussion of its relation with
the Vo*(1405) state are well justified for a quite plausi-
ble physical model. In these respects, the properties of
this multichannel potential model will be quite typical of
any dispersion-theoretic approach to this situation. We
do not bcllcvc tha't this V-cxchangc model ncccssallly

' R. C. Arnold and J. J. Sakurai, Phys. Rev. 128, 2808 (1962)."T. Das and K. J. Mahanthappa, Nuovo Cimento 39, 206
(1965).
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provides the correct dynamical explanation for the
existence of the Ve*(1405) state (although the model
does correspond to parameters roughly consistent with
those determined from quite different phenomena), but
this is not the point. It is our intention to discuss these
questions further for models of a quite different kind
Dor example, for the three-quark model" for Ve*(1405)
and other such resonances' in future work.

V s&'/(k, k')p//(k')d3k', (2.1)

where n and P label the I'13 channels and V //&~& denotes
the vector-exchange potential. We shall consider only
the static limit for this potential, given by

V "&(k k')=C "'— — — (2 2)
4 ~,2+(k—l')2

where, for I=0 and 1, the matrices C p(l& are given by

g/o& ——,'K2

0

0
1+6

—,'V2

Eg

Eg

2. EQUATIONS FOR THE MODEL SYSTEMS

Our model consists of a multichannel system of
two-particle I'8 channels (P=pseudoscalar meson,
8=baryon) interacting through exchange of vector
mesons (V=vector meson octet). For isospin I, the
wave equations for this system take the following form,
in momentum space:

L(/111 2/p)t/2+ (~ 2/p)&/& —jr' (k)

TAszz I. The eigenvalues of C appropriate to each of the SU(3)
representations possible for the PB systems.

f2&}

0 0 1

(/lI12+$2)1/2 —~+$2(t ~+ (~2+$2)l/21 (2 3)

so that the left-hand side of Eq. (2.1) may be written

L
—F—M —m.—/e'/2p (k) jig (k), (2.4)

where

contribute are {1},{8},{8}„and{27}.For /=1, the
representations which contribute are {8},{8}., {10},
{10},and {27}.We note that the most attractive po-
tential V({n})is that for the singlet representation. It
is therefore not surprising that the I=O attraction
turns out to be much greater than the I= 1 attraction,
since V({1})does not contribute to the latter.

SU(3) symmetry breaking is taken into account for
the pseudoscalar mesons I' and the baryons 8, insofar as
the physical masses, m and M, respectively, are used
for these octets. Experience has shown that the splitting
of the I'8 thresholds can have a major CGect on. the
SU(3) properties of scattering and resonance states,
especially through the constraints of unitarity. It is even
possible that an s-wave state which is resonant in the
limit of exact unitary symmetry may no longer be
resonant when the threshold mass sphttings are taken
into account. ""

Since the solution of a set of simultaneous integral
equations such as (2.1) is a major task, we shall simplify
the form of its left-hand side, leading to an approximate
set of differential equations, which may be regarded as a
model system in its own right. Wc note that

Co)—
aV'6

0

—,'g6
0 0
0
0 0

—,'g6

—,'g6 0
0 —,'Q6

0 —,'g6
-'V'6 —

a .

C2p~(k)$ '=1/if~+(M '+k')t/'$ '

+br/t + (r// '+k')'/'P'. (2.5)

Our approximation consists in replacing the variable k
in p (k) by the constant k~ given by

+&here the PB channels appropriate to these states are
those listed on the right. The parameter f denotes the
p~7t coupling constant, which characterizes the VI'P
coupling. Kc assume that thc p meson ls coupled uni-
versally with the isospin current, so that the VBB
coupling is characterized by the same coupling parame-
ter. SU(3) symmetry breaking is neglected for the
~ector mesons; thus the vector meson octet is assumed
degenerate, with mass my, there is then no singlet-octet
mixing, and no V~I'I' coupling for the singlet vector
meson V». Hence the potentials V( ) are unitary sym-
metric; the eigenvalues of the coeKcient matrices C'»'
correspond to pure SU(3) representations, as given in
Table I. For I=O, the SU(3) representations which

"R.H. Dalitz, in High Energy Physics (Gordon and Breach,
Science Publishers, Inc. , New Vork, 1966), p. 251.

(M '+k g')'/2+(m '+kg')t/'=E. (2.6)

Explicitly, Eqs. (2.5) and (2.6) lead to the approxi-
matron

-( )=( + -+ -)L '—( — )'j/' ' ( 7)

Thus, we replace the model system (2.1) by the model

"This remark holds only for resonant states which are generated
by effective potentials between the particles appropriate to the
channels with the lowest thresholds. It is well illustrated by the
model calculation of Delo6 and Wyld (Ref. 18) for the s-wave J38
system. It would not hold for resonant states which are due to
strongly attractive forces between substructure particles (such as
the quarks) whose threshold energies lie far above the resonance
mass considered; although these states can be shifted in mass value
by their coupling with low-lying channels where there is strong
mass splitting, they cannot be destroyed by these symmetry-
breaking effects.

I8 A. Delo6 and H. %. %yld, Phys. Letters I2, 245 (1964).
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system of differential equations,

—(1/2~-(&))VV-+Z l'- '"( )0 ( )

peak is
I =27 MeV, (2.1o)

= (E—iV —m, )P.(r) . (2.8)

These differential equations are then integrated, by the
standard numerical methods, for an appropriate set of
initial conditions on f and df, /dr at the origin, to lead
to the T-matrix T s(E) for the potential V&r& s,t energy
E, for this multichannel system.

Equations (2.8) depend on two parameters, the mass
mv and the coupling constant f The .calculations have
been carried through for the particular choice m~=888
MeV for the mean vector meson mass. The coupling
constant f is then chosen to place the I=0 resonance in
the ~Z channel (defined by the energy such that the vrZ

phase shift is 90') at mass value 1405 MeV, corre-
sponding to the observed P'o*(1405) state. The value
required for the coupling constant is then"

TABLE II.The T-matrix elements (unit F') for the E=O PB system
at the resonance Yp*(1405).

E &v

~Z

(2 9) qA

0.87+4.03i
0.00—1.93i
0.68+2.69i—0.13—2.03i

0.00+0.92i
0.00—1.29i 0.43+1.80i
0.00+0.9ji —0.40—1.36i 0.46+1.02i

f'/47r = 1.25.

comparable with (but smaller than) the observed width
1'=35&5 MeV for Fo*(1405). This model calculation
shows quite clearly that the observed width is quite
compatible with the assignment si~2 for I'0*(1405); in
fact our model calculation has led to a somewhat
smaller value than the empirical width. We note that
the calculated resonance shape is quite asymmetric
(upper half-width 9 MeV, lower half-width 18 MeV), in
consequence of the KX threshold lying close above the
resonance energy. The complete T matrix, calculated
for the resonance energy, is listed in Table II.

This appears to be a reasonable value for this parameter.
From the observed pew decay width of 124 MeV,
Sakurai"" obtained the value f'/47r=2 5 From . t.he
isospin dependence of the m.X s-wave scattering lengths,
i.e., from (aq —ai), Sakurai obtained the same value for
f'/47r, from the energy dependence of (aa —ai), he ob-
tained the further estimate f'/47r= 2 1~03. .

The I=O mZ s-wave cross section obtained from the
solution of (2.8) for the coupling constant value (2.9) is
shown in Fig. 1.The calculated width for this resonance

For energies above the EE threshold, the EX scat-
tering length A =a+ib may be obtained directly from
the calculated T-matrix element (K1V

~
T~KN), since

(K,V~ T~KX)- =A-i —iu, (2.11)

where k denotes here the c.m. momentum in the KS
channel. The I=0 values obtained at three energies are
given in Table III. An effective range fit to the values

240-

200

TABLE III. The ZS scattering lengths calculated for the
multichannel potential due to vector meson exchange, given as
function of the total energy E.

xl 160E

J'- 120

6
80

40

Z (MeV) 1434

(F)
A;~ (F-1)

0.235+0.0435i
4.11 —0.76i

A p (F) —1.275+0.424i
Ap 1 (F 1) —P.7P7 —0.235i

1455

—1.165+0.453i—0.746—0.290i

0.231+0.0466i
4.16 —0.84i

1520

—0.849+0.460i—0.911—0.494i

0.218+0.0557i
4.31 —1.10i

1370 1380 1390 1400 1410 1420 1430 1440

C. ht, Energy E (MeV)

FIG. 1. The total s-wave ~Z scattering cross section calculated
for the multichannel potential model for I'p*(1405) is plotted as a
function of the total c.m. energy. The cross section becomes very
small at the ES threshold, where only the term p (E) contributes
to the ~Z scattering.

"The general conclusions do not depend sensitively on the value
chosen for my. For a different choice of my, in the same mass
region, the corresponding value for f is adequately given by
f2/4 = 1.25(~,/888)2.

-"' J. J. Sakurai, Theoretical Physics (International Atomic
Energy Agency, Vienna, 1963), p. 227. More recently, Vellin
(Ref. 21) has used the width F,=106~5 MeV given by Rosenfeld
et al. (Ref. 6) to obtain the estimate f2/47r =2.07~0.12."J.Yellin, Phys. Rev. 147, 1080 (1966).

Ao(1434) and A0(1455) is given by

A,—'(E)= (—0.703—0.230i)

E—1432'
~(1.88y2.60'), (2.12a)

1OOO /

= (—1.285+0.420i) '

~ (0 226+0 31.3i)k', . (2.12b)

&0= (1 02+1 41i)/. mi, . (2.13)

for c.m. total energy E MeV, or c.m. momentum k F '.
The value obtained for the effective range Ro has a
reasonable order of magnitude,
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TABLE IV. The EcV scattering amplitudes obtained from data
on low-energy and at-rest E p interactions. The errors quoted
correspond only to the diagonal elements of the error matrix. In
fact, there are strong correlations between the uncertainties in the
values of these four parameters.

Kima
Kit tel

et al. b

Aog =ao+ibo (F)

( —1.67 %0,04) +i (0.72 &0.04)
( -1.57 ~0.04) +i(0.54 &0.06)

A1~ =a1+ib1 (F)

( —0.00 &0.06) +i(0.69+0.03)
( —0.24 +0.05) +i (0.43 +0.05)

a Reference 3.
b Reference 5.

in terms of the range parameter for the interaction
potential. The effective range expansion appears to be
quite good even up to 1520 MeV; the expression (2.12a)
gives Ao '(1520)= (—0.87—0.46i) F, quite close to the
calculated value given in Table IV. The zero-energy EE
scattering length Ao~= ( 1 2—85.+0 420i.) F is com-
parable with the empirical value given in Table IV; its
interpretation will be considered in Sec. 3 below.

The I= 1 amplitudes calculated from the parameters
obtained from the fit to Fo*(1405) are also listed in
Table III. The zero-energy XE scattering length is
Ai, ——(0.24+0.04f) F, not at all in accord with the
empirical value. In the potential V(", the XXpotential
is attractive but much weaker than the corresponding
term in V('). In fact, the first Born approximation pro-
vides a fair approximation for the calculated 31~. In this
situation, since the imaginary part of A1& arises first in
second Born approximation, it is naturally much
smaller than the real part of Ai~. It appears that other
interactions (for example, those arising from baryon,
decuplet, and Da~~ singlet exchanges') must contribute
dominantly to the absorptive processes observed for the
I= 1 state. Since such interactions would be expected to
contribute appreciably also for the absorptive processes
in the I=0 state, this means that our model calculation
can certainly not be taken as a serious representation of
the complete dynamics of the Fo*(1405) state. Rather,
as we have said in the Introduction, our model is
intended to provide a concrete illustration that the
assumptions made in relating the F0*(1405) state with
the I=0 low-energy XX scattering are well justified for
the case of a straightforward model.

When the interactions coupling these two channels are
relatively weak, this situation arises only when the XX
forces are such as to give a bound state for the uncoupled
E'E channel, since only the EÃ forces then contribute
significantly to the value for o,. In this way, a resonance
state is possible for the s-wave xZ system, even though
there are no repulsive (or centrifugal) forces present to
provide a potential barrier to contain the resonant
state.

More generally, the interactions coupling these chan-
nels may be strong and all of the interactions within and
between these channels may contribute to the element n
determining the ~Z resonant state. In the present model,
for the parameters used, the potential interaction in the
KX channel has well-depth parameter s=0.8, insuffi-
cient for the generation of a bound state in this channel.
Hence, the interactions between the EE and other
channels and within these other channels (especially in
the vrZ channel) provide the significant additional
attraction necessary for the I'0*(1405) resonance state.

It is not obvious u priori whether the I"o*(1405)sta, te
has any simple character in terms of SU(3) symmetry.
Although the potential matrix assumed does follow the
SU(3) symmetry, the strongest attraction being that
for the singlet representation, the symmetry breaking
introduced by the use of the physical masses for the P
and 8 octets could well mix different SU(3) representa-
tions to such a degree that the SU(3) classification
scheme might have no value here (a situation suggested
by the fact that this resonance can be seen only in the
xZ channel, as well as by the description "virtual EE
bound-state resonance"). We may settle this question
for our model calculation by examining the complete T
matrix calculated for the energy E*corresponding to the
complex resonance pole. In the neighborhood of
[M* ~iI'), the 2'-matrix elements are necessarily all
of the form"

(j l
T

l
i)=c,c;*/[E—M*+-,' (iI') j+finite terms, (3.3)

where the labels i, j refer to the various channels. The
resonance eigenstate is then given by the channel
wave function

3. DISCUSSION AND CONCLUSIONS

The F'0*(1405) state has frequently been described"
as a eirtlal holed-state resonance of the I=O EE sys-
tem. This description corresponds to the way in which
the resonance pole arises in the xZ reduced E matrix"
Eg1, namely, that the reduced K matrix Kg~,

+82
v mZ

for the ES and xZ channels has no pole at this energy
and the resonance pole arises from the denominator
depending on the element n in the expression" for X~1,

&»=7—0'l&l/(1+~I&l) (3 2)

(3 4)

where E is the appropriate normalization factor.
Since Yo*(1405) is quite a narrow resonance, the

resonance pole is close to the real axis, and we shall
approximate the products c;c;~ by their values at the
resonance energy, on the real axis. Prom Table II, we
see that the T,; are dominantly imaginary at resonance,
as expected. The imaginary parts Im1;; do have the
product structure c,c;* expected, and the coefficients c;

"This is simply the statement that the resonance pole is
necessarily a simple pole of det(T). If double poles (or more
complicated poles} ever occur, these are considered to arise from
the accidental coincidence of two (or more) simple poles.
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found correspond to the following expression for the
resonant state:

I

I's*(1405))= Lo 72I&&') —o.345' ~&)
+0.48

~
rth. )—0.36

~

E )j. (3.5)

Ke see that the resonant state is dominantly in the KE
channel, although not overwhelmingly so. This state is
to be compared with the SU(3) singlet state,

I {1},I= I =0)= L-', IxiV) ——,'46I Z)
+-',v2

i
rttl.)——', i

K=)]. (3.6)

Alternatively, we may express the state (3.5) in terms
of SU(3) eigenfunctions, as follows:

I
V'o*(1405))= [0.92

I {1})+0.291{8}.)
—0.251 {8}.)-0 o31{27})j.

We see that Y'e*(1405) is dominantly in the singlet
configuration but that it includes octet admixtures of
total intensity 15%%uq. It is remarkable that the I's*(1405)
state retains such a high degree of unitary purity, even
though it is an s-wave resonance. As remarked by
Rajasekaran, ss" this can be understood simply if

~
ka~

(&1 holds for the c.m. momenta in all the channels
contributing significantly to the resonant state, where u
is. the e6ective radius of interaction. Here, u is typically
1/mv=0. 22 F, and ~krt~ =0.5 for the most extreme
channel (E ), which contributes only 12'%%uo to the I'o*
state.

As remarked in Sec. 2, the calculated width for this
state is quite comparable with the empirical value. Ke
may note that only the xZ channel is available for
I's*(1405) decay, and this channel contributes only 12%
in intensity to the F'o*(1405) state. This factor reduces
the F0*Xx effective coupling constant by an order of
magnitude: following Martin, ' allowance for this factor
leads to the estimate g (Y'o*BP)'/4s. =0.5 for the over-all
F0*BI' coupling, a rather large coupling constant for an
s-wave interaction.

The effective ranges Eo and E» for the EX interaction
are not large in this model. Ro is given by Eq. (2.13);R&

has the value (0.8—2.0i)/mrr. Hence, this model gives
no reason to believe that these effective ranges should be
particularly large; the energy dependences of Ao ' and
A~ ' are such that the effective range term gives an
adequate representation for them, certainly as far as
1520 MeV. From a study of Eight scattering and reaction
processes in the vicinity of the I'o*(1520) resonance,
Watson et c/. 25 have obtained values of the EE s-wave
elastic scattering amplitudes at 1520 MeV. Their result
is that To and Tr are essentially pure imaginary (cf.
Fig. 32 of Ref. 26); the value obtained here for IeTo is
(—0.29+0.52i), rather far from the value kTe ——(0.8i)

'3 G. Rajasekaran, Nuovo Cimento 37, 1004 (1965).
2 R. H. Dalitz, Proc. Roy. Soc. (London) A288, 183 (1965)."M.Watson, M. Ferro-Luzzi, and R. D. Tripp, Phys. Rev. 131,

2248 (1963)."R.D. Tripp, Italian Physical Society, Course 33 (Academic
Press Inc. , New York, 1966), p. 70.

found by Watson et ut. Their empirical value requires a
rather strong energy dependence for Ao over this energy
range. "Since the value calculated for A~~ did not agree
even qualitatively with the empirical value, we shall not
make a corresponding comparison for kT» at 1520 MeV.

There is always some uncertainty involved in the
assignment of a mass value to a resonant state. The
resonance mass may be defined in several ways:

(a) By the resonance pole E*, which is given by the
Eq. (1.3). However, it must be remembered that ao and
bo vary with energy, in general. For example, in our
model calculation, Apt= (—1 275.+0 42i). F holds at the
EfV' threshold (1432 Me V); even with the small
effective range calculated, A s changes to (—1.45
+0.36i) F as the total energy falls to 1405 MeV.

(b) By the condition 6 x=90' for the s.Z phase shift.
In view of the relation (1.6), this mass Mtr is defined
by Eq. (1.8). The relation between n and tto is given
explicitly by Eq. (1.9b); this depends on a knowledge of
y(E). From Eqs. (1.6) and (1.7), it is apparent that
y(E) corresponds to the nonresonant background scat-
tering in the mZ s-wave system. For a fixed resonance
pole, the existence of background scattering can cause
the peak in the xZ cross section as function of energy to
shift quite appreciably from the pole position M*. Even
when y(E) is small, the nonresonant term of (1.6) gives
rise to an unsymmetrical resonance shape. In any case,
the peak in the mZ cross section always lies a little below
the mass M~ for which 5 ~ passes through 90', since the
factor 1/qs decreases monotonically with increasing
energy. However, the mass value M& always lies close to
the peak in the cross section, whereas the mass 3f* can
lie far from the peak.

In our model calculation, it turns out that y(Et) is
very small (cf. Table V). When we can take y=—0, then
uo and n are identical, and the resonance energy defined
by procedure (b) is at —(2tttr&ae') ' below the EX
threshold. "Of course, it may still be necessary to take
into account the energy dependence of uo and bo. These
remarks all go to emphasize the uncertainty in any

TABLE V. Flements of the reduced I' matrix ICg2 (unit F') as
function of the total energy E.

E (MeV)

1432 (threshold)
1455
1520

(&N
I
I'-ar l&N) (&N I E»l ~&) (~& l&ml~&)

—1.303 —0.479 —0.035—1.185 —0.467 —0.033—0.861 —0.412 —0.014

27 Since completion of this work, we have learned from Professor
G. Trilling that the study of low-energy E& —p processes by Dr.
J.Kadyk and collaborators at the Lawrence Radiation Laboratory
has led to values for the ratio (EI P)j(hx+Zm) in the region of
400 MeV/o which are in good agreement with the value calculated
using A1 from the zero-range KS analysis, but which are quite far
from the value calculated using A1(1520) from Ref. 25. This result
casts considerable doubt on the accuracy of the values A0(1520)
and A&(1520) given by Watson et at. t'Note added crt proof This.
work has now been published: J. A. Kadyk, Y. Oren, G. Gold-
haber, S. Goldhaber, and G. Trilling, Phys. Rev. Letters 17, 599
(1966).)

~8 We note that this is the quantity which has actually been
computed to obtain the resonance energies quoted in Refs. 2—5.



Yp*(1405) RESONAN CE STATE 1623

extrapolation from the physical region to the resonance
location. In due course, it may be possible to estimate
the effective range from the empirical data in ES
scattering, "' in which case this uncertainty will be
greatly reduced.

In the I= 7=0 s&i2 I'8 system, another energy range
of strong interactions is known, namely at the threshold
for A.q production in the EX system. Whether the sharp
rise and fall in this cross section is due to the influence

'9 Kittel and Otter (Ref. 30) have very recently included a finite
effective range 8p just for the I=0 scattering length, to obtain an
over-all fit to the low-energy E —p scattering available from
Refs. 2, 4, and 6, together with the M* and 1 values observed for
I"p"(1405). They obtained an acceptable fit for Rp ——0.08~0.05 F,
in which case their zero-energy scattering length takes the value
A p

= (—1.54+0.02)+ (0.53+0.03) F.When they also included the
400 MeV/c values for Ap and A1, they found that the only ac-
ceptable fit was for the Watson III solution, with Ep=0.11
&0.03 F. This analysis now needs to be repeated in view of the
Xo'—p data (cf. Ref. 27) now becoming available in the 400-
.MeV/c region.

'P W. Kittel and G. Otter, Phys. Letters 22, 115 (1966).

of a resonance state, or whether it is due to a strong A.g
scattering interaction, is not yet settled. " We may
remark here that this model does not account for this
effect, in either way. The Aq scattering amplitude ob-
tained is slowly varying, with the small value A„A
= (—0.12+0.15i) I' at threshold; the smallness of this
value is related to the fact that our model gives zero
diagonal potential for the h.g system. We conclude that
this A.p enhancement is generated by forces not included
in our model calculation.
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The saturation of the SU(6)~ algebra at infinite momentum is discussed. A possible physical interpreta-
tion of the tensor generators of SU(6)g in terms of an assumption of partial conservation is critically
analyzed. The implied occurrence of singularities in the tensor amplitudes requires a careful definition of a
limiting procedure defining the tensor charges. A collinear limiting procedure, which relates the tensor
charges to the total magnetic moments, appears as the most convenient one. The matrix elements of the
tensor charges are then compared in the infinite-momentum limit with those of the electric dipoles, and
the following implications are exhibited: The charge radii of baryons are pure F; the D/F ratio of axial.
charges equals the corresponding ratio for the total baryon magnetic moments; a simple relation exists
among the isovector total moment of the nucleon, the axial renormalization constant, and the charge radius
of the proton; and an extended form of universality holds for tensor and axial currents. We also discuss the
saturation of the unitary symmetric part of the commutators, particularly in connection with the possible
occurrence of Schwinger terms.

1. INTRODUCTION AND SUMMARY
OF RESULTS

CLASSIFICATION of the charges generating

~ ~

the compact U(12) according to the behavior of
their matrix elements between states of in6nite momen-
tum has been proposed, ' ' leading to the distinction be-

' R. F. Dashen and M. Gell-Mann, in Proceedings of the Third
Coral Gables Conference on Symmetry Principles at High Energy,
(W. H. Freeman and Company, San Francisco, California, 1966).' S. Fubini, G. Segre, and J. D. Walecka, Ann. Phys. (Q. Y.)
39, 381 (1966).

tween "good" and, "bad" charges. The longitudinal
and time components of the vector and axial charges
and the transverse components o$ the tensor charges are
good charges. In the limit of infinite momentum the set
of nonequivalent good charges generates the algebra
of SV(a)~.

In the present paper we analyze the consequences of
this algebra, avoiding particular hypotheses of approxi-
mate saturation. The starting point of the analysis will
be a connection between the tensor charges, following
from a hypothesis of partial conservation of tensor


