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Roper used (including relativistic kinematical factors
and using Roper’s values for the parameters),! which we
write symbolically as'®

Imfpss=T%((W.—m?)*4T?). (16)

We can go to the narrow-width limit by rewriting the
amplitude as
Imfp33=7P2/((Wu—m2)2+721‘2) ) @an
and letting v — 0. By letting v take on successively
smaller values between 0 and 1 we may determine the
s-function limit and thus compute the effect of making
the narrow-width approximation. This limit can then
be compared with the left-hand cut term due to the
Ngs* exchange graph as computed by Ball and Wong.
We find that the functional dependence on W remains
practically the same for all values of y(0<y<1) and
the various Born terms (including Ball and Wong NV gs*
exchange terms) are related by constant factors. The
results are shown in Table VI. It is clear that the de-
tailed shape of the resonance reduces its contribution to
the unphysical cut by a factor of no smaller than ~0.75
as compared to the narrow-width approximation.6
It is clear from the tables that the Sy, S, and Py
u-channel continua have relatively little effect on the
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s-channel unphysical cuts, whereas the Dy3 contribution
is large. The question now arises as to the effect of these
terms on dynamical calculations of the =V system. Fig-
ure 1 shows the result of some N/D calculations® of the
phase shift in the P33 partial wave (neglecting small in-
elastic effects in the D3 partial wave). If only the Py
continuum is considered, we get a slight improvement of
the fit to the data. In fact we get about the same fit as
one obtains by using the usual Born terms and including
Dg;inelastic effects. On the other hand, nothing is gained
by adding the D;3 continuum. The cutoff which must be
used in the latter case is at a relatively low energy, which
is perhaps an indication that the unphysical cut used
here is a poorer approximation than for the cases where
the Dj3 continuum is neglected. For the Py, and other
partial waves we were unable to find any value of the
cutoff which gave experimentally reasonable behavior
when the Dy3 continuum is added.

We must conclude that this, presumably better,
treatment of the wN u-channel forces does not give
better agreement for the calculated #V phase shifts.
The usual approximation in which only N and Njs*
exchange is considered in the # channel is much better
as far as dynamical calculations are concerned.
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Tt is not clear from the Regge representation that the asympotic form s*® holds in the backward scattering
of unequal-mass particles, because the cosine of the #-channel scattering angle remains small as s increases.
In this paper we use a representation for the scattering amplitude first suggested by Khuri to show that the
form s« is valid throughout the backward region. However, in order to ensure the analyticity of the ampli-
tude defined by the Khuri representation at #=0, it is necessary that Regge trajectories occur in families
whose zero-energy intercepts are spaced by integers. Denoting the leading or parent trajectory by ao(u), we
find that daughter trajectories ax(#) must exist, of signature (—1)* relative to the parent, satisfying ax(0)
=aq(0) —k. We then study Bethe-Salpeter models and find that this daughter-trajectory hypothesis is
satisfied for any Bethe-Salpeter amplitude which Reggeizes in the first place. This fact follows elegantly from
the four-dimensional symmetry of Bethe-Salpeter equations at zero total energy. Some phenomenological
implications of the daughter-trajectory hypothesis are discussed. We have also characterized the behavior of
partial-wave amplitudes in unequal-mass scattering at #=0 and find the hitherto unsuspected result
a(u,l)~u~=®, where a(s) is the leading #-channel Regge trajectory.

I. INTRODUCTION in the scattering of unequal-mass particles, the question
of whether the Regge form s*® holds in the backward
region has never been settled because there is a cone

about the backward direction in which cosf, does not

HE characteristic features of the Regge pole
description of high-energy scattering processes

are the asymptotic forms s*®@ or s*®. However,

* Research supported in part by the Atomic Energy Commis-
sion and in part by the Air Force Office of Scientific Research,
Office of Aerospace Research, U. S. Air Force, Grant No.
AF-AFOSR-232-66. . .

1 NSF Postdoctoral Fellow while major portion of this work was
done.

become large with increasing s. There has been general
uneasiness!-? about applying the Regge asymptotic form
in this region.

1 For example see S. 'C. Frautschi, M. Gell-Mann, and F.

Zachariasen, Phys. Rev. 126, 2204 (1962), Ref. 15.
2 D. A. Atkinson and V. Barger, Nuovo Cimento 38, 634 (1965).
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Our investigations show that the simple Regge form
holds throughout the backward region. This conclusion
is obtained by establishing a representation for the scat-
tering amplitude which explicitly exhibits the Regge
behavior in the region in question. Further we suggest
very strongly that as a general consequence of Lorentz
invariance, Regge trajectories occur in families, the lead-
ing parent trajectory ag(f) occurring with a set of daugh-
ter trajectories a,(f) with zero-energy intercepts a,(0)
=ay(0)—n. The daughter trajectories play a minor role
in equal-mass situations, but for unequal-mass scatter-
ing their function is to cancel singularities in the asymp-
totic contribution of the parent trajectory.

As a by-product of this work, we have been able to
show that the partial-wave amplitude a*(%,]) of an
unequal-mass scattering process behaves like a*(u,l)
~u—ert® near #=0, where az*(0) is the leading tra-
jectory of the same signature in the # channel. This
behavior is quite different from that usually assumed?
in approximate dynamical calculations in S-matrix
theory.

Usual discussions! of the asymptotic behavior in the
backward region are based on the application of the
Sommerfeld-Watson transformation to expansions of
the scattering amplitude in partial waves in the # chan-
nel. The high-energy limit is introduced through the
variable

2(su— (m*—u?)?)

] .
u?— 2u(m?+p?)+ (m*—u?)?

Zu=10C080,=— [H—

This variable is bounded by unity for all s when # is in
the backward cone defined by 0= #=<wup= (m2—pu2)27,
and, since z, does not become large with increasing s,
the conventional Regge representation (i.e., the Som-
merfeld-Watson transformed partial-wave expansion)
does not furnish an asymptotic limit in this region.
Indeed, any representation A4 (%,s) = f(u,2,) is suspicious
at =0 because the transformation of variables is sin-
gular there. '

Our discussion is based on work of Khuri* who shows
that Sommerfeld-Watson transformations and Regge
analysis can be applied to representations other than
partial-wave expansions. Starting from power series in
the Mandelstam variables ¢ and s, we follow Khuri and
establish a representation which explicitly exhibits
Regge behavior throughout the backward region.

The reader should note that we do not attempt to
prove /-plane meromorphy of partial-wave amplitudes

3 For example, see S. C. Frautschi and J. D. Walecka, Phys.
Rev. 120, 1486 (1960).

4 N. N. Khuri, Phys. Rev. Letters 10, 420 (1963); Phys. Rev.
132, 914 (1963).
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in this paper but merely address ourselves to the prob-
lem of resolving the kinematic ambiguity in the Regge
representation. The resolution of this ambiguity is defi-
nitely not trivial and it is not surprising that our inves-
tigations have revealed very distinctive features of the
unequal-mass scattering problem.

In Sec. IT we discuss the Khuri and Regge represen-
tations and their connection. We then show that daugh-
ter trajectories must exist if the Khuri representation is
to define an amplitude with correct analyticity. In Sec.
IIT we give an independent proof of the existence of
daughter trajectories based on thefour-dimensional sym-
metry of Bethe-Salpeter equations at #=0. In Sec. IV
we discuss the phenomenological implications of daugh-
ter trajectories and also discuss the kinematics of
inelastic two-body processes in which similar ambigui-
ties of the Regge representation occur. In Sec. V we use
the preceding results to characterize the behavior of
partial wave amplitudes near #=0. In Appendix A, we
prove that the reduced residue functions of Regge poles
have at most isolated singularities at #=0, and in Ap-
pendix B, we establish a correspondence between the
Regge and Khuri representations for Rel< —1, a result
which was thought unlikely in Khuri’s original paper.*

Our notational convention is always to discuss the
effect of Regge poles on the high-energy limit of an s-
channel process, and we therefore consider partial-wave
expansions in the % channel for the backward scattering
problem and in the ¢ channel for forward inelastic
processes.

II. KHURI REPRESENTATION

We assume that the scattering amplitude 4 (x,f) satis-
fies a fixed # dispersion relation

1 2 Adut) 1 1 Au,s)
Awt)=- / " j ds— @)
b/ s

TJa V=t wJs s'—s

and further assume that the corresponding Froissart-
Gribov partial-wave amplitudes

1 o ¢
swh=— [ aauno(i+-)
q27r to 2q2
1 0 s—2m2—2u’+u
+—— | dsA s(u,s)Q;( 1) , (3
2¢%r J 5 2¢*

contain only moving poles in the / plane for Re/> —1,
and that they coincide with even and odd physical par-
tial waves for all non-negative integral /. Hence the
subtraction terms which are in general necessary in (2)
need not be discussed.
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We write an ordinary Regge representation for the amplitude

—1 —1/2+i00 (2l+ 1)
At =— [ e P P T P = P2
1 J —1/2—iw sinrl
* Pa,‘*u Pai"'u - - Paj'u '_Paj‘u -
o ¥ prwDar e O P (0D | S e O
=0 2 sinma;t(u) a=0 2 sinma;~(u)

The case where the background integral can be shifted to the left of —3% is treated in Appendix B. The Regge pole
terms have asymptotic forms s*® only for #70, and have logarithmic singularities in # at #=0. For s large and
positive, the background integral does not converge for complex #,° and the representation is not well defined at
u=0.

Because of these defects of the Regge representation, we are led to consider a new representation based on a power
series in the Mandelstam variables ¢ and s

As)=3" bup)t+3 c(up)s. )

r=0 y=0

The common region of convergence of the two series is the domain |¢| <4u?, |s| <m?, for 7N kinematics. Continua-
tion to other regions is made after the Sommerfeld~Watson transformation.
The power-series coefficients are given by

0

b(up)=n"1 / i dt Ay(ut)t—1,  c(up)=n"1 / ds As(u,s)s™ 1, (6)

41} S0

Actually the integrals defining b(%,») and ¢(%,v) converge only for Rev> M and Rev> N, respectively, where M and
N are the number of subtractions in the ¢ and s channel contributions to the dipsersion relation (2), and must be
defined by analytic continuation to the left of these lines. We note that &(#,») and ¢(#,v) are analytic in a neighbor-
hood of #=0 and are in this respect much simpler than partial wave amplitudes.

To investigate the continuation of 8(%,) and ¢(%,v) into the region where their defining integrals diverge, we use
the Regge representation (4) to compute the absorptive parts

A(ut)=Dou)+3m 2 Bt () 205+ () +11P o+ (&) +3m 2 B (W) [205 () +11P o= (2) ™
As(u,5)=Do(u,8)+3m 2 B () 20 (1) +11P o+ (5) =37 22 B () [ 205 () +-1 1P cuy(—2) . ®)

Here D,(u,) and D,(u,s) are the discontinuities of the Regge background integrals for positive and negative sz,
respectively, and we are to use for z the expressions

3=1+4(t/2¢% ©)

z=1—[(s+u—2m*—24%)/2¢"] (10)

in (8). For real us£0, D,(u,t)=0(t"'/?), and D,(u,s)=O0(s*/?) so that their contributions to 4(%,») and ¢(%,») through
(6) are analytic for Rev> —3.
The contribution of the Regge-pole terms can be found from the integrals

in (7), and

/ dt Pa(u)(l+t/2q2)t_”_l (11)
and °
® s—2m?—2u’+u
/ ds Pa(u)( 1)8_"_1 . (12)
0 2¢®

Khuri has shown that (11) is regular for Rev> —% except for simple poles at v=a(u), a(#)—1, - - -, a(u)—n where
1> Re(a(u)—n)>—1%. This result follows from the truncated asymptotic expansion

Po(w)=gole)x*+g1(0)x* - - - +8u(Q)a**"+Go(%). (13)

5 We are grateful to Professor M. Froissart for pointing this out to us.
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The integer  is determined by the condition > Re(a—2m)> —1, so that G.(x)=0(x"'2) and its contribution to
the integral (11) is analytic in Res> —3. An identical technique works for (12) and we again find that to each Regge
pole a(%), there correspond Khuri poles at v=a(%), a(®)—1, - -, a(u)—n, with 1>Rea(u)—n>—1. It is useful
to speak of the pole at y=a(#) as the principal Khuri pole, and the poles displaced to the left by integers as satellite
poles. The reader should be careful to distinguish these satellite »-plane poles from the daughter Regge poles which
we discuss later.
The residues of the Khuri poles can easily be computed, and we obtain

1 i+P(Oli++ %) r 1 2q2ai+
b(u,ll) = Z T + °
Vi @2t Tt l)Lv——a{" v—ait+1

pait :I
e
+
V— a,—“‘-}-ni

L e U e L e o as
; up);
4 Vi qz"‘f—l‘(l—l—a,-_)l_v—af rlz—ozj“-l-lj Tv—aj_-f-nj ’
an
1 BitT(at+3%) r 1 (2¢*+2m?+-2u—u)a+ Oni
c(up)=—o R o ]
V4 92“#511(05#"‘1)[-”—0!# v—yt+1 v—a;t+n;t
1 BT+ 1 2 owi ]+_ W), (15)
Nz qzai"gI‘(aj_—f—l)Lv—otj— ' v—ai+1 ; Tv—aj‘-l—n,-_ s

where b(u,») and &(u,v) are regular in Rey> —%. We have omitted the argument # of the residue and trajectory func-
tions, and have written explicitly only the residues of the principal and first-satellite Khuri poles. Residues of the
higher satellites are given in Appendix B. The significant property of these residues is that the residue of the jth
satellite pole contains the term (2¢%)7, and therefore has a pole of order j at #=0.

So far we have established that &(x,») and ¢(%,») are meromorphic functions of » for Rev>—1% and for # real,
u540. It follows from the definition (6) that b(%,») and ¢(%,») are analytic in % in the whole cut # plane for Rev>M
and Rev> N, respectively. However, to the left of these lines, the analyticity (meromorphy, to be more exact) of
b(up) and c(u,y) at =0 (or for complex #%), cannot be inferred rigorously from the definition (6) because the de-
fining integrals diverge or from the Regge representation (4) since the latter fails to furnish the asymptotic behavior
of D,(0,f) and D,(0,s). It seems impossible to avoid this difficulty, which we regard as a failure of the Regge repre-
sentation rather than as any genuine defect of the Khuri amplitudes. Therefore we assume that the Khuri ampli-
tudes b(u,») and c(u,) as defined by (6) can be continued to #=0 or into the complex # plane, and have no singu-
larities for Rev>—1 other than those given by the finite number of moving poles in (14) and (15). Hence b(x»)
and ¢(u,») are analytic in the cut # plane and in Rev> —3.

The next step is to make a Sommerfeld-Watson transformation of the power series (5) obtaining

—1/24i%0

A(u,t,s)=(—24)1 / dy(sinay)~1(b(u,p) (— )"+ c(up) (—s)7)

—1/2—i
AT (-3
_ \/7!'2 (‘1 2)
Z q2“‘+I‘(a,~++1)sin7ra,-+
Qg I ) (=)o (= )= ()]
BT+
—_— — i — (— a,'—-__z 2 — —1 aj—¢&l
\/ﬂ-zj @ e+ l)simraj"L( ) (=) gl (=)t
— (2% 2m* - 22— u)ay (=)™ - A (—F) Mpa; (=) it gyt (—s) ], (16)

(=)ot (—5)a* — 2t (1)

The Khuri background integral converges and defines
a function which falls off at least as fast as an inverse
square root as s or ¢ become large with # fixed. Each
square bracket in (16) gives the contributions of the
principal and satellite Khuri poles coming from one
Regge pole of definite signature.

We now examine the pole terms in the limit appro-
priate to high-energy backward scattering in the s

channel, by substituting ¢=2m?42u2—s—u in (16),

expanding powers of this quantity in binomial series,

and considering some large positive s. Each square

bracket becomes

(1eime) (s 4ot (u— 2m2— 2u?— 2¢?)s*"—1
+falau)s 4 falog)s T+ falys). (17)

The functions appearing here are written explicitly in
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Appendix B. The function fu(u,s) is of order s~V/2 and
comes from the convergent tails of the binomial series,
while the first # terms correspond exactly to the first »
terms of the expansion of

2¢")~[Pa(—2)EPau(2)], (18)

which is what one would have obtained from the ordi-
nary Regge representation.

To proceed further it is necessary to discuss the
analytic properties of the Regge residue functions. In
Appendix A it is shown that the reduced residue func-
tions defined by B(ux)=¢2*g(x) have no cuts in the
vicinity of #=0. However, the proof does allow finite-
order poles or essential singularities at this point.

We consider the analyticity properties of (16) at
#=0. The background integral is analytic there, and so
is the full amplitude. The contribution of each principal
Khuri pole has the same analyticity as the reduced
residue of the Regge pole to which it corresponds, and
the jth satellite contribution has an additional singular
polynomial of order j in . The sum of all the Khuri-
pole contributions must be analytic at =0, and this can
occur only if the singularities of the individual contribu-
tions cancel because of cooperation among the Regge
trajectories.

Let agt (#) be the leading Regge trajectory near #=0,
assumed for definiteness to be of positive signature. Its
reduced residue must be analytic at #=0, since a singu-
larity there could not otherwise be cancelled. The first
Khuri satellite contribution then has a pole at #=0
whose residue can be computed from (16) and (17).
To cancel this pole there must be another Regge tra-
jectory ai~(u), of opposite signature, satisfying a;~(0)
=agt(0)—1, which we call the first daughter trajec-
tory.8 Its reduced residue B;~ () has a pole at #=0, fixed
so that the singular part of its principal Khuri contribu-
tion exactly cancels that of the first Khuri satellite of
the leading parent Regge pole.

In general there will be a series of daughter trajec-
tories az(#) in the I plane, of alternating signature,

satisfying a(0) =o(0)—

k=1, ---,n, 3>Reay(0)—n>—%. (19)

The corresponding reduced residues Bx(«) will have poles
of order & at #=0, with everything arranged so that
singularities of the individual Khuri-pole contributions
cancel among themselves upon summation. The cancel-
lation requirement imposes conditions on the first k—1
derivatives of the daughter trajectory functions and on
derivatives of the reduced residue function as well. It
should be noted that the daughter poles need satisfy
(19) only at =0 and will in general not be integrally
spaced for #0.

There may, of course, be more than one Regge tra-
jectory with reduced residue analytic at #=0. Each such

6 This possibility was first suggested to us by Professor S.
Mandelstam.
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parent trajectory will have a series of daughters with the
properties discussed above.

In Appendix B we show that the whole discussion
above can be generalized to include the case where the
Regge background integral contour can be shifted to the
line Rel/=—L with L>%. In this case the Khuri ampli-
tudes will be meromorphic for Rev> — L, and there will
be correspondingly more Regge daughters in each family
of trajectories.

The following prescription for the high-energy con-
tribution of a family of Regge trajectories sums up our
work on the Khuri representation. The contribution of
a parent Regge trajectory in the Regge representation
is well defined for #%0, and involves Legendre function
of argument z. Obtain the asymptotic series in powers of
s of the Legendre functions keeping only the finite num-
ber of terms which grow faster than background. Intro-
duce one by one the daughter trajectories with reduced
residues chosen to cancel the singularities which occur
in the term by term continuation to #=0 of the contri-
butions of the parent trajectory and the higher lying
daughters. All this can be done in a finite number of
steps and results in a finite set of powers whose sum is
analytic at #=0. To take explicit account of the cancel-
lation of singularities, a Taylor expansion about #=0
should probably be used in phenomenological data
analyses. There is no a priori reason why the regular
parts of the daughter contributions should not be as
important as the parent trajectory contributions in any
given order and parameters should be introduced to de-
scribe these regular parts.

Although the mechanism of cancellation of singulari-
ties by daughter Regge trajectories may seem rather
miraculous, it is a rigorous consequence of the assump-
tion that the Khuri amplitudes &(%,») and c(%,») are
analytic at #=0 except for singularities due to the mov-
ing poles in ». Although not proven, such analytic be-
havior is suggested by the maximal analyticity concept.
Since it does not appear possible to avoid an assumption
of this kind, we have sought and obtained additional
support for the daughter trajectory hypothesis. This is
discussed in the next section.

III. DAUGHTER TRAJECTORIES AND
BETHE-SALPETER EQUATIONS

In field theory the scattering amplitude satisfies a
Bethe-Salpeter equation which can be written in mo-
mentum space as

T(p,p's K)=1(p,0'; K)
! / dip"1(p,p,"; K)T(p",0'; K)
C2nti) LKA Hm L GE—p) ]

(20)

The center-of-mass motion has been separated out, and
K is the total energy-momentum four-vector, while p
and p’ are the relative energy-momentum vectors of the
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particles in the initial and final states. The interaction
kernel I(p,p’; K) is defined in formal field theory as the
sum of all graphs which are two-particle irreducible,
although it is usual in practice to approximate the kernel
by a small number of irreducible graphs. Equation (20)
defines an off-mass-shell extension of the T matrix, and
the physical scattering amplitude is obtained by eval-
uating at

|92l = 972 = L= 20 w2yt 2= ) () = g2
po=pi/ = (m2— ) (2/u) . (21)

Our notation is to use italic letters p to denote four-
vectors, and bold letters p to denote spatial three-
vectors, while |p|=(p-p)¥?, and P=(p-p)l/?
= ([pl*= pe).

Because of Lorentz invariance, the kernel 7(p,p’; K)
depends at most on the six independent invariants which
can be formed from its three four-vector arguments. It
is convenient to discuss the properties of the equation in
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the center of mass frame in which K= (1/«,0). For #5<0
the equation is invariant under the group O(3) of three-
dimensional spatial rotations, and this invariance per-
mits a separation of the equation via the ordinary par-
tial-wave expansion. For #=0 the kernel depends only
on the three Lorentz invariants formed from p and p’,
and the invariance group of the equation is isomorphic
to the Lorentz group itself. This extra degree of invari-
ance at #=0 ensures the existence of daughter trajec-
tories with exactly the properties described in Sec. II.
This phenomenon is analogous to that in Yukawa poten-
tial scattering in which the Coulomb degeneracy of
bound states is obtained as the potential range becomes
infinite because of the extra degree of invariance present.

It is very convenient to make the Wick rotation? in
which the integration contour of the relative energy
variable is moved to the imaginary axis. External rela-
tive energies are also continued to imaginary values, and
new variables defined by po=1ps, po’'=1ps, po’'=1ips".
The resulting integral equation is

dip"I(p,p"; K)T(p",p'; K)

1
T(p,p"s K)=1(p,p"s K)+—

2] [Ghin/umpd V|| m T Gin/ b i Vo | ]

(22)

in which the integration space and scalar products are Euclidean. For K< (m+)?, the Wick rotation is justified if
the Bethe-Salpeter kernel is not too singular on the light cone. Sufficient conditions for its validity are discussed
below. We note that at #=0, the invariance group of Eq. (22) is 0(4) and it will be very useful to expand the scat-
tering amplitudes using representation functions of this group.

Several authors®? have used the four-dimensional symmetry of the Bethe-Salpeter equation to discuss the high-
energy limits of field theory. The only authors who recognize the implications of such a symmetry for Regge tra-
jectories are Domokos and Suranyi.® Our discussion resembles theirs in spirit, although the momentum-space ap-
proach we use does not appear to have previously been given.

We consider Bethe-Salpeter kernels which possess spectral representations of the form

1 r° dro(rw) 1
fopi)=- [ [ _,
TJn T+(1’_P )2 w)a T+(1"P>2

where the spectral densities may contain delta functions in 7, but are required not to have two-particle cuts in .
Such kernels are not the most general permitted by Lorentz invariance, but if o(r,%) and p(r,%) vanish as 7—o,
they are essentially the only kernels for which the Wick rotation can be justified and /-plane meromorphy proved.!®
We will prove that the pattern of daughter trajectories discussed in the previous section must exist in any Bethe-
Salpeter amplitude with /-plane meromorphy. However the symmetry which is responsible for this pattern of
daughters is far more general and we briefly discuss its effect in the case of kernels for which meromorphy cannot be
proved.
The ordinary partial-wave Bethe-Salpeter equation is obtained by expanding in partial waves

dr P(T:u)

(23)

T(p,0'; K)=IZO QDT ps|pl; p4,|0']; w)Pu(z),

I(p,p'; K) =2 (@+DIps Ipl; 24,|0'|; w)Pu(2), (23)
where z=p-p’/|p||p’|, and
Lps|pl; 245|015 ) =L (pa|pl 5 p4 1015 w) (= 1) (psy [ 0] 5 94, 10| 5 %), (24)

7 G. C. Wick, Phys. Rev. 96, 1124 (1954).

8 For example, see J. D. Bjorken, J. Math. Phys. 5, 192 (1964); M. Baker and I. J. Muzinich, Phys. Rev. 132, 2291 (1963).
¢ G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1964).

10 B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962).
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with

1 0
LiO(py,|pl; p4,10']; )=———‘—/ dr o(r,u)
polols o s 0= | o

1 00
1palols 4,91 0=~ [ ar otra
2[p| 9|7 J wa
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(pa—p)*+ [p[*+|p'|2+ r)
2/p|p'] ’

(patpd)*+[p| 2+ 10| 2—}—1-)
2|p||p|

(25)

Separation of the Bethe-Salpeter equation is thus achieved by using the addition theorem for Legendre functions
and orthogonality of the spherical harmonics. One obtains

Ti=(ps,|pl; p4,|0'|; W=IE(palp|; p4|0|; w)

where to obtain suitable Regge continuations, we have

1 /diu”lp”l2d1>”lz*(z>4,|p1;1)4”lp"|;u)Tz*(iu”,lp”l;i)élp’l;u) 26)
2wt) LGV pd VI P m LGt pd ) |9 2]
where
w=ww'+ (1—w?)2(1—w'?)/%. (31)

defined I ==I,V+£I;®» which coincide with physical
I amplitudes for even and odd integers respectively.

If the particles are identical then m=yu and o(7,%)
=p(r,u). It is interesting that in this case the odd-
signature amplitude vanishes identically on the mass
shell, but does not vanish off the mass shell.

The interaction kernels (23) are O(4) invariant for all
u, and it is conveneint to express them in terms of four-
dimensional spherical harmonics as defined, for example,
in the paper of Schwartz.!! It follows from the generat-
ing equation of the Gegenbauer polynomials'? that

1 1 w (PMP2r
F(pp) 2PP "( 2PP’ )C"l(w)(il)n’
n=0
T (p=xp @7
where w=p-p’/PP’, and
fale) = 2L (2= 1), 28)

The functions f,(x) in the four-space treatment play a
role analogous to the Q; functions in the conventional
treatment.

To proceed it is useful to define functions

D,Hi(x)=2'T(41)
[21’(#+1)(l+n+1)(1-
wT(u+2042)

which are orthonormal with respect to the lower index
on the interval (—1, 1) with integration measure
(1—x2)2dx. In terms of these functions the addition
theorem for Gegenbauer polynomials reads!?

) l]ll2c“l+l<x>, (29)

™

S D i) D) 21+ 1)Pi(3),

Cal(w)=
2(n+1) 1=0 (30)

11 C. Schwartz, Phys. Rev. 137, 717 (1965).

12 Bateman Manuscript Project, edited by A. Erdelyi (McGraw-
Hill Book Company, Inc., New York, 1953), Vol. I. Sec. 3.15.1.
This volume will hereafter be referred to as “H.T.F.,” and the
accompanying volumes, will be referred to as “T.1.T.”

The variable w is the cosine of the angle between p and
the fourth axis, and ' is similarly defined.

One can then expand, after exchanging orders of
summation,

w0

I(p,p'; K) =72

1=0 n=

I.(P,P'; w)[2(n+1) T

XDt (w)D a0 ) (2+1)Pi(z),  (32)

where
L.(P,P"; u)=1.(P,P"; u)+(—1)"I,P(P,P’; u) (33)

and

e for Y.
2w PP’ 2PP’

I,9(P,P; u)=—1——/d7 p(T,Mf,(fﬂ) .
2rPP’ 2PP’

Comparing (23) and (32) we find

Iix(ps|pl; 94,105 u)=Tg: I )\*=(P,P'; u)
=0

X204+ +1) T Dy (w) DA ('), (35)
with
L1#(BP; )= Tua O (P, )
(=M @P,P;u). (36)

As a consequence or O(4) invariance, these kernels de-
pend essentially only on the sum /4-), the only separate
\ dependence is a simple sign alternation, so that there
are two independent kernels for each value of the sum
.

Completeness of the Gegenbauer polynomials permits
us to write a similar expansion for T'*

Tli(?‘i;]pl; 174',|p'| ) u)=7r )‘Z Tl:)\#i(Pyp,; u)
» 4=0

X[20+M 1) T D\ (w)D i (w’).  (37)
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The matrix T »,* will not in general be diagonal because the O(4) symmetry of the Bethe-Salpeter equation

is broken for #0.
We can use (35) and (37) to rewrite Eq. (26) as

T4, 3PP u) =T \(P,P"; )+ (4m) i (+r+1)7

=0
where

/ dP"P"3[+\(P,P"; WGP ) T*y, (PP’ u),
(38)

+1 d‘lU(l—‘12)2)”2D)\l+1(w)D,,l+1(‘w)

nyl(P,u) =

Equations (26) and (38) are mathematically equivalent.
We have merely used orthogonal polynomials to change
one of the integrations in (26) into a discrete summation.
Equation (38) is coupled in the discrete indices be-
cause the O(4) symmetry is broken for #70 .Indeed

GHP0)= [ P*+m [ P*p* T, (40)

so that Eq. (38) decouples at #=0, and its solution
there is diagonal in the indices N\ and u. Substituting
Ty, \E (PP 0)=6),T12=(P',P) in (38) we can write
the uncoupled equation

Tiz*(P,P")=11)\*(P,P'; 0)F——
dr(H2A+1)

/dP”P”slil,;\(P,P”; 0)T1\x(P”,P')
[Prom? P +ut]

Furthermore, it follows from the remarks after Eq. (36)
that there are really only two independent amplitudes
A EOMP,P) for each value of I-4+), such that T,
=A%, if X is even, and T%;y=A4 %, if \ is odd.

Now it has been shown using Fredholm techniques!®
that the solution of Eq. (26) or (38) contains only Regge
poles. These appear as zeros of the Fredholm determi-
nant. This determinant factors into an infinite product
at #=0 corresponding to the decoupling of Eq. (38),
with two independent factors for each value of I+,
A=0,1,2, ---. The zeros of the factors give the location
of poles of A%;5. Suppose A+, has a pole at ot(0), so
that in its vicinity

(41)

_1 [PHmP—tu—irn/uPw [ P4 p2—tut-in/uPw]

(39)

Then by (37) we find that T:"(ps|p|; p4,|p’|;0) has
Regge poles at I=at(0), a*(0)—2, a™(0)—4, etc., -,
while 77~ has poles at I=a+(0)—1, ot(0)— 3, etc. Simi-
larly if A=) has a pole at a=(0), then T has zero-
energy Regge poles at I=a~(0), = (0)—2, etc., and T+
has poles at I=a—(0)—1, a—(0)— 3, etc. Since trajectory
functions are analytic near #=0, a pole in the / plane at
#=0 must lie on a genuine trajectory. Hence we have
proven the existence of daughter trajectories of alter-
nating signature spaced by integers at #=0.

The next task is to calculate the residues of the
daughter poles using (37) and (42). The calculation is
straightforward but messy, and we will merely outline
the steps and then give the results. First we define a re-
duced residue function by

b(P,P")= Pe+© pratfO* (P P'). (43)

The factor extracted is analogous to the centrifugal
barrier in the conventional treatment, and it is easy to
see using the properties of f,(x) in Eq. (28) that b(P,P’)
has no singularities as its arguments approach zero. The
second step is to calculate the D,*!(w) explicitly, and
then use the relations

|p|=P1—w?)"",

P4=Pw7 (44)

to eliminate w and w’ from the result. Finally we extra-
polate to the mass shell using (21) and remembering
that ps=—1p, because of the Wick rotation. Denoting
the on-shell limit of 5(P,P’) simply by b, we find that
the parent Regge pole and its first- and second-daughter

A *T(P,P)=~b(P,P")/[I4+N—at(0)]. (42) pole terms at =0 are
A at b ot —_
1)~ b 4tOr@rO+n* b 4 <°>I‘(a+(0))2ra+ 0 (m*—u?)? m2+#2]2q2a+ 0,
I—a*(0)  T(2aH(0)+2) I4+2—a+(0) T(a*0)) L 2u 2 )
d
A C!+ f— —
()= b 4 O (at(0)+1)% — (m? /.L2>2gza+ 02,
IH+1—a*(0) T(2a(0)+1) du

Corresponding formulas hold if the principal Regge ploe is of negative signature.

We infer from (45) the behavior of the on-shell Regge residue functions near #=0. The parent trajectory ot ()
has a reduced residue (%) which is regular near #=0. The residue B~ (%) of the first daughter trajectory can be

written as —[2a7(0)+178(0) (m2— u?)?
4u

where h1(u) is regular at #=0. The pole at #=0, discussed in Sec. II, is evident in (46).

B (u)= thau), (46)
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Some properties of the residue of the second-daughter trajectory can also be obtained from (45), and there is
obviously a double pole at #=0. There is also a single pole whose residue cannot be completely calculated from
(45) since it involves the solution of the Bethe-Salpeter equation to first order in the symmetry-breaking parameter
#. A complete verification of the pole cancellation mechanism for the second and lower lying daughter trajectories
requires a perturbation solution of the Bethe-Salpeter equation in the energy # of the type outlined by Domokos
and Suranyi.® We have not carried out such a calculation because these trajectories lies quite far to the left in the
I plane and are unlikely to be of interest in the near future.

We note that in the equal-mass case, the residues on the mass shell of the first and all odd-number daughter tra-
jectories would vanish for all # even in the physically artificial case of nonidentical particles. Statistics, of course,
guarantees that the whole on-shell amplitude T;~(%) vanishes identically. The second and all other even daughters
do contribute at #=0 in the equal mass case.

It is easy to use (46) and (16) to compute the contribution of the first daughter to the large-s limit of the ampli-

tude. We write here the resulting large-s contributions of the principal and first satellite Khuri poles of the parent

Regge trajectory oot (#) and the principal Khuri contribution of its first daughter ;= (%):

—2(v/m)T (ot (w)+3) _

Au,s)=
T (et ()4 1)sinragt(u)

2(v/mT(er (w)+8) [ —(Qog*(w)+1)B4* () (m*—*)*

) (m2_M2)2
Bo—f-(u) [1+ez1ra+o(u)][sa+o (u) — (m2+#2_ %u_____)ao—!-(u)sa"‘o(u)—l:l

2u

 T(as— () +Dsinmar (@)L

The condition a;~(0) =a™(0)—1 ensures that the singu-
lar terms in (47) cancel exactly, which is just what was
required in Sec. II. There we found that such a cancel-
lation was required in order that the Khuri representa-
tion define an amplitude analytic at #=0. Here we have
shown that the requirement is fulfilled because of the
0(4) symmetry of the Bethe-Salpeter equation.

Our proof of the existence and properties of daughter
trajectories applies to Bethe-Salpeter kernels of the
form (23). This class of kernels can be enlarged by allow-
ing the spectral functions in (23) to depend on the in-
variants p2%, p’%, K-p, and K-p' with smoothness and
asymptotic conditions which ensure that the Wick rota-
tion can be performed and that the resulting integral
equation is of Fredholm type. Such kernels also Reg-
geize, and the existence of daughter trajectories can be
proved.

Domokos and Suranyi? and other authors have inves-
tigated kernels whose spectral functions ¢(u?) and p(u?)
are asymptotically constant. A subtraction is then
necessary in (23). The Wick rotation is valid in this case,
and the resulting marginally singular integral equation
yields #-independent square-root branch points in the
I plane. These branch points are spaced by integers be-
cause of the O(4) symmetry of the equation.

Kernels for which o(u?) and p(u?) grow at infinity are
highly singular on the light cone in configuration space.
Halpern®® has recently shown that the Wick rotation
fails for such kernels, so that previous results in these
should be discredited. The Bethe-Salpeter equation in
the original Lorentz metric has so far not proved tract-
able, and it is difficult to give mathematical meaning
to the scattering amplitude for such kernels. Since the
four-dimensional symmetry of the kernel at #=0 follows

13 M. Halpern, Ann. Phys. (to be published).

'r/z1(u):|[1 —gimar W Jgarm () | (47)
du

from Lorentz invariance alone, one might suspect that
if the scattering amplitude can be suitably defined,
its I-plane singularities would have integer spacing at
u=0.

It is curious that such an obvious consequence of
Lorentz invariance in local field theory as the four-
dimensional symmetry has no obivous analog in S-
matrix theory. It would be very interesting to formulate
and study such a property in the language of analyticity
and unitarity. Of course the argument of Sec. II can be
viewed as a proof of the daughter trajectory hypothesis
in the langauge of analyticity, but the argument there
depends on the unequal mass kinematics. In the equal
mass case the Khuri representation is manifestly analy-
tic and one would not suspect that daughter trajectories
exist.

IV. PHENOMENOLOGY

Our work suggests that Regge trajectories always oc-
cur in families whose zero-energy intercepts are inte-
grally spaced in the / plane. Such a picture has very
interesting implications for phenomenology. In particu-
lar we suggest that each of the presently known particle
trajectories is the parent trajectory to a family of daugh-
ters of the same baryon number, isospin, hypercharge,
and charge conjugation (the latter for B=0, ¥ =0, sys-
tems). We concentrate on the first-daughter trajectory
in this section. This trajectory has opposite signature to
the parent, so that if J* is a physically realizable state
of angular momentum and parity of the parent trajec-
tory, then (J—1)= is a physically realizable state of the
daughter. (Hence, the Pomeranchuk daughter does not
give a physical 0" meson of zero mass.)

We first discuss briefly backward =V scattering, the
experimental configuration which originally motivated
our work. The spin kinematics complicates the asymp-
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totic formulas in this case, but first daughters of the V
and Nj;* trajectories will be required to cancel the
singularities of their parents and a sufficiently accurate
analysis of the data should determine the parameters of
these trajectories. Of course we must also consider the
possibility that the daughter trajectories also rise high
enough to make physical particles, and there are possible
candidates for such states among the plethora of reso-
nances in this system.

In two-body inelastic processes there are kinematic
difficulties similar to those in unequal mass scattering.
We consider the s-channel reation

14+2— 344, (48)

in which we allow the four masses m® to assume arbi-
trary positive values. The corresponding ¢-channel proc-
ess is

1+3—2+4, (49)

and the contribution of a ¢#-channel Regge pole at large
s is found through the Regge pole term B(£)Pacy(—2s).
The relevant kinematic formulas are

s—u  (mi2—ms®)(ma—m4?)
2p13p2azs= f s
2 4

) 12— Z(M12+'}%32)i+ (m12—m32)2
P1s y )
12— 2(m2+mA)t+ (mo2—m42)?

4

padd=

(50)

Aslong as one of the mass differences #,2—ms?, mo?—m,?
is nonzero, the value of 2, will not increase with s at {=0
and there is an ambiguity in the Regge representation
which can be resolved by using a Khuri representation.

The general definition of the reduced Regge residue
function is B(f)= (p1sp24)*PB(¢), and the function ()
will have no cut near ¢=0.

If only one of the mass differences above is nonzero,
then the first-Khuri satellite contribution will be regular
at t=0 and there will be no need for odd-order daughter
trajectories. Such trajectories can contribute to the
process if their quantum numbers allow them to couple
to the external particles involved, and we will discuss
this possibility below. The second-Khuri satellite contri-
bution has a single pole at {=0 in this mass configura-
tion and even-order daughter Regge trajectories are
needed to cancel the ensuing set of singularities. If
both mass differences are nonzero all the Khuri satellite
contributions are singular, and daughter trajectories
of even- and odd-order are required to cancel the
singularities.

Consider now the first-daughter trajectory of the
Pomeranchuk, called ap;(t). It has B=0, ¥=0, T'=0,
G=+1 and odd signature, and its possible couplings
can be deduced by studying the possible couplings of a
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T=0,G=+1, JP=1" meson which could be a physical
state on this trajectory. Bose statistics prohibits a cou-
pling to 7, and G-parity conservation rules out KK. It
is easy to see from the formula G=(—1)5+Z+T that such
a meson could not couple to NN. Hence ap;(f) does not
couple to any of the common two-body equal mass
channels and would not be observed in any of the com-
mon scattering or reaction processes. It does couple to
unequal mass channels and could in principle be ob-
served in double diffractive production processes such
as N+N — Ny;o*+Ny* in which two T'=% nucleon
isobars are produced.

We have not studied the behavior of the daughter
trajectories away from zero energy, but it is tempting to
consider the possibility that they are roughly parallel
with the parent trajectories. If so there would be a
physical vector meson of mass between 1.0 and 1.5 BeV
on the P1 trajectory. Such a meson could not decay to
two pseudoscalar mesons. It could decay to KK, with
p-wave barriers in the configuration (K*K) or in the
(KK)r configuration with d-wave angular-momentum
barriers in both the KK subsystem and in the orbital
coupling of KK with . It could decay to four pions in
the configuration pp. It is possible that the partial
widths of these strong decay modes would be so small
that the particle would be identified primarily by its
electromagnetic decay modes wtr~y or p%. This argu-
ment would also apply to the P’ or to any trajectory on
which a 2% meson lies.

The first daughter of the p, @,1(f) has B=0, V=0,
T=1, G=+1 and even signature and would create a
physical 0" meson. This trajectory also cannot couple to
am, KK or NN, and could only be detected at high en-
ergies in double production processes. If a,1(f) were
roughly parallel with a,(¢) then the 0+ meson it produced
would have mass between 700 and 1100 MeV. This time
decay into two pseudoscalars and into KK= would be
forbidden by strong interaction conservation laws, the
KK decay being forbidden even if the meson were suffi-
ciently massive. The lowest allowed strong decay mode
would be four pions in the op configuration, so that we
might again expect the electromagnetic decay =7~y to
be dominant although one should be more cautious here
because a d wave is required in the n*r~ system.

It would be interesting to make a more detailed study
of the meson daughter trajectories, including estimates
of the decay widths of the particles on them, and a com-
parison with experiment. The present experimental sit-
uation, although not conclusive, is not favorable to the
existence of such particles, and this would indicate that
daughter trajectories have slopes less steep than the
parents.

If there really are particles on the daughter trajec-
tories then our notions about the relative importance of
the various channels in dynamical calculations need re-
vision because none of the low-mass two-body channels
which are thought to be important for the dynamics of
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the parent particles would be able to communicate with
the daughters, and high-mass channels with spin would
have to be included. For example in any common dy-
namical mechanism for the 17p and its 0* daughter, the
ap channel would be important.

V. BEHAVIOR OF PARTIAL-WAVE
AMPLITUDES AT u=0

It is standard practice in approximate dynamical cal-
culations of partial-wave amplitudes a(%,l) to divide
out the zeros at the physical thresholds and consider
the reduced amplitudes a(u,l)=q%a(u,l). There is a
question in the unequal mass case whether the zeros of
the kinematic factor at #=0 lead to corresponding zeros
of a(u,l). It has been concluded on the basis of a tenta-
tive argument in Ref. 3 that @(»,!) does not have such
kinematic zeros, and this is commonly believed to be the
case.

In this section we show that the behavior of a(u,l) at
=0 is very different from that usually assumed. More
precisely we are able to show that the partial-wave am-
plitudes of definite signature a*(x.[) behave like 2—=*©
where a®(0) is the zero-energy intercept of the leading
parent Regge trajectory of the same signature in the
direct channel.!* It is not surprising that the cross-
channel asymptotic limit of the full amplitude deter-
mines the behavior of partial-wave amplitudes at =0,
since the integral from z,=—1 to z,=-+1 which defines
(physical) partial-wave amplitudes corresponds at #=10
to an integral of infinite range over ¢ or s. The proof
follows.

We first derive the result under the assumption
A 4(u,5)=0, and then discuss the modifications necessary
when a third spectral function is included. The absorp-
tive part 4,(u,) is analytic at #=0. Its leading term is
easily found from the Khuri representation (16) of the
full amplitude,

A ()= 2y (w)1*™ (1)
where a(u) is the leading Regge trajectory, and
. Ila(u)+3]
() =Bw) —. ()
/7T [au)+ 1 sinra(z)

In order to write Eq. (51) it is necessary that daughter
trajectories exist with the properties we have ascribed
to them, since the correction terms to Eq. (51) would
otherwise be singular at #=0. Actually for any >0,
there exists an N >0 such that for £> N, the correction
to Eq. (1) is bounded by 2y(u)et*®—a, where a is some
fixed positive number less than the distance from the
leading pole to the next singularity in the Khuri »
plane.

14 E. S. Abers and V. L. Teplitz derived a more primitive form
of this result by using the Froissart bound, which is a cruder esti-
mate of the high-energy behavior in the crossed channels than the
Regge behavior used here. See Nuovo Cimento 39, 739 (1965).
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We next consider the Froissart-Gribov integral
1 0
a(u,l)=———-/ di Ay(u,2)Q,
2q27l' to
2ut
X(l - ) (53)
(m2_[t2)2_ 2%(m2+ﬂ2)+u2

and divide the interval of integration into a part from
to to IV and a part from NV to o, with V chosen as above.
For » sufficiently close to zero we may approximate the
Legendre function and write the first integral as

1 N A )0 (1+ Qut

i --Q

2q27,. t ¢ (m2—~ 'uz) 2
—2u

N ut
= / dt A t(u,t)[% 1n———+6]
e (nt =iy

= Bu Inu+Cu (54)

near #=0, where B, C, and ¢ are constants.
In the second integral we approximate 4,(%,t) by its
leading terms, obtaining near #=0

4y (0) 0 2ut
e / di ta(O)Ql<1+_—_—)
(= J v (nt—1)?

doy—a®ay©) o 2%
__—/ dt ga(o)Ql<1+____2S;).

r(mi—) o (=

(55)

In the limit as # — O this integral can be evaluated ex-
actly with the help of Eq. (37), Sec. 3.2 and Eq. (4), Sec.
2.4 of H.T.F. One obtains

_ 2v(0) T'(a(0)+1)°T (l-—a)l‘(mL- ,uz)z]a(o)
r T@O+H+2) L ow

if a(0)>—1,

if o(0)s—1 (56)

a(u,l)

= Bu Inu+Cu

near #=0. We note that for «(0) < —1 the contribution
from the finite part of the integration range is actually
more singular at #=0 than the infinite contribution.
This case is unlikely to be realized in physical situations.
If a third-channel spectral function is present we can
write
A () =yt )i Oy (u)t @,

Ay(u,s) =t (w)s® WO —y~(u)s* @, (87)
where a*(%) and o~ (u) are the leading Regge trajectories
of positive and negative signature. We assume that both
are of parent type.’® The integral over 4,(%,f) in the

15 The leading trajectory of one signature, say o~ (), may be the
daughter of the other, i.e., @ (0)=a*(0)—1. In this case a*(u,)
would have the usual behavior at #=0, while it would seem that
@ (u,})-would behave no more singularly than #~**©+1 Ingy,
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Froissart-Gribov continuation (3) can be handled ex-
actly as above. The integral over A,(u,s) is slightly
messier, but a similar treatment applies, and we find
the results

) = 2v%(0) T'(a£(0)4-1)2T (l~—oz)|" (i ) 2:|" o)
Tty L

u
i at(0)>—1,

= B*y lnu+C*u if o*0)=—1. (58)

We expect that the behavior we have found deter-
mines the shape of the partial-wave amplitude in a
region in which || (m2—u2)2 As the mass difference
vanishes this region would shrink to the origin, and the
influence of this behavior on the amplitude at any non-
zero value of % would become negligibly small.

It would probably improve the accuracy of approxi-
mate dynamical calculations to incoprorate Eq. (58) as
a constraint on the calculated amplitudes. The zero-
energy intercepts and residues of the trajectories can
be taken from high-energy data. For cases such as =%
7K scattering where o*(0)=4%, the divergence at =0
may have an important effect on the low-energy s-wave
amplitude in the physical region.

VI. CONCLUSIONS AND DISCUSSION

We have studied and resolved the kinematic ambi-
guity in the Regge representation in unequal-mass scat-
tering at #=0. This ambiguity arises because the trans-
formation from the Mandelstam variables (#,5) to the
pair (#,2,) is singular at #=0. Our approach to the prob-
lem is through the Khuri representation which involves
the Mandelstam variables directly and thus avoids
representations involving z, which are inherently suspi-
cious at #=0.

The contribution of a single Regge pole to the Khuri
representation has leading term s at %=0, but its
lower lying terms have singularities there which must
be cancelled since the full amplitude is analytic. The
only way this cancellation can occur is for Regge tra-
jectories to exist in families which are spaced by integers
at #=0. If the leading parent trajectory is ao(#), then
the kth daughter trajectory ax(#) has signature (—1)*
relative to the parent and satisfies a;(0) =0a0(0)—&. The
reduced residue By(%) of the parent trajectory is analytic
at #u=0, while the reduced residue B;(x) of the kth
daughter has a pole of order % there. It is perfectly con-
sistent with general analytic properties for the reduced
residues to have poles at #=0.

We have studied Bethe-Salpeter models in order to
obtain additional support for the daughter trajectory
hypothesis and found that it is satisfied for any Bethe-
Salpeter amplitude which Reggeizes in the first place.
This property follows elegantly from the four-dimen-
sional symmetry of Bethe-Salpeter equations at #=0.
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Goldberger and Jones!® have written a recent paper
in which the same subject is approached from a some-
what different point of view. Different results are ob-
tained largely because these authors fail to take into
account the mechanism of cancellation of singularities
by daughter trajectories. Such a mechanism would elimi-
nate the need for the condition «(0)<% which they find
necessary for the consistency of their method. This con-
dition would seem to be violated by the Pomeranchuk
which certainly couples to unequal-mass channels and
in Bethe-Salpeter models (for sufficiently large coupling
constant) which have all the analyticity properties used
by Goldberger and Jones. Since the daughter trajectory
hypothesis is definitely satisfied in Bethe-Salpeter
models, we feel that it is the correct mechanism by
which the ambiguity in the Regge representation is
resolved.

The Regge-pole terms we find are very well adapted to
phenomenological data analysis. They are given in Egs.
(16), (17), and (47). The daughter-trajectory hypothesis
is obviously rich in phenomenological implications, and
we have discussed these briefly here.

Our final result is the elucidation of the behavior of
partial-wave amplitudes at #=0. The power behavior
#~*® we find has not hertofore been suspected and its
implications for bootstrap calculations in unequal-mass
systems deserve further study.
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APPENDIX A: BEHAVIOR OF REGGE RESIDUE
FUNCTIONS NEAR u=0

We consider the 4; contribution to the reduced par-
tial-wave amplitude a(u,l)=q *a(u,l) using the Frois-
sart-Gribov definition (3). The 4, contribution can be
treated similarly. We use Eq. (37), Sec. 3.2 of H.T.F. to
write near #=0

dt =14 () F

2 l i 0
au )= DY /

AT(204-2)
X[I4-1, 14-1; 204-2; — (m2—p?)2/ut].

to

(A1)

Consider the # discontinuity of Eq. (A1). For >0
the hypergeometric function is analytic and the discon-
tinuity vanishes. For <0 we use Eq. (10), p. 400
T.IT., Vol. 2, to help evaluate the discontinuity,

16 M. L. Goldberger and C. E. Jones, Phys. Rev. 150, 1269
(1966); also see Phys. Rev. Letters 17, 105 (1966).
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obtaining

(m2—2)2] (—u)
Disca(u,l) =4 /

X1, 1415 15 (2 —p?)*/ut)+-1} . (A2)

Since the integration range is finite for any fixed %540,
the discontinuity is an entire function of /, so that the
reduced Regge residue functions 8;(%) cannot have cuts
in the vicinity of #=0.

We note that the proof permits isolated singularities
of the reduced residues at =0, and we have shown in
the text that finite-order poles actually do occur. Of

dt 774 (u,t)F
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jectory functions a;(#) are analytic at #=0 unless two
trajectories cross there.

APPENDIX B: KHURI REPRESENTATION
FOR Rev<—1

In this Appendix we establish a correspondence be-
tween the Khuri and Regge representations for Rel and
Rev less than —3%. We also compute in closed form the
residues of Khuri satellite poles.

We assume that partial-wave amplitudes a(u,}) are
meromorphic for Rel> — L. Then Mandelstam’s form!?
of the Regge representation can be written

- B+ — + -
course it follows from the /D decomposition and the AW =B w)+B W)+ R wH+R WD, (B1)
definition of Regge poles as the roots of D that the tra- where
O O—1-1(—24) = 0-1-1(24)
B(u ) =— f U204 1)a (o)) —— -
A7t J 1w cosml
1 =
e 2 (—=1)N2+2)a*(u, I+3)[Qu/2(—2)£Qu1p2(za) ],  (B2)
T I=A
and
Oari *w)-1(—5) £ Q—as = ur—1(2u)
R:(y.f) =1 () [ 20 17 B3
(%,l) 2 it (%:>—L B (M)[ Q (u)""' i cosast (u) ) ( )
where A is the least integer greater than L—3.
We use (B2) and (B3) to compute the absorptive parts 4; and 4,:
A(u,)= B () +Br () + R () + R (), Au(w)=Brwl)+B(w)+R-(w)+R(wf),  (B)
where B+ and B,* are the ¢ and s discontinuties of B%, and
Rt(u)=3 2 BF(Qait+1)tanrai Qo+ a(14(4/2¢), (B5)
ai+>—L
RA(u,s)=3 2 B+ tanmaitQ o= 1(1+[su— (m*—pu?)?]/2ug?) (B6)
a;>—L

where £>1, in (B5) and s> (m2—pu2)?%/u in (B6).!8

Only those terms in A, and 4, which are of order greater than (~Z at infinity can contribute singularities to the
Khuri power-series coefficients of Eq. (6). Similarly the contribution of the finite interval so<s<(m2—pu2)%/u to

¢(u,p) through (6) is an entire function in the » plane.

Using truncated asymptotic expansions of the Q; functions we can evaluate the Khuri pole terms just as in Sec.

IT and can write in analogy with (14).

N I'(—of4n)? (—1)"
(4

v)=0% 2)n. b ), B7
Blu)=5400) I 1 — bl (87)
N 1 n (m2—p2)2 I(—at+r) 1 T(at—r+1)
c(up) =8+ L — - — , (B8
() =£34) nz=0 (e v—(at—n) Ea [1 4ug? :I T(—2at+7) 7! T(n—r+1)T(et—n+1) (B8)
1 I(a+3)T(—2a)

0(u)=—-=>0qg 2« =—(47)7B(2a+1)tanmra(4¢?) 2, (B9)

)= e = ) e Dianwa(i)

17 S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1959).

18 Strictly speaking, (B5) and (B6) are true only for (m—u)? >u>0. For other regions of », #>0, the form of (BS) and (B6)
may have to be slightly changed, but the results (B7)-(B11) are still valid.
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where b(u,v) and &(%,») are analytic for Rev> — L, and N is the largest positive integer satisfying Rea— N> — L. The
summation over different Regge trajectories is suppressed in (B7) and (B8) and in similar equations below.
Equations (B7) and (B8) express the meromorphy of &(%,») and c¢(x,») in Rev>— L and show that the Khuri

image of a single Regge pole at « is a set of poles at v=a, a—1, - -+, a—N.
The next step is to make a Sommerfeld-Watson transform of the power series (5) to obtain

~Itio 76t N T(—atn)? 1
A(u,t,s)=%i / dy(sinm) 7[5 (u,p) (— ) +c(up) (—s) I+ Py —(4g)(=n)

I sinra® n=0 I'(—2a+n) n!

o+ N I(—a+r)? 1 T(at—r+1)
b (—s)e=n 3 — (4¢%)"(u—2m2—2u2)" (B10)
sinra® n=0 =0 D(—20%+7) 7! T(n—r+1)T'(et—n-+1)

which establishes the correspondence between the Regge and Khuri representations in the half-planes Rel>—L,
Rey>—L.

Khuri’s argument against the possibility of such a correspondence to the left of Rel=—3 is based on a counter-
example for which the Regge amplitude has fixed poles at the negative integers while the corresponding Khuri
amplitude is an entire function. This is not in contradiction to our result, since it is obvious from (B7)—(B9) that the
residues of the Khuri poles vanish when the Regge pole is at a negative integer. However such Regge poles do con-
tribute to the full Khuri representation (B10) because of the factor (sinmra)=.

We also see from (B7) and (B8) that the residue of the nth satellite pole contains a factor which is an #th order
polynomial in %1

To investigate the large-s limit of (B10) it is convenient to substitute ¢= 2m2+2u?—s—u in the pole terms there
obtaining the representation!?

—Li0

A=} / do(sinm) b (— 1+ o(aep) (— )]
—~L—%0
0t N T(—oat+n)? (u—2m2—2u%)N—n—1ga*—N-1 T(er—n-+1)
+u - (4:q2)"
sinmra® 2=0 ['(— 2at+n) n! T(et—N)I'(N—n+2)

u—2m*—2u 0%

N
3 s (u—2m?—2u?)"
sinfro® n=0

2
><F<N—ai—|—1, 1; N—n+2; — )+7r(1ie—im*)

s
n I'(—at4r)? T(at—7r+1) 1( 44?
r=0 I'(—20%+7) T(n—r+1)T(aF—n-+1) 7!

)r. (B11)

U— 2m2— 2u?
The second term in (B11) is of background size.

19 Reference 12, Vol. 1, p. 101, Eq. (9) is used.



