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system. The qualitative results reported here should be
of assistance in the construction of better models.
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We calculate the contribution of recently found, highly inelastic 7' resonances in the S», S~&, P&~, and

D~3 partial waves to the exchange u-channel generalized potential for mN scattering. We use the results of
the complex phase-shift analyses for incident pion energies &1 BeV joined to smooth asymptotic functions
to obtain the absorptive parts of the amplitudes. Dispersion integrals are performed over these amplitudes
in the physical u region and then related to the direct s channel by crossing. Finally, partial-wave pro-
jections in the direct s channel give the partial-wave generalized-exchange u-channel potential input to the
N/D equations, which are solved for the phase shifts in the direct channel. The results are as follows: .(i)
Compared to the exchange of the nucleon and the N~33 (1238 MeV), the S~~, S3~, and P~y I-channel continua
have relatively small contributions to the s-channel unphysical cut. (ii) As for the P» partial wave, the D»
contribution to the g-channel exchange potential is divergent at large s. Thus a cutoff is needed to solve the
NjD equations. The effect of including D~3 exchange is to make it harder to obtain agreement with experi-
ment. (iii) The detailed shape of the P» resonance reduces its contribution to the exchange potential by
a factor of 0.75 as compared with the narrow-width approximation.

I. INTRODUCTION

ECKNT phase-shift analyses' ' of xE scattering
(for incident pion kinetic energies Zr, (1 BeV)
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~

~

~ ~

~

have disclosed many interesting features in the low par-
tial waves. Writing the S-matrix elements

S—=qe"'

we note that the S31, S11,and P11waves have been found
to have large 8's and large inelastic production cross
sections, i.e., small g's. The D13 amplitude displays the
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same features, in contrast to the familiar F33 resonance
which shows only small inelastic production at these
energies.

It has become increasingly clear that quantitative
dynamical dispersion calculations of the low partial
waves cannot neglect the right-hand inelastic cuts. '—'
Qn the other hand, previous calculations' "have ap-
proximated the I-channel exchange mÃ forces with the
1V and lVn (1238 MeV) contributions, the latter being
treated in the narrow-width approximation.

These previous dynamical calculations have been rela-
tively successful in obtaining low-energy phase shifts in
most of the partial waves which agree with the experi-
mental values. However, the P~I partial wave is in clear
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disagreement" (as is the resonant behavior of the Dts
amplitude). The fundamental question arises of whether
the P~~ resonance is due to more complicated "poten-
tials" than have been used or is essentially an inelastic
Castillejo-Dalitz-Dyson (CDD) pole, i.e., it results
mainly from forces in one of the inelastic channels and
can only be properly treated by performing a multi-
channel calculation. "

The purpose of this paper is to examine the contribu-
tions of all the above resonant amplitudes (J&-s') to the
I-channel forces. The procedure is the following: Let
f= (S——1)/2ip be the partial-wave amplitude The con-
tribution" "f(N) to f(N) from the physical scattering
region in the I channel is obtained by integrating a dis-
persion integral of 1mf; we fitted various smooth asymp-
totic values for Imf onto the phase-shift results below
1 BeV in performing the integrals. Using crossing, "f
provided the generalized I-channel potential (regular
in the physical s scattering region). Partial-wave pro-
jections of this potential in the direct s channel, "~f(s)
were then obtainecL These "potentials" zf(s) provided
the left-hand input contributions to the S/D equa-
tions' "which are solved, yielding theoretical values
for the 8's.

The results of the above calculations are (i) The con-
tributions from the S3~, Sy~, and E~~ resonances to the
I-channel potential are quite small. For example, the
Ptt continuum gives a potential which is less than 10%
that coming from the exchange of the nucleon pole. (ii)
The detailed shape of the P» resonance (as noted by
Dashen and Frautschi") reduces its contribution to the
exchange potential by a factor of 0.75 as compared to
the narrow-width approximation. " (iii) The Dts con-
tribution to the potential (as is the case for the Pss
wave) is divergent at high energy. When a cutoff is in-

troduced and the Jt'//D equations solved for the direct-
channel partial-wave scattering amplitudes, the D~3 con-
tribution to the potential makes it harder to obtain
agreement with experiment.

Thus we conclude from these results that, unfortu-
nately, a presumably better treatment of the I-channel
xS forces does not give better agreement for the cal-
culated re phase shifts: The low-J resonances (Sst,

"The one-channel theoretical calculations which force the nu-
cleon to appear as a bound ~E state all give PII phase shifts which
stay negative, in violent disagreement with experiment. On the
other hand, we note that when the nucleon pole in the direct chan-
nel was included as an elementary particle (Refs. 5 and 6), the cor-
rect phase-shift behavior was easily obtained. We will assume,
however, that the nucleon is a composite particle.
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77 (1966);J. Hartle and C. Jones, ibid. 38, 348 (1966).
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"This suppression factor 0.75 that we fInd is not as important

as the value 0.6 given by Dashen and Frautschi, Ref. 15.

Str, and Ptt) gave small contributions, whereas the Dts
contribution when large (depending on the cutoff) made
the agreement with experiment worse. Perhaps the con-
tribution from the D~a is small or possibly its eGects are
canceled by the higher partial waves. In any event, we
find that the usual approximation for the I-channel
forces which considers only X and J)/* (1238 MeV) ex-
change is a good one (in the absence of a proper treat-
ment of the high partial waves). Thus the question of
whether the Ptt resonance (as well as the Drs and other
of the inelastic resonances) results from a more compli-
cated xE potential or mainly from inelastic channels
(which must be treated in a multichannel XD ' cal-
culation") remains open. It seems liltely, however, that
it is the latter. ~"

h.r(W) [r/r(W) e"sr,r (w) 1)/2ik, (2)

where k is the center-of-mass momentum. Here we are
interested in the generalized potential" ~h, i.e., that
part of tt which is regula, r in the physical region (I WI &
m+1). In terms of the invariant amplitudes A and B's:

zh, (W) = (1/32rrW') I [(W+m)' —1)
&&[ A2 —(t/s)(e)+(W™) B/ (t/s)( -))

+L(W—m)' —1)[—'A/+(t/s) (e)

+ (W+m)»+(t/s) (&))I ~ (3)
where

zA((s) = Pt(x) iA(s, t)dx,

zB((s) = Pt(x) iB(s,t)dx,

with x the cosine of the center-of-mass scattering angle
in the direct or s channel. As usual,

e [(~ +m ) 2+(/)2+1)1 2)2

t= —2k'(1 —x)

st+s+t= 2m'+2=—Z.

The contributions to A and B, (4) from the tt-channel
amplitudes are

IA (1/s, s/2) (e t)
=-'[(4,1) nAs '(N, t)+( 1, 2) rtA' '(u t))—

LB(1 s's s) ($ t)
= —-', [(4,1) "B' '(u, t)+( 1, 2) aB"'(N, t)), —

"We use units k=c=m =1 and let m be the nucleon mass.

II. THE u-CHANNEL ~N GENERALIZED
POTENTIAL

Consider a partial-wave amplitude h in the total en-
ergy (W) plane'r:



with
dQ

"A'(u, t) =
(~y)» Q —Q

ImA'(u', t), f1=Z f/+(u)&~1'{X.)—2 f/-(u)»-1'{X ),
L=O 3=2

1 dQ
"B'(u,t) =-

7l' (~g)» Q —Q
ImB'(u', /) .

with

f~= 2 [f~(u)—f/+(u) 3'/'(X-)
l,=l

The functions A(u, )!), B(u, )m) are expressed in terms of
the partial-wave amplitudes as"

X„=1+&/2k„'.

%e neglect all J&—,'. Thus

( W +m (W —m)
A (u, &) = 8~W~~ fa —— f2

k(W„+~)2—1 {W„—m)2 —1

1 1
B(u,))= 8m W„ f1+ fm

(W +no)' —1 (W —m)' —1

f1 fo++3X f1+ fm-

fR f1=—fl++3Xuf2- ~

(8)
Note from (2) that

Imk r(W„)= [1—)/;1(W„)cos28;r(W )j/2k„. (12)

Now dedne

.=8-W.{[(W.+~)/{(W.+~) -1)3(Imf~-Imf~)-[(W. -m)/{(W„-m) -1)3(Imf, -Imf„)},
b=87rW~{[(W„+m)/((W„+tm)' —1)$3 Imf1+—[(W„—m)/{(W„—m)' —1))3 Imfm $},
(,=8s W„{[((W„+m)'—1)—'(Imfo+ —Imfm )+{(W„—m)' —1)—'(Imfr=Imf1+))},
d=8m.W„{[{(W„+m)'—1)—'3 Imf1++{(W„—m)' —1) '3 1m' j}.

ImAr(u, t) =ar+X„br, ImB1(u, t) =cr+X„dr.

Using (4), (5), (6), (7), and (14), and interchanging the orders of integration, we obtain

oo

LA (1/2, 3/2 }($)— du
(~r)»

(}/x»(x)

1u' —Z—s—2k, '(1—x)

—2k, '(1—x)
X (4,1)a"'+(—1, 2)(/, '/'+( 1+ [(4,1)b'/'+( —1, 2)b"'j

~&~s (m+1)»

Z—s—u'q
«'()i()+

I
((&)) "'+(—) 2) "'}

2k, '

+[(4,1)b'/+ (—1 2)b / j(1+(Z—s—u')/2k„. ),

«(,()+ )
)&{[(4,1)cs/'+( —1 2)c'/2j+ [(4,1)d3/'+ {—1, 2)d'/'j(1+ {Z—s—u')/2k„') }. (15)

Note that bg, o contributions have been ignored. The
procedure then for obtaining the generalized potential
~k, r(W) from the u-channel s.E resonances J(—,

' is for
)/;r and b;r given (as a function of energy) determine
ar br cr and dr from (12) and (13).Then perform the
integrals (15) for ~A (r and ~B/r which inserted into (3)
gives k (W) .

' Wherever there is possible confusion we use the subscripts
u and s on TV and k to denote the appropriate exhange or direct
channel variable, respectively.

IH. CALCULATION AND CONCLUSION

The "potential" or unphysical-cut terms in xX scat-
tering are usually computed from single-particle-ex-
change graphs where the nucleon and l))r()~* (1238 MeV)
appear as poles in the Q channel and the p meson appears
as a pole in the t channel. '»9 The purpose of this paper
is to evaluate the contribution of the Q-channel con-
tinuum to the unphysical cut by using the equations in
Sec. II. Ke consider only those partial waves where
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TABLE I. ~-channel continuum contribution to S» potential terms. Column 2 is the usual term using the narrow-width approximation
for the +33 and including p and E exchange and the s-channel nucleon pole. The values of the coupling parameters are given in the
caption of Fig. 1 (Ref. 17). The other columns indicate the potential term when the u-channel continuum of the designated partial
wave is included. The value of b(~) is speci6ed below the partial-wave symbol.

7.8
8.8
9.8

10.8
11.8
12.8
13.8
14.8
15,8
16.8

Usual
potential

term

—1.72—1.57—1.46—1.38—1.31—1.24—1.18—1.12—1.06—0.999

Sll
0

147 1—1.57—1.46—1.38—1.31—1.24—1.18—1.12—1,06—0.999

—1.66—1.52—1.42—1.34
1 027
1022—1.16—1.10—1.04—0.981

S31

—1.70
1055—1.45—1.36—1.30—1.24—1.18
1.12—1.06—0,994

Pll

—1.80—1.65—1.55—1.47—1.40—1.34—1.28—1.22—1.15—1.09

—1.80—1.65—1.55—1.47—1.40—1.34—1.28
1022—1.16—1.09

1.32—1.02—0.739—0.463—0.183
0.104
0.402
0.712
1.03
1.36

D13

—1.42—1.14—0.883—0.631—0.377—0.118
0.150
0.427
0.714
1.01

TABLE II. u-channel continuum contribution to S» potential terms. The notation is the same as in Table I.

7.8
8.8
9.8

10.8
11.8
12.8
13.8
14.8
15.8
16.8

Usual
potential

term

—1.18—1.25—1.28—1.30—1.29—1.27—1.24—1.21—1.17—1.12

Sll
0

—1.18—1.25—1.29—1.30—1.29
1027—1.24
1.21
1.17
1~ 12

—1.16
1023
1027—1.29—1.28—1.26—1.24—1.20—1.16
1~ 12

S31

1~ 17—1.34—1.28—1.29—1.29
1027—1.24
102 1—1.17
1.12

—1.02—1.08—1.11
1.12
1.11—1.09—1.06—1.02—0.985—0.941

Pll

—1.02—1.08
1~ 1—1.12—1.11—1.09—1.06
1.02—0.981—0.937

—1.97—2.34—2.73—3.13—3.54—3.97—4.42—4.88—5.36—5.85

D13

—1.76—2.10—2.44—2.79—3.15—3.53—3.91—4.31—4.72—5.14

TABLE III. 0-channel continuum contribution to Pll potential terms. The notation is the same as in Table I.

7.8
8.8
98

10.8
11.8
12.8
13.8
14.8
15.8
16.8

Usual
potential

term

—3.17
5.13
7.96
9.36

10.23
10.87
11.38
11.83
15.24
12.63

Sll
0

—3.19
5.12
7.95
9.36

10.23
10.86
11.37
11.82
12.24
12.63

0

3031
5.01
7.84
9.26

10.13
10.77
11.29
11.74
12.16
12.55

S31

—3.24
5.07
7.90
9.32

10.19
10.83
11.34
11.79
12.21
12.60

—3.22
5.08
7.91
9.32

10.19
10.82
11.34
11.79
12.20
12.59

Pl 1

—3.22
5.08
7.91
9.32

10.19
10.82
11.33
11.78
12.20
12.59

—2.82
5.56
8.47
9.97

10,94
11.67
12.29
12.85
13.38
13.89

D13

—2.83
5.54
8.44
9.93

10.89
11.62
12.23
12.78
13.30
13.80

TABL@ Ip. 0;channel continuum contribution to P33 potential terms. The notation is the same as in Table I except that the
usual potential term only includes M exchange, the dominant effect here.

7.8
g.g
9g

10.8
11.8
12.8
13.8
14.8
15.8
16.8

Usual
potential

term

3.54
2.53
2.22
2.09
2.03
1.99
1.97
1.96
1.95
1.95

Sll
0

3.54
2.53
2.22
2.09
2.03
2.00
1.98
1.96
1.96
1.95

3.53
2.52
2.22
2.09
2.02
1.99
1.97
1.96
1.95
1.95

S31

3.53
2.52
2.22
2.09
2.02
1.99
1.97
1.96
1.95
1.95

3.46
2.44
2.12
1.98
1.90
1.86
1.83
1.81
1.79
1.78

Pll

3.46
2.43
2.12
1.97
1.90
1.85
1.82
1.80
1.79
1.78

4.03
3.26
3.26
3.51
3.89
4.37
4.92
5.55
6.25
7.00

D13

3.99
3.20
3.18
3.40
3.75
4.19
4.70
5.27
5.91
6.59
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TABLE V. u-channel continuum contribution to Dj3 potential terms. The notation is the same as in Table I.

7.8
8.8
9.8

10.8
11.8
12.8
13.8
14.8
15.8
16.8

Usual
potential

term

—5.11
1.32—0.764
1~ 13—1.86—2.74—3.67—4.61—5.55—6.48

Sll
0

—5.10
1032—0.757
1.13—1.86—2.73—3.66—4.60—5.54—6.48

—5.06—1.28—0.718—1.09—1.82—2.69—3.61—4.56—5.49—6.42

S3i

—5.08—1.29—0.734—1.10—1.83
207 1—3.64—4.58—5.52—6.45

PI1

—5.09
1e31—0.746
1~ 12—1.84
2072—3.64—4.58—5.52—6.45

—5.09
1031—0.746—1.12—1.84
2t 72—3.64—4.58—5.52—6.45

—5.23—1.49—0.981—1.41—2.21—3.16—4.17—5.22—6.27—7.33

D)3

—5.23—1.49—0.976—1.40—2.20—3.15—4.16—5.20—6.24—7.29

resonances with J&~ have been found' to occur for
EJ.& j BeV.

The partial waves which we include in the I-channel
continuum are the S~~, S~3, P~~, P», and D~g partial
waves. The P» contribution is usually taken into ac-
count by making the narrow-width approximation or,
equivalently, by computing the X»* exchange graph.
The P» contribution to the unphysical cut is divergent
at high energy since the E33*has spin ~. This behavior
makes it necessary to use a cuto6 parameter at high en-

ergy in any dynamical calculation of xE scattering.
However, such dynamical calculations have been rea-
sonably successful. There is no reason to think the D»
partial wave, also with J= ~3, cannot be included by the
same method with equal success. We make no attempt
to include higher spin resonances which have even more
divergent high-energy behavior.

Real and imaginary parts of the phase shifts have
been determined from phase-shift analyses' of experi-
mental data EI,&]. BeV. The procedure we follow is to
Gt the phase-shift analysis4 up to 1 BeV with simple
analytic functions and then join these functions con-
tinuously with different functions at higher energies.
For example, in the P~~ partial wave we allow the real
part of the phase shift, 6, to approach —s (no inelastic
CDD pole) or 0 (corresponding to the Roper resonance
being due to inelastic effects)." Our choice for the
asymptotic behavior of g is guided by the fact that we

want to use the potential in a dynamical calculation of
xS scattering. Thus we must let q ~ 1 at the cutoff in
order to avoid divergence in the solution of the S/D
equations. We find some differences in the u-channel
continuum contributions due to the different asymptotic
behavior. In the P» Born terms the S3~ contributions
vary by about a factor of 2 for diGerent asymptotic be-
havior while the P» contributions vary by less than
3%%u~. The numerical results are shown in Tables I—V.
However, as we see, the contributions from the Sj»,
Say, and P~~ continua are small.

Including the P» continuum in the I channel is the
same as saying that we no longer neglect the Gnite width
of the %33* in computing the unphysical cut. We used
the same Breit-Wigner form for the P» resonance that

I20—

IOO

0
x

80
w

z
60

40

y= 0.5 p =0.25 p =0.1

TABLE VI. Effect of the narrow-width approximation on the
P» potential terms. The potential term includes only the u-chan-
nel P33 continuum except for the last column, where Ball and
Wong's E33* potential term is used along with their constants.
Roper's constants are used for the other columns. y refers to the
quantity in Eq. (17).

20

I

I 00 200 500 400

LAB KINETIC ENERGY of PION, EL
(Mev )

7.8
8.8
9.8

10.8
11.8
12.8
13.8
14.8
15.8
16.8

6.40
6.21
6.24
6.38
6.56
6.78
7.02
7.27
7.53
7.79

7.16
6.97
7.01
7.16
7.37
7.62
7.88
8.17
8.46
8.75

7.83
7.64
7.59
7.86
8.09
8.36
8.65
8.96
9.28
9.60

7.89
7.71
7.76
7.93
8.17
8.44
8.74
9.05
9.37
9.70

8.54
8.31
8.35
8.52
8.76
9.05
9.36
9.68

10.02
10.36

FIG. 1. P» phase shift as a function of the pion laboratory en-
ergy for various potential terms (Ref. 19). In the notation of Ref.
(5) we used g~~ '/Sr =14.6, y~3

——0.06, y2=0.27yj, and y~ ———0.9
(Ref. 17). The dots represent the phase-shift analysis. The solid
curve is the result obtained using the usual potential terms (E,
lV33*, and p exchange) and a cutoff at iV=17.3. The dashed line
includes the I-channel PI~ continuum and has a cutoff at 8'= 19.0.
The dash-dot curve includes the u-channel contribution from Spy,
S», P», and D» and has a cutoff at IV=12.4. Elastic unitarity is
used in each case.

"See Ref. 5 for a discussion of the N/D equations.
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Roper used (including relativistic kinematical factors
and using Roper's values for the parameters), ' which we

write symbolically as'

Imf~aa= 1'/((g „—m')'+1") (16)

We can go to the narrow-width limit by rewriting the
amplitude as

Imf+» ——pF'/((W„—m')'+p'i"), (17)

and letting p —+ 0. By letting p take on successively
smaller values between 0 and 1 we may determine the
6-function limit and thus compute the eGect of making
the narrow-width approximation. This limit can then
be compared with the left-hand cut term due to the
E»* exchange graph as computed by Ball and Wong.
We And that the functional dependence on 8' remains
practically the same for all values of p(0(y(1) and
the various Born terms (including Ball and Wong 1Vg3*

exchange terms) are related by constant factors. The
results are shown in Table VI. It is clear that the de-

tailed shape of the resonance reduces its contribution to
the unphysical cut by a factor of no smaller than 0.75
as compared to the narrow-width approximation. "

It is clear from the tables that the S~I, S3~, and P~~
I-channel continua have relatively little e6ect on the

s-channel unphysical cuts, whereas the D~3 contribution
is large. The question now arises as to the effect of these
terms on dynamical calculations of the 7rE system. Fig-
ure 1 shows the result of some E/D calculations" of the
phase shift in the P33 partial wave (neglecting small in-

elastic effects in the D&3 partial wave). If only the P»
continuum is considered, we get a slight improvement of
the Q.t to the data. In fact we get about the same fit as
one obtains by using the usual Born terms and including
D» inelastic e6ects. On the other hand, nothing is gained
by adding the D» continuum. The cutoff which must be
used in the latter case is at a relatively low energy, which
is perhaps an indication that the unphysical cut used
here is a poorer approximation than for the cases where
the D~3 continuum is neglected. For the Pl~ and other
partial waves we were unable to 6nd any value of the
cuto6 which gave experimentally reasonable behavior
when the Dis continuum is added.

We must conclude that this, presumably better,
treatment of the 7rE I-channel forces does not give
better agreement for the calculated 7' phase shifts.
The usual approxtmation in which only E and E»*
exchange is considered in the I channel is much better
as far as dynamical calculations are concerned.
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It is not clear from the Regge representation that the asympotic form s~(") holds in the backward scattering
of unequal-mass particles, because the cosine of the u-channel scattering angle remains small as s increases.
In this paper we use a representation for the scattering amplitude first suggested by Khuri to show that the
form g~(") is valid throughout the backward region. However, in order to ensure the analyticity of the ampli-
tude defined by the Khuri representation at I=0, it is necessary that Regge trajectories occur in families
whose zero-energy intercepts are spaced by integers. Denoting the leading or parent trajectory by no(N), we

find that daughter trajectories 0,&(N) must exist, of signature (—1)~ relative to the parent, satisfying ~I, (0)
=«(0) —k. We then study Bethe-Salpeter models and find that this daughter-trajectory hypothesis is
satisfied for any Bethe-Salpeter amplitude which Reggeizes in the first place. This fact follows elegantly from

the four-dimensional symmetry of Bethe-Salpeter equations at zero total energy. Some phenomenological
implications of the daughter-trajectory hypothesis are discussed. We have also characterized the behavior of
partial-wave amplitudes in unequal-mass scattering at N=O and find the hitherto unsuspected result

a(g, l)~N ('), where o, (N) is the leading e-channel Regge trajectory.

I. INTRODUCTION

HE characteristic features of the Regge pole
description of high-energy scattering processes

are the asymptotic forms s &') or s &"). However,
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in the scattering of unequal-mass particles, the question
of whether the Regge form s &"& holds in the backward
region has never been settled because there is a cone
about the backward direction in which cosg„does not
become large with increasing s. There has been general
uneasiness" about applying the Regge asymptotic form
in this region.

'For example see S. C. Frautschi, M. Gell-Mann, and F.
Zachariasen, Phys. Rev. 126, 2204 (1962), Ref. 15.' D. A. Atkinson and V. Barger, Xuovo Cimento 38, 634 (1965).


