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Regge-Pole Model for High-Energy Backward ~+p Scattering*
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It is well known by now that both the m+p and ~ p elastic-scattering reactions show peaks near the
backward direction at high energy. The most striking difference between the two distributions in the back-
ward region is the dip in d0-/dg which appears in m+p but not x p. We show in this paper that the present
experimental situation in high-energy m+p scattering can be readily understood in terms of the exchange of the
N and 6 Regge trajectories. The interpretation of the dip is that N trajectory exchange, which contributes
only to m+p, becomes numerically very small when the N pole moves near J= —~.

' "X recent years a number of experiments have been
- . carried out on high-energy backward sr' scattering,
with both reactions showing peaks in the backward
direction which fall away rather rapidly with increasing
energy. ' ' The most striking difference between the two
is the dip in do/dss near the backward direction which
appears in sr+p but not in n p, as was first noted by
Brody et al.4 In the present work we have attempted to
understand the experimental situation in terms of the
exchange of the E and 6 Regge trajectories which are
thought to be the dominant trajectories communicating
with the xÃ system. We find that the present experi-
mental situation can be readily understood in terms of
these two trajectories. The interpretation of the dip is

that N trajectory exchange, which contributes only to
sr+p, becomes numerically very small when the X pole
moves near J= —-,'. This effect, which depends strongly
on the even signature of the X trajectory, is explained in
more detail below.

We may write the contributions to sr+p scattering of
the S and 6 trajectories in the crossed channel by
writing the amplitude for sr' scattering as follows':

f+(v s») fr+(V s—ig) cosg ft(—Vs) ss)—
+i sin8 aA fr+( V's, I)—. (1)

At large s and fixed I, the contributions of the crossed-
channel Regge poles dominate fr+(V's, ss). In this limit
fP(V's, ss) can be written
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f '(v's, N) ~ &1+q' expL —sn(a'(v'I) —l)])

g ~00
~ i Ã, 6 4sV'ss cossra;(V'ss) ss

u fixed

L(v'+~)' —"jl —v' -v'+2~] ~; ~,(-v') i
(1+q'exvl —s ( '(—v'I) ——:)3), (2)

4sV'I cossra, (—V I) ass

where a, is the pole position, P; is a modified reduced
residue, pi is the signature of the trajectory, and C; is
the isospin crossing coeKcient. These expressions repre-
sent the leading asymptotic terms in s from each pole.
Correction terms are 0(1/s) compared to these leading

terms. This asymptotic form is used throughout the
backward direction, including the region near u= 0. The

justification of this use for the present case of unequal-

mass scattering is more elaborate than for the equal-

mass case and has recently been supplied in detail in a
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paper by Freedman and Wang. ' A further point about
Eqs. (2) is that as written they refer to poles in the
t=J—~~ amplitudes in the I channel. The partial-wave
amplitudes in the I channel obey the MacDowell

symmetry,
7

Ts its'(V'ss) = 2's+Vs'( V'I)—
' Here V's and S are c.m. energy and scattering angle, respec-

tively; I is the square of the c.m. energy in the crossed baryon
channel. In the direct-channel physical region, I is given by
I=2(3P+p, ') —s+2q'(1 —cose), where q is the c.m. momentum,
and 3f and p, are the masses of the nucleon and the pion, respec-
tively. The quantity n is a unit vector given by n (q;Xqr)/=
Iq;Xqs I, where q; and qr are the initial and final c.m. proton
moments. The quantity f&(V's, n) is defined in the paper by V.
Singh, Phys. Rev. 129, 1889 (1963).The differential cross section
and the polarization are given by

do m

dN q' If(v's, n—) I='-
and

2 Imf&(V's n) fi*( V's, n)n-
I f(v's, n) I'

'D. Z. Freedman and Jiunn-Ming Wang, Phys. Rev, Letters
17, 569 (1966); see also Phys. Rev. (to be published).

~ S. W. MacDowell, Phys. Rev. 116, 774 (1959).
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where

T~~(gu)= exp[ibt~(gu)j sin8~~(gu).
q(Qu)

V(V'u) =
2'~-iis'(v'u) [J—n(V'u)3

4')' '"(~+~)
The quantity E is the energy of the nucleon in the c.m.
system. The factor I'(n+1) in P(gu) at first sight would
cause poles to appear in P(gu) and therefore the
amplitude at n= —1, —2, etc. However, the Mandelstam
symrnetry8

T~ vs'(V'u) = 2'
&~+-vs&

' +"(v'u-)

for J= integer, (5)

holds. Therefore if a pole moves through J=—1, say,
either its residue must vanish or another pole must move
through J=O. Since in the present case we are by as-

sumption dealing with the leading trajectories, the first
alternative must hold, so the functions y (gu) vanish at
0,= —1, —2, etc. and therefore the combination
I'(n+1)y (gu) is a smooth function having no poles.

Now consider the combination which occurs in
Eqs. (2):

y(gu)I'(n+1) [1+r)exp[—Ar(n —-', )]j
I (-+l) costa,

(6)

If n passes through a positive half integer, i.e., a physical
value of J, this combination either gives the amplitude
a pole in gu or a finite contribution, depending on
whether the trajectory in question has "right" or
"wrong" signature at this point. On the other hand, if n
passes through a negative half integer, the combination
of factors above yields either a finite contribution or
zero again, depending on whether the trajectory has
"right" or "wrong" signature at this point. To take the
example which is most relevant for this paper, if n~ (gu)
goes through J= —-', the above combination of factors
vanishes. In contrast, since the 6 trajectory has

' S. Mandelstam. Ann. Phys. 19, 254 (1962).

We make the convention of always dealing with the
I=J—-,'amplitude and eliminating the I=J+-', ampli-
tude by the use of Eq. (3). With this convention
na(1238) = ss, na(1924) = sr, but nsj (—939)=—',, n~( —1688)
=—'„etc., since the E trajectory goes through the nucleon
and the ss+ in the 1=J+—,

' amplitude, which is the
continuation to negative energies of the
amplitude.

The functions n(gu) and P(gu) are real analytic in
thecutguplanewithcuts[ —~, —(M+u)j[M+u, ~1.
The precise definition of P(gu) is

(v'~) v(V'u)i'(n+1)
p(V'u) =

I'(n+s)
where

opposite signature, the corresponding combination of
factors would give a finite contribution if na(gu)
reached J=——,

' and would vanish only if na(gu)
reached J= —s. Note that in Eq. (2), two terms of the
above type appear for each Regge pole, one containing
n(gu) andp(gu), andtheothern( —Qu) and p( g—u)
If there is a value of gu, for which both n~( —gu) and
n~(gu) are near J= —-'„ then in the neighborhood of
this value the contribution of the X trajectory will be
drastically reduced and a dip will appear in (do/du) +„.
This dip will appear at a 6xed value of u, for high s.
This is the explanation proposed in this paper for the
dip observed in (do./du) +s near the backward direction.
This explanation has some nontrivial consequences for
the shape of the S trajectory. To see this, we note that
experimentally the dip appears for a negative value of u,
u= —0.2. This means gu is pure imaginary and,
therefore, using the real analyticity of n&(gu), we have
nz (gu) =nN*( —gu) for any u(0. In the region of the
dip we have nor(gu) = ,' =n~—( —gu)=—n~*(gu). Ex-
panding ns (gu) around the origin in Qu, we see that
this requires that the odd powers of gu make a weak
contribution compared with the even powers of Qu. In
other words, any simple parametrization of n&(gu)
will require that it be approximately even in gu. This
means that we may expect to And resonances of orbital
angular momentum l=J—

~ appearing on the 1V tra-
jectory as well as the known cases, which have I= /+-', .
This last remark follows from the MacDowell symmetry,
Eq. (3), and the evenness of niv(gu) In Fig. .1 the X
trajectory coming from the best Gt to the data is shown.
It was constrained to go through the 1688F5~2 resonance
and the nucleon. It turns out to go through J=-,'at
gu= 1600 also, which corresponds to a Ds~s resonance.
The fact that such a resonance exists experimentally'
we take as an additional piece of evidence in favor of our
explanation of the dip in high-energy backward s+p
scattering. There is no particle corresponding to the
J=-', intersection at gu=850; therefore the nucleon.
residue has been constrained to vanish at this point, so
that no particle appears. "

The parametrizations for the 6 and E residue func-
tions P; and the trajectory functions n; are

Pa(gu) = (na+-', ) (na+-,s)Da exp$aagu+bau j,
p (d.)=( +!)( +l)

X (Qu Quo) Dx exp[a~Qu+b—„uj,
where us is the energy at which nN(gus)=-' sand
n;=n;s+n gu+n;su for both 6 and F. We also

' See for example the phase-shift solutions in the papers by P.
Bareyre, C. Bricman, A. V. Stirling, and G. Villet, Phys. Letters
18, 342 (1965); B. H. Bransden, P. J. O'Donnell, and R. G.
Moorhouse, ibid. 19, 420 (1965).' lt can be shown that when a trajectory is in the range of
physical J values for gu&M+p and gu( —(M+p), y(gu)
must change sign between —(M+p) and M+@,. /See B. R.
Desai, Phys. Rev. Letters 17, 498 (1966).j The zero we have put
in the nucleon residue accomplishes this sign change.
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o.~0= —0.340,

0093 GeV

e~'= 1.052 GeV ',

c~= —0.123 GeV ',
bN —— 0.227 GeV ',

D~——264.0 pb'" GeV '

One can see from this that the position of the dip
corresponds essentially to the point where Re(a~+-', )
=0, as mentioned earlier.

"A. Citron, W. Galbraith, T. F. Kycia, B. A. Leontic, R. H.
Phillips, and A. Rousset, Phys. Rev. Letters 13, 205 (1964}.

Because of the uncertainties in the contribution of the
6, the rest of the solid curves in Fig. 2, also represent the
contribution of the E trajectory alone. The experi-
mental data that are available range over incident lab
momenta from 4 to 10 GeV/c. However, in least-
squares its to the data, 6ts were made only to the 6- to
10-GeV/c data. The reason for this is that near 4 GeV/c,
the total cross section for z-+p scattering shows a
bump, " indicating the possible presence of a resonance
in the direct channel at this energy. Rather than
attempt to include the possible effects of this resonance
in addition to the Regge amplitude, we took the simpler
course of fitting only the high-energy data. At 6 GeV/c
and above, we are 3 to 4 half-widths above this last
resonance and from 8 to 70 half-widths above the lower
resonances. Thus we assume that resonance contribu-
tions are negligible above 6 GeV/c. For comparison we

plot the contribution of the E trajectory at 4 GeV/c
also, where the Gt is still a qualitatively good one. In
general the fits over the whole range of energies repre-
sent the qualitative features of the data quite well,
where the fact that the solid curves fall somewhat below
the experimental points at the lower energies and larger
I values may indicate the presence of some relatively
small background terms not included in our 6ts. The
parameters for n~ and P~ coming from the best fit to
the data are

To conclude, our model successfully explains the ex-
isting features of backward z.+p scattering. To test these
ideas further, it is suggested that diGerential cross-
section measurements of greater accuracy and at higher
energies be carried out. Also, measurements of z.+p
polarization would be very useful. In an earlier paper by
one of us,"it was shown that the sign of the polarization
is controlled by the terms in n, (gu) which are odd in

QN, i.e. , o; in our parametrization. The 6-trajectory
parameters as mentioned earlier are not well determined.
However, if the contribution from direct-channel reso-
nances are small, any 6 trajectory which passes through
the z+(1238) and ~~+(1924) resonances and gives a rough
6t to the energy dependence of the z. p data will have a
strong positive o,g'. Therefore, the prediction of large
positive polarization in z. p is still maintained. For the
z.+p case, the situation is somewhat more complicated.
Because of the approximate evenness of n~(gu), n~' is
small. However, preliminary calculations show that the
sign of the polarization away from the backward direc-
tion is still determined by the sign of 0.~', with the
magnitude of the polarization showing a bump at the
position of the dip in the diRerential cross section, The
polarization is extremely sensitive to small variations in
n~', whereas, as long as n~' is small, the differential
cross-section is rather insensitive to small changes in
n~' There. fore, a measurement of polarization in ~+p
would give important further information about the E
trajectory.
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