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A field-theoretic exact two-body optical potential V° is defined, corresponding to the exact pseudo-
potential in nuclear physics. A small-angle, high-energy approximation for scattering amplitudes in the
absence of resonances or bound states is suggested, based largely on investigations of Torgerson in a fairly
realistic model field theory. This approximation, which corresponds to the eikonal or linearized WKB
approximation in a nonrelativistic limit, involves only mass-shell values of ¥ and can be discussed in the
framework of dispersion relations and analyticity. The longest range contributions to ¥° are one-pion
exchange (when allowed) and the multipheripheral diagrams of Amati, Fubini, and Stanghellini; these
contributions are termed “multipheripheral optical potential” (MOP). One possibility for the asymptotic
high-energy limit of MOP brings in Regge poles through the multipheripheral diagrams. At energies which
are not asymptotic, but are high enough to ensure the usefulness of the eikonal formalism, important non-
pole contributions to V° are discussed. The difference between $p and pp elastic scattering is explained in
such an energy region. As a natural consequence of the picture presented, one obtains distorted-wave
Born-approximation (DWBA) correction formulas applicable to any small contributions in V,; e.g., real
part, spin flip, and charge exchange. A special case is the absorptive correction to the p Regge-pole expres-
sion for charge exchange in 7—p — 7%, which has been discussed in a previous paper. The Serber potential
which accommodates large-¢# behavior (although only —¢/s<1 can be properly described by the eikonal
expression) is shown to be a special case of MOP. If MOP is dominated by the Pomeranchuk Regge pole
(P) in elastic pp scattering above 10 BeV/c, and if we ignore spin, a real part of the forward scattering ampli-
tude for this case is obtained which agrees in sign, with the observed value, but is too small in magnitude;
it has an energy dependence [In (s/so) ]~1. The 5 results should become identical to the pp ones for energies
which are asymptotic for 7p also. Similar results for the real part hold for all two-body reactions. In = scat-
tering, a formalism incorporating spin properly into the eikonal method is presented, and in the asymptotic
limit with no “anomalous-moment”’ terms in the Born approximation (as suggested by a Pomeranchuk pole),
a spin-orbit coupling is obtained corresponding to use of the Dirac equation with a 4-vector static central
potential. The resulting 7p spin-flip amplitude decreases with increasing energy like s~/2 relative to nonflip
terms, but is presumably dominated by effects of secondary Regge Poles such as P’. To describe multi-
channel reactions, and to obtain absorptive correction formulas including reactive damping, an exact
multichannel optical potential V;,® is defined, and a matrix eikonal mass-shell approximation is proposed.
Such a method is valid only when certain commutation relations are satisfied for the matrix Born approxi-
mation; these are satisfied, for example, if the ¢ dependence of all elements of this matrix is the same, which
can be true in many cases if mass differences are ignored. Regge poles and the Byers-Yang model are con-
sidered in this context. To include resonances in the s channel, possibilities for extending the eikonal forma-
lism are discussed. A method of formulation utilizing dispersion relations for phase shifts allows an alterna-
tive, purely S-matrix approach to the eikonal approximation, but is physically more obscure than the
field-theoretic and static-potential-theory approaches. Singularities in complex J of the MOP-eikonal
approach are explored. It is found that infinite numbers of branch cuts in J correspond to absorptive
(DWBA) corrections when Regge poles are used in MOP. An apparent paradox concerning results of
Mandelstam on cancellation of cuts is discussed and a possible avenue of resolution, involving treating
external particles as Regge poles with signature, is described.
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INTRODUCTION

NTERPRETATIONS of high-energy elastic scatter-
ing and other two-body reactions have, in the past,
been proposed on the basis of various special models.
One-elementary-particle exchange,! Regge poles in the
¢ channel,? phenomenological optical models.?* coherent
(semiclassical) droplet models,® and statistical (inco-
herent) interaction models® as well as various combina-

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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tions of these have more or less successfully been fitted
to much of the known features of such processes. It may
be noted that no one model is universally successful.
Thus, one-particle exchange with absorptive correction
from empirical optical-model fits has exhibited dramatic
agreement with experiment” in cases where = exchange
in peripheral inelastic reactions is allowed, but such a
model does not correctly describe many cases where =
exchange is not allowed, and is irrelevant to the descrip-
tion of elastic scattering. Alternatively, phenomenologi-
cal optical-model fits have shown striking correlations
between elastic-scattering polarizations and angular dis-
tributions,3? but are irrelevant for inelastic reactions.

7J. D. Jackson, Rev. Mod. Phys. 37, 484 (1965); L. Durand III
and Y. T. Chiu, Phys. Rev. 139, B646 (1965); J. D. Jackson, J. T.
Donohue, K. Gottfried, R. Keyser, and B. E. Y. Svensson, sbid.
139, B428 (1965).

8 G. Alexander, A. Dar, and U. Karshon, Phys. Rev. Letters
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9 A. Dar and B. Kozlowsky, Phys. Letters 20, 314 (1966).
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Previous attempts to calculate high-energy elastic scat-
tering in terms of inelastic processes using the K-matrix
formalism?!® [or combining it with distorted-wave Born-
approximation (DWBA) prescriptions'!] have not been
quantitatively impressive; they give reasonable results!?
only for the highest partial waves or large impact pa-
rameters; they do not lead to a semiclassical absorption
picture (e2®® — 0) for small impact parameters; and
only two-body inelastic channels can enter in an explicit
way, which apparently is not adequate for a realistic
description of inelastic processes.!?

The preceding remarks have concerned reactions with
small momentum transfer. Quantitatively successful
models for large-(—¢) reactions have involved incoher-
ent statistical models® or purely phenomenological ab-
sorptive potentials,* with little success in deriving such
behavior using either specific field-theory diagrams or
S-matrix theory.

A phenomenological statistical approach of Krisch!4
has been reasonably successful in connecting small and
large-(—?) behavior of elastic scattering to inelastic
processes, at the expense of introducing ad koc Gaussian
source functions.

The most ambitious program for understanding high-
energy reactions to date has been the multiperipheral
model of Amati, Fubini, and Stanhellini (AFS).'5 This
is based on summing a class of field-theory diagrams; for
elastic scattering it yields Regge-pole behavior as a first
approximation, and successive approximations bring in
cuts in the complex angular momentum (J) plane.'$
The role of such cuts in this model and in more complex
models has been extensively debated; it was concluded!?
that such cuts should not appear in the perturbation
diagrams actually summed by AFS, but should in fact
be present in models which include a broader topological
class of diagrams.'®:1® This fact presented a theoretical
barrier to further development of the AFS model.

Subsequent investigations by Gribov, Pomeranchuk,
and co-workers using S-matrix techniques?® have lent
support to the conclusion that such cuts are present, are

10 R. C. Arnold, Phys. Rev. 136, B1388 (1964). See also: K.
Dietz and H. Pilkhuhn, Nuovo Cimento 37, 1561 (1965); J. S.
Trefil, Phys. Rev. 148, 1452 (1966).

1;68 B. Lichtenberg and P. K. Williams, Phys. Rev. 139, B179
( 12 J'.‘G. Wills, D. Ellis, and D. B. Lichtenberg, Phys. Rev. 143,
1375 (1966).

13 A, Bialas and L. Van Hove, Nuovo Cimento 38, 1385 (1965).

4 A, D. Krisch, in Lectures in Theoretical Physics (University

of Colorado Press, Boulder, Colorado, 1966), Vol. 7 ; and University
<()f91\6/14i;:higan Report, 1965 (unpublished) ; Phys. Rev. 135, B1456

15 D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento
26, 896 (1962).

16 D. Amati, M. Cini, and A. Stanghellini, Nuovo Cimento 30,
193 (1963).

17 S, Mandelstam, Nuovo Cimento 30, 1127 (1963).

18 S, Mandelstam, Nuovo Cimento 30, 1148 (1963).

19 J, C. Polkinghorne, J. Math. Phys. 6, 1960 (1965).

20V. N. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-Martoro-
syan, Phys. Rev. 139, B184 (1965); see also Ya. I. Azimov, A. A.
Ansel’m, V. N. Gribov, G. S. Danilov, and 1. T. Dyatlov, Zh.
Eksperim. i Teor. Fiz. 48, 1176 (1965) [English transl.: Soviet
Phys.—JETP 21, 1189 (1965)].
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important, and that their properties may be determined
essentially by the lowest approximation (Regge-pole)
terms in elastic and inelastic amplitudes. Since an S-
matrix viewpoint makes it possible to remove the dis-
tinction between elementary particles, bound states,
and resonances implicit in a Feynman-diagram approach
such as used by AFS, it may be possible to avoid the
topological difficulty mentioned above if high-energy
theory can be formulated directly in terms of S-matrix
elements on the mass shell. The K-matrix approach for
example does this,'® but does not exhibit a natural way
for obtaining semiclassical optical-model behavior, es-
pecially when Regge poles are to be included in a semi-
phenomenological theory.

The purpose of this paper is to describe an optical-
model formalism which is (in principle) exact, and
within its framework discuss useful models and resolu-
tion of the above-mentioned difficulties.

In Sec. I, a basis for further discussion is provided
by first reviewing the two-body optical (psuedo-) po-
tential idea in static potential theory. The well-known
high-energy small-angle (eikonal) approximation?!:2?
involving such an optical potential is then characterized
in terms which are equally applicable in S-matrix
theory.

In Sec. ITI, the work of Torgerson?® on high-energy
approximations in a field theory is used as a basis for de-
fining an exact field-theoretic optical potential ¥, which
is appropriate for utilizing the eikonal approximation,
and also in principle to calculate bound states. This
potential differs from other previously defined poten-
tials, e.g., the Bethe-Salpeter kernel,* the associated
equal-time equivalent potential of Logunov and
Tavkhelidze,?® and the mass-shell potential of Chew
and Frautschi.?6 The long-range contributions of V° are
then identified with the AFS multipheripheral graphs.
These contributions are referred to as the multiperi-
pheral optical potential (MOP).

In Sec. IV, the dispersion relation in s for the associ-
ated eikonal function X(s,b%) is used as a basis for an
S-matrix approach to calculation of X. This permits
consideration of dispersion graphs in principle more
complicated than the multiperipheral diagrams, and
suggests reasonable approximations to be used for X
at moderately high energies where the leading Regge
poles (or other leading singularities in the J plane) do
not provide an adequate approximation to V% A com-
parison of pp and pp elastic scattering is presented,

21 R. J. Glauber, in Lectures in Theoretical Physics edited by E.
Brittin and L. G. Dunham, (Interscience Publishers, Inc., New
York, 1959), Vol. I, p. 315.

22 1, I. Schiff, Phys. Rev. 103, 443 (1956); W. Hunziker, Helv.
Phys. Acta 36, 838 (1963); D. S. Saxon and L. I. Schiff, Nuovo
Cimento 6, 614 (1957).

28 R. Torgerson, Phys. Rev. 143, 1194 (1966).

2¢ F. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1132 (1951).

2% A, A, Logunov and A. N. Tavkhelidze, Nuovo Cimento 29,
380 (1963).

26 G, F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961);

G. F. Chew, S-Matrix Theory of Strong Interactions (W. A.
Benjamin, Inc., New York, 1959), Chap. 7.
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ignoring spin; an explanation of the p expanding dif-
fraction peak is given based on diagrams for p annihila-
tion channels analogous to the multiperipheral diagrams
of AFS but involving Regge-pole nucleonic state ex-
changes. Large —¢ behavior is estimated on the basis of
the Pomeranchuk Regge pole (P) dominating V°, and
is seen to be consistent with Serber’s results on the
potential.*

In Sec. V, the eikonal approximation is extended to
spin-3—spin-0 scattering. It is shown that when the
dominant term in V° does not contain any helicity-flip
amplitude, there is an induced spin-orbit coupling effect
which yields a nonzero spin-flip term in the scattering
amplitude. This is shown to correspond exactly to the
result obtained with a central, static potential in the
Dirac equation,?” when the Born approximation is in-
terpreted as the Fourier transform of a static central
potential.

In Sec. VI, it is shown that small contributions to V°
can be treated by the distorted-wave Born approxima-
tion (DWBA) formula of Sopkovich,?® Durand and
Chiu,” and Jackson and Gottfried.* The DWBA for-
mula cannot be applied at this point to inelastic reac-
tions, but applications to estimate the real part of the
amplitudes, the spin-flip amplitudes, and charge ex-
change are given.

In addition to reproducing previous spinless for-
mulas®® for mp charge exchange, the real part of the
forward pp scattering amplitude is estimated assuming
P dominates V°. The correct sign is found, and a loga-
rithmic energy dependence is obtained which is com-
patible with experiment, but the magnitude is too small.
The real part of forward pp scattering would be the
same as pp at asymptotic energies, and the same sign
(and similar energy dependence) for the real part should
also hold for all elastic meson-baryon scattering at
asymptotic energies if the leading term in V° is a
Pomeranchuk pole. The mp charge-exchange polariza-
tion (due to absorptive corrections applied to the p pole)
is computed also in this section.

In Sec. VII, an exact two-body multichannel optical
potential V;° is introduced, analogous to the single-
channel potentials defined in Sec. II. The purpose here
is to obtain results for two-body inelastic reactions
which reduce in the limit of small V(i) to the
multichannel DWBA formula.” This generalizes the re-
sults of Sec. VI. If the V(i j) are not small, however,
new results are obtained which have a more restricted
range of validity than in the single-channel case. A
certain commutation condition between the V;° mat-
rices must be satisfied in order that an eikonal approxi-
mation be possible. The physical content of the com-
mutation condition is briefly discussed, and a simple

* N. F. Mott and H. S. W. Massey, The Theory of Atomic Colli-
sions, 3rd ed. (Clarendon Press, Oxford, England, 1965.)
28 N. J. Sopkovich, Nuovo Cimento 26, 186 (1962).
" ;964% Gottfried and J. D. Jackson, Nuovo Cimento 34, 736
@ R. C. Arnold, Phys. Rev. 140, B1022 (1965).
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two-channel model example constructed. Regge poles
may be used for V,;° at asymptotic energies, and the
possibility of a Byers-Yang model® is discussed.

In Sec. VIII, the problem of phenomenological in-
clusion of resonances in the direct channel is considered,
returning to one-channel formulations, and some pos-
sibilities for extending the eikonal formalism are ex-
plored. An alternative expression of the eikonal approxi-
mation is obtained by considering a dispersion relation
for the complex phase shifts,3! which avoids the intro-
duction of an off-mass-shell potential, but is physically
more obscure than the approach through field theory or
static potentials. The relation of this result to classical
limits in S-matrix theory is briefly discussed.

In Sec. IX, the singularities in the J plane of the
eikonal approximation with P-dominated V° are ex-
mined, and it is concluded that an infinite number of
branch points (accumulating at J=1 for {— 0) are
present. This is the singularity structure of the iterated
multiperipheral model,*s but it is argued that the cut
discontinuities obtained are not those of Ref. 16. This
suggests that Mandelstam’s diagrammatic analysis®
may not contradict the use of Regge poles in MOP. A
possible proof of this conjecture is indicated if the MOP
can be extended to handle the external particles as
Regge poles with signature. This requires (strictly
speaking) discussion of 4 particle — 4 particle ampli-
tudes, but a multichannel two-body formalism as de-
scribed in Sec. VII may be adequate.

A summary of new results is given in Sec. X.

II. STATIC-POTENTIAL MULTICHANNEL
SCATTERING AND THE SINGLE-
CHANNEL OPTICAL POTENTIAL

1. Definition of the Optical Potential

Consider, in the framework of nonrelativistic static-
potential theory, an elastic-scattering process to which
many inelastic channels are coupled. In this section only
two-body channels are explicitly considered, but the
results can be put in a form which does not have this
restriction. The system can be formally described then
by a multichannel Schrédinger equation. Assuming a
central potential matrix V;;(r), the radial wave functions
for the ith channel, Uj(k,r), satisfy:

[ a2 I(+1)
P ki2__.

dr? 72

:lU ulki) =2 Vi) Uyksr), (1)

where %; is the center-of-mass momentum in channel 1.
Conservation of energy allows every k; to be expressed
in terms of k=Fk,, so the indices on k can be omitted in
the argument of the wave functions.
Let Gu;P(k; 7,r") be the Green’s function with out-
going-wave boundary conditions for the left-hand side
31C. H. Albright and W. D. McGlinn, Nuovo Cimento 25,

193 (1962); J. S. Ball and W. R. Frazer, Phys. Rev. Letters 14,
746 (1965); J. S. Ball and W. R. Frazer, ibid. 7, 204 (1962).
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of Eq. (1), i.e.,

d? I(1+1)
[ +k2— :IGli(“(k; rpy)=8(r—7). (2)

dr? 72

G can be expressed?? in terms of spherical Bessel func-
tions, 7; and A; ™.

Let Un®(k,r) be the solution of the homogeneous
equation for channel 1 describing a plane wave, propor-
tional to ji(kr). Then the scattering solution for Eq.
(1) satisfies the following set of multichannel Lippman-
Schwinger equations for j5%1:

Usilkyr) =22 f G P s 1, )V islr YUk, )dr' . (3)
t Jo

Separating the i=1 term, (3) can be written

0

> ar'[8(r—7")8;— Goi; P (k; 1, )V 3:(r) JU iRy’

i#l J g

= / dr' Gy P (ks r ) V() Unlky');  (4)
0

let [7— Hi(k)] denote the nonlocal operator on the left-
hand side of (4), and [G;*(k)V ;1] the operator on the
right side. Then if the integral operator [I—H (k) ]!
exists with outgoing-wave boundary conditions (in all
channels except 1) the appropriate symbolic inversion
of (4) is

Uii(lkyr)= 2. [T—Hi(k) T 1inGin P (k) VrilUn

n#l
and (1) can then be written
az I(+1)
[
dr? 72
X [ Z Vlf[I_Hl(k)]_ljnGln 52 (k) Vi ]r,r' Ull(k,7,) .
7,n#l
®)

Now (5) has the form of a Schrodinger equation with
a nonlocal potential operator Vi1(»)4+W; on the right
side, with the following properties of the nonlocal
part W:

}U n(k,)=Vu)Uulr)+ /0 ) dr’

(A) W is quadratic in the potentials Vi, leading to
and from channel 1.

(B) If all V;; are energy-independent, W is energy-
dependent (even below inelastic thresholds) and
I-dependent.

(C) If all V,; are real, and channel 1 is the lowest
mass state, W is real below the lowest threshold for real
inelastic processes, but complex above this threshold.

This effective potential (V13+W) is called the optical
potential, or pseudopotential, for channel 1.

32B. W. Lee, in Theoretical Physics (International Atomic
Energy Agency, Vienna, 1963); L. Brown, D. I. Fivel, B. W. Lee,
and R. F. Sawyer, Ann. Phys. (N. Y.) 23, 187 (1963).

RICHARD C. ARNOLD

153

The perturbation solution of Eq. (5) provides a
physical interpretation. The nonlocal part of the optical
potential describes the disappearance of particles from
channel 1 (V1,) at point 7/, propagation with the exact
Green’s function for other channels ([I—H]'G),
and reappearance of these particles at point 7 in channel
1 (Vm1). Such a potential can obviously be defined with-
out restrictions on the number of particles in the other
channels, and with relativistic kinematics (e.g., Dirac
equation) if desired.

2. The Local Approximation

At high energies, the wavelength of the particles be-
comes small, while the range of the potentials remains
constant; a semiclassical picture is appropriate then for
sufficiently high energies.

In the classical limit, the particles can be considered
as localized in space, interacting with an immediately
adjacent region of the “medium” described by the po-
tential operator; this operator then should be well
approximated by a local (i.e., diagonal in #) operator:

Vet = Vu@)+Wailr),

where

Wilr)= / Jilkr YW i(r,r")dr’

aside from a normalization factors; the j; represents an
unperturbed plane-wave weight factor.

These ideas have been extensively exploited in treat-
ing scattering from a complex nucleus.?%:?! In the for-
malism presented above, the excited states of the nu-
cleus are represented by particles in the other (elimi-
nated) channels, and the V;; are transition matrix
elements (overlap integrals).?! In actual practice, com-
paratively little success has been achieved in computing
the V;; (and hence W); the emphasis has historically
been on fitting data by an empirical Ve, with a few
adjustable parameters in a definite functional form.

3. The Eikonal Approximation

A closed-form approximation for the scattering solu-
tion of the Schrodinger equation with local (or effective
local) potential, good for small angles and large & values,
is well known: the eikonal approximation. Various der-
ivations of this form have been given: By summing the
Born series using the stationary-phase method in each
term??; by representing the wave function as a product
of a plane wave and a modulating function and retaining
the dominant term (as £~!— 0) in the modulating func-
tion?!; and by linearizing a one-dimensional WKB ap-
proximation, dropping terms of order 22 in the phase
shifts, and assuming that high partial waves dominate
the scattering. The final results in each case are equiva-

3 R. Serber, Phys. Rev. 72, 114 (1947); S. Fernbach, R. Serber,
and T. B. Taylor, ibid. 75, 1352 (1949).
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lent to the following prescription (for nonrelativistic,
spinless problems):

(A) Take the Born approximation for the (complex)
phase shifts

ouk)=Fk / V(r) j22(kr)ridr

[even when this is large].
(B) Then at the same time replace the partial-wave
sum

1 o
f(&,0) =; > (214-1)Py(cosb) (e2it—1) (6)

1k 1=0

by an integral over impact parameter b= (I-+3)/k in-
volving a Bessel function instead of Legendre poly-
nomials; using covariant (Mandelstam) variables s and
¢ instead of % and 6, this is

=ik f " b T = ek, (1)

where —¢=4k? sin%(6/2), and X(s,b2)=xs_1/2(k). This
continuous function of & is known as the eikonal func-
tion. Note that it is not asserted that (A) alone yields
a good approximation for &;, nor that (B) yields a good
approximation to f(s,) with the exact phase shifts 6;;
only the combination (A+B) is equivalent to the
eikonal approximation as derived by the various
methods mentioned above.

Alternatively, the eikonal approximation can be
characterized in terms of the Born approximation fz to
the amplitude f(s,?), if the exact (covariant) impact-
parameter representation® of f(s,f) is adopted. From
this viewpoint, (7) is considered an exact representation,
thus defining the function X. Then the eikonal approxi-
mation may be defined by the following prescription:

(C) xis a linear homogeneous functional of the Born
approximation fg.

Since the Born approximation must be reproduced for
small values of fg, and hence X, a specific formula for X
can be obtained by expanding the exponential retaining
only first order in X on the right side of (7) and setting
the left side equal to fg(s,f). Applying the inverse
Fourier-Bessel transform, the following result is ob-
tained for the approximate eikonal:

X(s,b%%% / °° wdx Jo(xd) f5(s, —x%); (8)

where x= (—£)1/2=2k sin(6/2).

The second way of characterizing the approximation
is more convenient for application to S-matrix theory
since only the Born approximation to the amplitude ie
required. Furthermore, it is easy to generalize to ths

# R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 (1962).
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case of spin-3—spin-0 scattering, which will be done
later.

The prescription (C) has a direct physical significance
in the semiclassical limit at high energies; the values of
ImX, in a simple optical-ray picture, are proportional to
the inverse of the mean free path of particles in the
optical medium. This, in turn, should be linear in the
imaginary part of the potential, which describes removal
of flux from the beam by absorption. Since X should (in
an S-matrix picture) be an analytic functional of the
potential, this means X should be linear in the potential,
and hence linear in the Born approximation.

4. DWBA-Type Formulas

In the absence of a complete dynamical theory it is
necessary to rely on experimental data for determining
X. This is complicated in general since X occurs in an
exponential form, and if V is a sum of several terms, this
will not be reflected in a simple way in the experimental
data. However, the bulk of high-energy small-angle
elastic-scattering data is consistent with a simple
imaginary Gaussian for X, similar for scattering in
various isospin states (indicating isosinglet exchange
dominates V). The effect of small terms in V' (and X)
can be exhibited then by expanding the exponential
in (7) keeping only first order in the small terms.

Let V=V+48V, X=X+ 6X; then to first order in 6X,

f(s,)=1k f " bab Jo[b(— )2 ]{1— e[ 1+idX(s,6%) ]}
or

fGs,0)= fols,)+ / o s o[b(—1) 12 e oteb®

X/m xdx Jo(xd)d f5(s, —x%), (9)

where

fols,t) =1k /w bdb Jo[b(— 1)1 2][1—eixos:50]
0

and &1z is the small contribution to fz associated with
oV

1 L]
6X(s,b2)=;/ xdx Jo(xb)d f5(s, —x?).

The resulting formula (9) has the structure of a dis-
torted-wave Born approximation for the perturbation
dV. This can be applied to charge exchange scattering, 3
helicity flip terms, and the real part of the amplitude;
these will be discussed later when a specific idea of X is
available in realistic cases.

III. THE FIELD-THEORETIC SINGLE-
CHANNEL OPTICAL POTENTIAL
1. Definition of the Potential

The meaning of a potential function is connected with
a specific prescription for obtaining the scattering am-
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i1 X

(a) (b) (c)

+i§§+i{g+§ﬁ
d) (e) Ton

Fic. 1. Generalized
ladder graphs in nu-
cleon-nucleon scattering
with vector-meson ex-
changes.

K e

+ (SIMILARLY FOR HIGHER ORDERS)

plitude, given the potential. If a one-body wave equa-
tion (Dirac or Klein-Gordon) is given with an associated
(static) potential, the solution of this equation yields
the scattering amplitude. This has been the primary
method used in previous applications of the optical-
model ideas.*

In the relativistic two-body context, two types of
exact potential have previously been described at length
in the literature. One is the Chew-Frautschi (CF) po-
tential,?8 which is a function defined on the mass shell
only; the definition specifies that this potential, when
combined with the analytically continued two-body
elastic unitarity condition (and analytic properties as
determined by the Mandelstam representation) must
lead through a certain well-defined iterative procedure?
to the exact scattering amplitude. The other is the
Bethe-Salpeter (BS) potential, which is defined as the
irreducible kernel of the BS integral equation,? and is
a function of four 4-momentum vectors (off the mass
shell as well as on).

Neither of these potentials has had an extensive
application to high-energy processes. Their original
motivation, in both cases, was primarily concerned
with bound states and resonances. It was argued
that single-particle exchanges should be a reasonable
approximation in such problems. In the BS case, this
was justified by a space-time picture?* of a weakly
bound electron-positron pair in quantum electrodynam-
ics (QED); in the CF case nearest-singularity argu-
ments were employed.

For a potential to be useful, it is desirable that simple
approximations for the potential lead to qualitatively
good scattering amplitudes; otherwise nothing has been
gained in the introduction of a potential, since a com-
plete dynamical calculation is out of the question. The
application of eikonal formulas, with an empirical ab-
sorptive potential in the spirit of nuclear physics, has
led to a qualitatively good description of high-energy
scattering.

Thus one is led to the question of the field-theoretic
significance of the eikonal approximation. This has been

35 S. Mandelstam, Phys. Rev. 121, 1344 (1958).
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investigated recently by Torgerson,? using nucleon-
nucleon scattering by exchange of massive neutral vec-
tor mesons (with no anomalous moment couplings) as a
field-theoretic framework. (The main points of the argu-
ment are independent of the presence of nucleon spin.)
He has given strong arguments for the following con-
jecture: When a single-particle-exchange diagram is used
as the Born approximation, the eikonal formula (8) is a
good high-energy, small-angle approximation for the
sum of all generalized ladder diagrams (crossed as well
as uncrossed) shown in Fig. 1.

This is explicitly verified by Torgerson for the sum of
the 2 two-rung diagrams (the one-rung is trivially re-
produced), and the functional form is shown to be
correct for the sum of all the three-rung diagrams (after
several subtle cancellations are taken into account).
Independent of the perturbation expansion, he also ex-
hibits a semiclassical limit for the problem in which the
nucleon fields are replaced by classical current distri-
butions describing straight-line trajectories; in this case
the eikonal expression appears through a result of
Glauber?®® on semiclassical matrix elements. The dia-
grammatic interpretation of this limit is consistent with
the generalized ladder series in Fig. 1.

Now if the eikonal formula is to be regarded as an
approximation scheme for the scattering amplitude,
given an exact potential, it is apparent that one requires
a definition of the potential (and hence what is meant
by the Born approximation) appropriately chosen so
the series in Fig. 1 will reproduce the scattering ampli-
tude, at least in the high-energy limit. This considera-
consideration motivates the following definition of a
field-theoretic exact optical potential (EOP). Let
F(k1,k2 3k ky") [any four-point function] be represented
by (a) in Fig. 2; consider the infinite series of Feynman
diagrams constructed from F and free nucleon propa-
gators, indicated in Fig. 2, topologically identical to the
generalized ladder series of Fig. 1 with F replacing the
meson propagator.

Let A (k1,ks; ki',k2’) be the sum of this series, defined
by analytic continuation in the strength of F if neces-
sary. Then the EOP, VO(ky,ks; k1',k2’) is defined by the
statement that when F=V? 4 becomes the exact scat-
tering amplitude. This obviously guarantees the eikonal
formula (if Torgerson’s results are not misleading) and

ki K
X ey
e K

(c)

(a) (b)

+?:%:%: . w+ (e
) (e)

36 R, J. Glauber, Phys. Rev. 84, 394 (1951).

Fic. 2. Graphs
used in definition of
optical potential V0.
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also provides an exact formalism, valid in principle for
computing low-energy processes.

To explicate the meaning of V?, one may enumerate
the lowest order perturbation graphs which contribute
to V? in QED. The graphs of order o® and lower are
shown in Fig. 3 for particle-particle scattering, and in
Fig. 4 are given the additional contributions for particle-
antiparticle scattering. In addition one has, in QED,
a one-photon pole in particle-antiparticle scattering.
Note that in a classical limit for the electron-positron
field, which ignores vertex renormalizations, self- inter-
action, annihilations, and closed loops, only the one-
photon term (a) survives. This shows the great economy
of V° in such cases compared to the BS definition of a
potential. (A more realistic approximation might in-
clude annihilations in particle-antiparticle scattering,
e.g., Figs. 4(a) and 4(b), but without renormalization,
self-interaction, and loop graphs.)

The principal drawback of this definition is the ab-
sence of a closed-form integral equation which would
allow investigation of bound states and resonances.
Thus, we cannot use V° in practice, unless an approxi-
mation is made such as the retention of only uncrossed
diagrams in the series of Fig. 2. The BS equation sums
these, if V?is used as an approximate BS kernel, and one
obtains essentially the ladder approximation, aug-
mented (in principle) with vertex and propagator modi-
fications and some multiparticle intermediate states as
indicated in Fig. 3. In other words, V° offers no advan-
tages over the BS definition if it is desired to compute
A using an integral equation, unless a symbolic closed-
form representation of the series in Fig. 2 can be con-
constructed. The latter is not of primary interest at the
moment and will not be discussed further.

In a similar spirit, the potential V° can be considered
as an approximation to the CF potential. In this case,
only mass-shell values of V? are required, and the dis-
persion-relation approach described in the next section
will yield useful models for the CF potential as well as
being useful in the eikonal formalism. Further remarks
on this point will follow later.

Historically, the general idea of an exact optical po-
tential for high-energy physics was proposed by
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Blokhintsev, Barashenkov, and Barbashov,?” but with-
out any detailed dynamical models this could not be
further exploited. A phenomenological formal eikonal
development was proposed by Blokhinstev,* but since
the potential was phrased in terms of Heisenberg field
operators the calculation of such a potential was very
obscure.

To obtain useful results, the high-energy small-angle
approximation must be adopted, and this will allow
utilization of dispersion relations in the calculation of
X.

2. Dispersion Relation for the Eikonal and
the Multiperipheral Contribution

For sufficiently large % values the eikonal approxima-
tion (7) can be used, assuming no resonances or bound
states in the s channel are important. Assuming
A(s,0)=5'2f(s,t) satisfies a Mandelstam representation
with normal thresholds and adopting (7) as an exact
representation, for fixed b2 the exact X(s,5%) has a branch
cut in s on the real axis starting from the lowest inelastic
threshold and running to + e, a kinematic branch cut
from s=0 to the elastic threshold #=0, and no other
singularities, if (as in potential scattering) only one
double spectral function p(s,f) is present, corresponding
to peripheral reactions. At high energies the kinematic
branch cuts (and any complications with S-matrix
zeros, resonances, and anomalous thresholds) are pre-
sumably unimportant, and only the inelastic branch cut
need be considered. A dispersion relation in s keeping
only this cut takes the form:

1 = ds
X(s,b2)=—f - Imx(s’,02). (10)
TS §—S§

Now X in the eikonal approximation is the Fourier-
Bessel (FB) transform of the Born approximation, 4.
37 D. I. Blokhintsev, V. S. Barashenkov, and B. M. Barbashov,
Usp. Fiz. Nauk 68, 417 (1959) [English transl.: Soviet Phys.-

Uspekhi 2, 505 (1959)7].
8 D. I. Blokhintsev, Nuovo Cimento 30, 1094 (1963).
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The optical-potential Born approximation (at least
in model field theories) has (with the above-mentioned
restrictions) analytic properties similar to the ampli-
tude, except the elastic branch point in the amplitude
is not present. Thus, one may write a dispersion relation
in ¢ for Ap(s)):

1 00 /
Ap(st)=— [ —— discpds(s,t).

27["1: 10 t/-t

The large-b% components of X will presumably be domi-
nated by the smallest ¢ values in the integral, i.e., the
smallest mass states in the ¢ channel. Except when one-
pion exchange is present, these will be two-pion states.
In this way the peripheral contributions to X are
identified.

If it is assumed that these longest range contributions
dominate disc(4 ), a fairly definite model emerges. This
assumption is essentially the same as the assumption
that all inelastic processes are highly peripheral at the
energies of interest. Other models of disc(4p) are, of
course, possible; but such attempts, when not directly
related to consideration of two-particle states in the ¢
channel, have employed either purely phenomenological
considerations or embody statistical arguments3®4°
which are not related to specific dynamical schemes.

What is suggested, then, is a kind of strip approxima-
tion?! for the optical potential on the mass shell. If this
V0 is applied at low energies as a potential in the CF
equation, the bound-state N/D calculations are identical
to those of the strip approximation.

To go further, a more detailed model for peripheral
many-particle inelastic processes is required. The only
such model not restricted to two-body (or resonance)
final states for inelastic processes is the multiperipheral
model of Amati, Fubini, and Stanghellini (AFS).!s The

3 L, Van Hove, Rev. Mod. Phys. 36, 655 (1965).

97, J. J. Kokkedee, Nuovo Cimento 43A, 919 (1966).

4 G, F. Chew and S. C. Frautschi, Phys. Rev. Letters 5, 580
(1960).
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arguments of Bialas and Van Hove!? indicate that
multiparticle states are essential for obtaining results
which agree with experimental elastic-scattering data.
The discussion of AFS concerning the relevance of
multiperipheral graphs in the unitarity condition for
elastic scattering applies to V? as readily as to the scat-
tering amplitude. These contributions to V° will be
called the multiperipheral optical potential (MOP). The
relevant dispersion graphs for 7w, #N, and NN scatter-
ing are shown in Fig. 5.

The treatment of elastic scattering presented by
Amati, Cini, and Stanghellini’® employing s-channel
unitarity was a form of iteration involving the multi-
peripheral graphs as input. The idea of the MOP is
similar, but the details are quite different; the authors
of Ref. 16 did not use an eikonal formula, and their
iteration procedure apparently will generate only un-
crossed s-channel ladder graphs (where the multiperi-
pheral chains are rungs).

The multiperipheral idea implies a model of inelastic
processes in which inelasticity increases slowly with en-
ergy. It is inapplicable, therefore, (in its original form)
to KN and $p reactions which have strong inelasticity
near threshold. In particular, for the pp case, the multi-
plicity of particles in inelastic reactions is already large
(4-5) at low energies®? and does not increas logarith-
mically, as implied by MOP. In such cases, the optical
potential model must be extended at least to include
annihilation graphs, such as Figs. 4(a) and 4(b) in QED,
since they apparently contribute a large amount of the
inelastic cross section.

IV. PRACTICAL MODELS FOR
THE POTENTIAL

1. Low- and High-Energy Approximations

The starting point for the MOP is the assumption
that inelastic processes (which determine ImV?) are
dominated by production of pion pairs through the one-
pion-exchange mechanism.'® In some reactions, in some
energy regions, this seems to be a reasonable approxima-
tion, especially if the pion pairs form a p meson. An ex-
ample is the case of N reactions from 1-5 BeV/c,
where p production seems to be the most important
inelastic process. In other cases one often finds other
channels are more important; in NN collisions, N* pro-
duction through one-pion exchange seems to account for
the majority of the inelastic cross section in the same en-
ergy region. This suggests that a reasonable model for
ImV? should include contributions such as in Fig. 6, at
energies which are such that single or double resonance
production dominates.

42T, Ferbel, A. Firestone, J. Sandweiss, H. D. Taft, M. Gilloud,
T. W. Morris, W. J. Willis, A. Bachman, P. Baumel, and R. M.
Lea, Phys. Rev. 143, 1096 (1966); T. Ferbel, A. Firestone, J.
Johnson, J. Sandweiss, and H. D. Taft, Nuovo Cimento 38, 12
(1965); G. R. Lynch, R. E. Foulks, G. R. Kalbfleisch, S. Limen-
tani, J. B. Shafer, M. L. Stevenson, and N. Xuong, Phys. Rev.
131, 1276 (1963).
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At sufficiently high energies, such that multiple-pro-
duction processes do dominate over single or double
isobar production, the sum of all #channel ladder
graphs (Fig. 5) is, in the multiperipheral model (with
s-wave wm vertices), the appropriate approximation to
ImV¥0. This sum has'® Regge-pole asymptotic behavior,
s¢®_ Thus, the asymptotic contributions to ImV? in
the multiperipheral picture are the Regge poles previ-
ously used in phenomenological analysis*®:4* of high-
energy reactions; only these poles represent here the
Born approximation to be used in an eikonal formalism.
(This was previously conjectured® on the basis of the
Chew-Frautschi potential, but that potential is not the
appropriate one to invoke, as is now clear from Torger-
son’s work.?®) Quantitative estimates show that the
Born approximation gives, for the scattering amplitude,
the correct order of magnitude at sufficiently small mo-
mentum transfer,®® which accounts for the success of
phenomenological Regge pole-fits in cases other than
K=p and pp scattering which do not fit the MOP
picture.

In principle, it is possible to incorporate the resonance
production diagrams in Fig. 6 in a sum over all possible
ladder graphs; the sum over all graphs might be repre-
sented by sufficiently many Regge poles, some of which
are below J=0 in the complex J plane. It is not known
whether this is possible in an S-matrix approach, but
ladder diagrams in some model theories*® can be repre-
sented as an infinite sum over such poles.

In a pragmatic approach, it seems reasonable to use
instead a combination of (A) Regge poles with >0
which are associated with known particles and reso-
nances in the ¢ channel, and (B) explicitly computed
single- and double-resonance production diagrams, as
long as they have over-all energy dependence less domi-
nant than that of the Regge poles in (A). The latter
requirement is necessary to minimize duplication of im-
portant contributions in both (A) and (B). The assump-
tion that (A) is independent of (B) is essentially
equivalent to assuming that the (B) diagrams are a
negligible part of the structure of the composite par-
ticles described by the (A) poles.

Note that the discussion above is concerned with
ImV?° and thus determines ImX. The real part of X
(except at asymptotic energies) must then be calculated
from the disperison relation (10). The Regge-pole con-
tributions to ImX (above a transition energy s;) yield
for each pole (see for example Appendix of Ref. 23) a
form for Rex

’

1 0
_/ —B()(s'/50)*® = B(O){ — cotlma(t) J(s/s0)= )
TJs §—S

+(s/s)7 7O 1F[1, 14+a(0); 24a(); (s/s)7' ]}
(11)

4% R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336
(1965).

44T, Binford and B. R. Desai, Phys. Rev. 138, B1167 (1965).

4 G. Tiktopolous, Phys. Rev. 133, B1231 (1964).
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which [when combined with crossing symmetry and the
charge-conjugation properties of the pole] reproduces
for >0 and (s/s;) — « the usual signature factor
times (s/s0)*®, with the /-dependent residues 8 appear-
ing as an over-all factor. However, at nonasymptotic
energies, the phase of X will be determined not only by
(11) but also by the single- and double-resonance con-
tributions; and in any case, x becomes real below the
first inelastic threshold.

In practice, one expects ImX>>ReX, and that the box
diagrams of Fig. 6, or similar inelastic diagram estimates
as calculated by Amaldi and co-workers will be a rea-
sonable model for the moderate-energy region, aug-
mented by Regge poles.

It is instructive to consider again at this point the
possibility of using V° on the mass shell, V(s,t), as an
approximation to the CF potential. If only Regge poles
are retained in ImV?, with a “strip boundary”’ s; chosen
very high, then each Regge-pole term V, in V9(s,)
evaluated at low energies (s<si1) [cf. Eq. (11)] has the
form

Va(s,0)=Bn(D{—7 cotlman(t) 1(s/s0)®
4+ (s/s1) " en®} = (crossed term).

Fic. 6. Typical single-
and  double-resonance
contributions to V.

(12)

Now if a,(f) is well approximated by a straight line
with a small slope for —4k2<i<pu? where u is the
physical mass of the lowest physical particle or reso-
nance lying on the trajectory [a.(u?)=mr with m=0,
1, or 2] for odd C such as the pion one obtains

M(i>an(o)

So.

Vno(s,t)g
ui—t

< (terms nonsingular at t=x?). (13)

Then if B.(¢) is slowly varying and p? is small, only
the first term is important and V,%(s,f) is of the pole
form used in analyzing low-energy scattering and
bound-state data in terms of one-boson-exchange po-
tentials.*”+4® The energy dependence does not correspond
to elementary-particle exchange unless a,(f) is a very

46 U. Amaldi and F. Selleri, Phys. Rev. 128, 2772 (1962); U.
Amaldi, R. Biancastelli, and S. Francariglia, report at the
Ozxford International Conference on Elementary Particles, 1965
(unpublished).

4 A. Scotti and D. Y. Wong, Phys. Rev. 138, B145 (1965).

% R. A. Bryan and B. Scott, Phys. Rev. 135, B434 (1964).
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flat trajectory so that a(0)=a(u?), but since such appli-
cations*”* ignore inelastic channels they cannot give a
decisive test of energy dependence of the potential.

It can be roughly said, then, that the same pole terms
in V° can be applied both to sufficiently high energies
(using the eikonal method) and to sufficiently low en-
ergies (which do not probe the energy dependence) with
qualitative success.

2. Spinless Discussion of High-Energy pp Scattering

Since the forward diffraction peak in pp scattering
appears to shrink with increasing energy, at least be-
tween 3 and 15 BeV/c, this process is a good candidate
for a direct fit with a few Regge poles. From an @ priori
viewpoint, poles belonging to all known nonstrange
mesons can contribute to pp (and pp) scattering. The
Pomeranchuk pole (P) alone is found to be not adequate
to account for the energy dependence of the pp total
cross section, and some secondary poles (at least P’ and
w) are required to give a satisfactory description.*t How-
ever, for a qualitative discussion only P is considered
here, with very small shrinkage, which presumably is
consistent with data above 10 BeV/c, if only (—#)<0.30
BeV?/c? is considered.*

With this assumption concerning the high-energy
form of V°, the pp Born approximation for f(s,f) is

l_l_e—ira(t) s\ «®

2 sin[mx(t)]( so>

With the usual assumption for pole trajectories and
residues at small |{|, a()=21+ta’ and BE=2B(0); so is
taken as a free parameter to fit the data. Now f, for
small |#| can be roughly approximated by an imaginary
exponential in ¢, and X, (the FB transform of f,) is an
imaginary Gaussian in b to the same rough approxima-
tion, with amplitude independent of energy in the high-
energy limit. The real part of the amplitude vanishes if
the eikonal is purely imaginary. Experimentally, the
real part is known to be small compared to the imaginary
part of the amplitude in the forward direction.®® It is
consistent, then, to assume that the most important part
of x is purely imaginary. Later the real part at /=0 due
to V, will be estimated by a DWBA formula.

The large-|¢| scattering amplitude will be determined
by the small-b behavior of X, which in turn is essentially
determined by the large-|¢| behavior of fz. To estimate
this, assume «(f) approaches a definite limit a(w) as
{— —oo. Then the energy dependence of the small-b
part of the eikonal will be s#®)~1 and the corresponding
phase will be (r/2)a(x); if a(«) is not far from 41,
this part of the eikonal will be slowly varying with en-
ergy and predominantly imaginary, as in the large-b
contribution.

In this discussion we assume that the important con-

¥ K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum, W.

A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L. Yuan,
Phys. Rev. Letters 14, 862 (1965).

Fols,t)=s"126(2) (14)
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tributions to the integral over ¢ [yielding X(b)] come
from a limited range of ¢, for any s. Thus we are extract-
ing essentially a fixed-f, s— o limit of the potential,
corresponding to contributions such that —i/s— 0. If
X were (contrary to such assumptions) to depend essen-
tially on the behavior of ¥, for —#/s nonzero, there
might be serious doubts concerning the association of
Regge-pole terms with the asymptotic behavior of the
multipheripheral diagrams.

The small-b dependence of X then depends on the
large-|¢| behavior of B(f). It is believed® that B(¢)
satisfies (at least for the leading trajectories) a disper-
sion relation with singularities only for positive ¢:
© qy

1
BO)=-| — ImB({).

™ 4p,zt -

(15)

A plausible behavior of 8 for large (—¢) then would be
B(O=alto—1)", (16)

where @ and ¢, can, in principle, be determined from the
dispersion relation (15).

Given (16) and the above assumptions on a(«), the
Born approximation fg is the same as for an imaginary
Yukawa potential in the Klein-Gordon equation, as
proposed by Serber as a good phenomenological descrip-
tion of large-momentum-transfer pp scattering.* (Recall
that the eikonal approximation is a small-angle method,
but allows large |¢#] if s is large.)

The Pomeranchuk pole (or other dominant singularity
at J=1) is therefore in the present scheme a replace-
ment for the phenomenological potential of Serber which
fits both small- and large-momentum-transfer, high-
energy pp scattering. Note however, that the large-
momentum-transfer scattering amplitudes with a pole-
dominated eikonal will have a behavor (—#)—*®; in
Serber’s model,* p was a fixed power, but the present
scheme gives a slowly varying p(s) which varies as
sa)=1 As long as () is chosen close enough to +1,
however, Serber’s fits can be reproduced. In fact, energy
dependence of p is necessary to obtain a better fit than
Serber’s, as pointed out by Krisch.!4

In such a picture, it is apparent that p(s) is not uni-
versal; the power law is different for different reactions.
Thus it is not surprising that = large-(—¢) scattering®!
follows a different power law than pp scattering. (Large
—t means here center-of-mass scattering angles of
20°-30° at high energies, not the backward scattering,
which in 7p reactions must utilize a different model such
as baryon exchange.)

3. A Model for High- and Moderate-
Energy pp Scattering

The pp problem at nonasymptotic energies is typical
of the cases not dominated by poles. As in the qualita-

5 H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963).

51 J. Orear, R. Rubinstein, D. B. Scarl, D. H. White, A. D.
Krisch, W. Frisken, A. L. Read, and H. Ruderman, Phys. Rev.
Letters 15, 309 (1965).
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tive pp treatment, assume a spinless formalism. The en-
ergy range from 2 to 10 BeV/c will be considered. The
annihilation cross sections here are equal in importance
to those of production without annihilation,*? and the
latter are comparable to the corresponding pp reactions.
A model for V; should, therefore, include terms corre-
sponding to the pp potential (V,) and in addition com-
parable terms (V 4) obtained from a model of the anni-
hilation reactions. Since strange-particle annihilation
cross sections are smaller than those for only pions, only
the latter will be considered.

In terms of the eikonals, the elastic-scattering ampli-
tudes will be written

A(s,t)=ikW/ bdb J[b(— )V [1—eiXoe:¥D7]  (17)
0
for pp, and

A(s,t)=ikW f bdb Jo[b(—1)1/2]
’ X [1—eixpetD+iXa6,007  (18)

for pp, where W2=s, and covariant normalization is
implied:
do/dQ=s"1A(s,0)|2.

If a Born approximation (using Regge poles for 4)
is reasonable for pp scattering with only even-signature
poles® (P only, as indicated above, as a special case),
the poles in pp and pp will be the same, but in 4 there
will be “absorptive corrections” from the extra factor
exp(iX4). If X, dominates over X,, the poles will be
concealed, and the main features of pj scattering in this
energy region will be determined by X 4.

For simplicity, assume that X, is purely imaginary,
and hence can be computed directly from annihilation
amplitudes at the same energy as elastic scattering is
measured (no dispersion integral required). Then X4 is

xA(s,b2>zk—;; S Hy(s 800y Hy 67, (19)

where H,(s,b?) is the FB component () of the ampli-
tude T,(s) for pp annihilation into multipion state v
(here v refers to all nonexplicit variables which describe
such a state) and p,(s) is the phase-space factor for the
pion state. In (19) we have used the “b-diagonal” ap-
proximation to the unitarity condition [following
Blankenbecler and Goldberger,* and Baker and Blan-
kenbecler®; see also Ref. 10] where /4% is identified
with kb.

To estimate X4, then, a model for the most important
H’s is necessary. Experimental data indicate that the
pion directions in annihilations are far from isotropically

52 D, H. Sharp and W. G. Wagner, Phys. Rev. 131, 2226 (1963);

1. J. Muzinich, 7bid. 130, 1571 (1963).
53 M. Baker and R. Blankenbecler, Phys. Rev. 128, 415 (1962).
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distributed in the center-of-mass system; a purely statis-
tical model thus seems inappropriate. At the other
extreme, it would be convenient if most of the 4- and 5-
pion states (which are the most important of annihila-
tions) were accounted for by double-resonance produc-
duction (e.g., p,w) but this is not true.®? The only
familiar kind of dynamical model consistent with the
data would seem to be a form of multiperipheral model
with baryonic states forming the legs of the ladder, as
indicated in Fig. 7.

Before proceeding, it is necessary again to raise the
question of duplicating graphs. The graphs of Fig. 7
might, in principle, be included in Regge poles of X,
since any quasi-two-body, baryon-number-zero states
in the ¢ channel will contribute to structure of ex-
changed-meson states (at least in a bootstrap®* picture).
(The mp, pp, etc. moderate-energy inelasticities do not
raise this question since they are dominated by single-
or double-resonance production.) In fact, however, the
graphs of Fig. 7 cannot contribute to X,, and hence
cannot contribute to any (even-signature) poles in X,.
Thus no duplication is involved if X 4 is computed from
the graphs of Fig. 7.

Now the model represented by Fig. 7 must be made
more precise. Since multiparticle phase space is difficult
to handle, the order of magnitude of these diagrams will
be estimated by replacing them with a diagram such as
Fig. 8, in which all pions are grouped into two “fireballs,”
Again for simplicity, these groups are considered to have
zero angular momentum in their individual center-of-
mass systems. Then the box diagrams indicated can be
calculated, if the natures of the baryonic exchanges are
specified.

Elementary-particle perturbation theory would sug-
gest nucleon exchanges, with a ¢ dependence given by
(M2*—1)~*. However, this would yield an effective radius
for pp scattering of order (2M)~1, which is much too
small. Further, such a weak ¢ dependence would not
explain the degree of charged-pion angular anistropy
found“? in the annihilations above 3 BeV/c.

In accordance with the general picture of composite
particles, however, the required ¢ dependence can be
achieved simply by considering the baryonic exchanges
in Fig. 8 as Regge poles, with trajectories and residues
that drop off with increasing (—#). The order of magni-
tude of these { variations may be estimated theoretically
by assigning an effective radius of order (2u,)~! to the

84 R. C. Arnold, Nuovo Cimento 37, 589 (1965); J. S. Ball, A.
Scotti, and D. Y. Wong, Phys. Rev. 142, 1000 (1966); Y. Hara,
ibid. 133, B1565 (1964).
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Fic. 8. Rough approximation

CROSSED
+ ( ) for graphs of Fig. 7.

DIAGRAM

composite state (baryon or baryonic resonance), or em-
pirically by observing the backward peak width in high-
energy mp scattering® (presumably dominated by such
baryon Regge poles). Both considerations lead to the
expectation that the ¢ dependence of each baryonic ex-
change will be quite similar to that observed in forward
(meson-exchange) processes, such as small-angle elastic
scattering, when mesonic Regge poles dominate (exclud-
ing the one-pion-exchange case).

To a rough approximation consider then an exponen-
tial behavior for the ¢ dependence of each half (T,) of
the diagrams in Fig. 8 (/ is the 4-momentum transfer
between an incoming nucleon and the associated
“fireball”):

To(5,0)=2T n(s5,0)e Bt/ | (20)

where each R, is comparable to the value for forward
elastic scattering; R, may vary slowly with s, but this
can be ignored in the rough approximation. Here n
refers to the pion population of any particular “fireball.”
The s dependence of T, extracted above as T'»(s,0),
will be (s/50)2™® where am(amax) is the leading baryonic
trajectory at {=0; the s is an appropriate scale factor.
The FB transform of (20) then is

H o (5,69)=2T 0 (50,0) (5/50) 2 @~ t*/2R% (21)

With a two-particle phase-space factor (2/k.W) appro-
priate for the given normalization and an impact-
parameter representation, X4 then becomes

21:(3/50)20"”(0)
Xalsp)—— Y Eale bR To(s0,0)|2. (22)

For simplicity again, assume that a single (#) contri-
bution dominates, and make the rough approximation
k=k,. One obtains the Guassian form

XA(s,b2)_g_i)\k——-2(s/so)2am (0)—le—b2/ R2 , (23)

where \ is a free (positive) parameter; R, so, and a,,(0)
are also undetermined, but the former two must be of
the same order of magnitude as seen in all forward
elastic-scattering reactions at high energy, and the latter
can in principle be determined from observation of the
energy dependence of backward wp scattering. It is esti-

55 ABBBHLM Collahoration, Phys. Letters 10, 248 (1964); W.
Frisken, A. L. Read, H. Ruderman, A. D. Krisch, J. Orear, R.
Rubinstein, D. B. Scarl, and D. H. White, Phys. Rev. Letters 15,
313 (1965); C. T. Coffin, N. Dikmen, L. Ettlinger, D. Meyer, A.
Saulys, K. Terwilliger, and D. Williams, ibid. 15, 838 (1965).

H. Brody, R. Lanza, R. Marshall, J. Niederer, W. Selove, M.
Shochet, and R. VanBerg, ibid. 16, 828 (1966).
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mated’® that amgx(0)=~0.15 in backward 7~ scattering,
which presumably is dominated by a pole associated
with N32*(1238). (Since the nucleon pole presumably
has a smaller «(0), the former pole is expected to domi-
nate at sufficiently high energy whenever baryonic ex-
change is considered.) The exact value of am.x(0) does
not affect the qualitative conclusions below.

With ,(0)=20.15, X4 from (23) is a Gaussian in b,
purely imaginary (by hypothesis), with asymptotic en-
ergy dependence k3% Thus X4 will be dominated by
X, for sufficiently large s, but may be very large in mag-
nitude in the low end of the energy range under consid-
eration. From (18), the pp scattering amplitude in the
region where X4 dominates X,, is given now by

A(s,)=ikW / i bdb Jo[b(—1)1?]

X {1—exp[ —Ak~%(s/s0)t1e— v B ]} |

where 7=2a,(0)—1=2—0.7.

Now the two most striking qualitative features of pp
elastic scattering®” can be obtained from the result (24)
applied between 2 and 10 BeV/c:

(A) Drop of (0e1/0t0t) from near 0.50 at low energies
to a small value (approaching the pp value) above 10
BeV/c; and (B) expansion of diffraction peak width
(decrease in effective radius) over the same interval by
an appreciable factor (again approaching pp value above
10 BeV/c). [The integrals can, of course, be done nu-
merically but it is sufficient for the purposes of this
paper to give a qualitative discussion, especially since
(23) is to be considered only a rough guide to the actual
physical situation. ]

For large k, expansion of the integrand to first order
in A (or £72) yields for A an exponential in f with charac-
teristic radius R/2 ,with amplitude decreasing with
energy and proportional to . Such a radius is smaller
than the pp case (because it is assumed R is given
roughly by the pp result). The appropriate eikonal for
asymptotically high energies is X, however; so (if \ is
not too large) the characteristic radius will actually be-
come the pp radius, as will also (ce1/d%o0t)-

At the other extreme, consider small k. The value of
the factor in braces { } in Eq. (24) will be essentially
unity for 5 R, and will drop rapidly to zero (with a
Gaussian tail) for >R. The thickness of the transition
region will become small compared to R as k decreases,
and at the same time the half-maximum point will ex-
pand to larger b values as & decreases. The distribution
of optical opacity then resembles a black disk for small
k, with a radius>R. In such a case one obtains oe1/ctos

(24)

% G. F. Chew and J. D. Stack, University of California Radia-
tion Laboratory Report No. UCRL-16293 (unpublished); see also
J. D. Stack, Phys. Rev. Letters 16, 286 (1966); V. Barger and D.
Cline, bid. 16, 913 (1966).

57 0. Czyzewski, B. Escoubes, Y. Goldschmidt-Clermont, M.
Guinea-Moorhead, D. R. O. Morrison, and S. de Unamuno-
Escoubes, Phys. Letters 15, 188 (1965).
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=0.50, and an effective radius (larger than the pp case)
which decerases with increasing energy. Explicit cal-
culations confirm that reasonable fits to the data® can
be achieved with A of order 5-10 (BeV/c)?, with R
taken from pp scattering.

V. SPIN-1-SPIN-0 SCATTERING
1. Eikonal Representation for Helicity Amplitudes

For a description of meson-nucleon scattering the nu-
cleon spin must be taken into account. It might be
thought that spin effects are unimportant at high en-
ergies, but appreciable polarization has been observed in
mp scattering®® in the range of energies presumably ca-
pable of an eikonal description. Thus a successful theory
must be capable of predicting this polarization, even if
the contribution of the spin-flip amplitudes to the cross
section is small, as it can be, and still yield appreciable
polarization.®

The nonrelativistic treatment of problems with pins
with an eikonal formalism has been discussed by
Glauber,? but a treatment of the relativistic case has
not been presented (to the author’s knowledge) in the
literature. For spin-3—spin-0 scattering, there seems to
be no obvious difficulty in generalizing the spinless for-
mulation presented in Sec. II. However, when higher
spin cases are considered there are difficulties in principle
connected with coupling different / values. These have
been mentioned by Glauber?! and apparently have been
sidered by Amaldi and co-workers*® in connection with
nucleon-nucleon absorptive correction formulas. These
problems will not be considered here.

The formulation of the eikonal approximation in Sec.
1II can be generalized to meson-baryon (wN) scattering
because there is still a single phase shift for each J
value, and the eikonal is (roughly speaking) obtained
by using the Born approximation to the phase shift
when many partial waves are important and there are
no important resonances. The specific formulation in
this case begins with the relativisitic 7V scattering
amplitude representation in terms of partial-wave
amplitudes®:

fl(s,t>=§0 fz+(S)Pz+1’(Z)~ZZ:2fz—(S)Pz—1’(Z), (252)

f2(s,z>=l§ (fr—fu)PY (&), (25b)

where z=cosf, {=—2k?(1—cosf); the normalization is
defined by

d
d—;= | fit fo cos6| 24| f2| 2 sin26.

% S. Suwa, A. Yokosawa, N. E. Booth, R. J. Esterling, and R.
E. Hill, Phys. Rev. Letters 15, 560 (1965) ; Enrico Fermi Institute
Report (unpublished).

% S. Fernbach, W. Heckrotte, and J. V. Lepore, Phys. Rev. 97,
1059 (1955).

( 60 S). C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
1960).
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The partial-wave amplitudes fi, are related to the
phase shifts 8;4. by

Sre=(e?®=—1)/2ik. (26)

Assuming that a large number of partial waves con-
tribute, an impact-parameter respresentation is desired.
The choice is not unique,! but there is one choice for
which the helicity nonflip amplitude is simplest, and
this amplitude should be most important at high ener-
gies. It is most convenient to express the expansions (25)
in terms of rotation matrices d,,”7(6) to obtain such a
representation. This, in turn, is easiset to express by
introducing helicity nonflip and helicity flip ampli-
tudes® G, and G-; the normalization is chosen such
that

do
—=s"[|G4|*+]G-|7], @7
aQ
and the nucleon polarization P(6) is given by
P(0)=2Im(Gy*G)/L|G+*+]G-[2].  (28)

The angular momentum expansions® of these am-
plitudes can be written

Gy(s,t)= ZJ: (43847 (5)d1j2,127 (2), (29a)

G(s,0)= EJ: +Peg7()dvz—127 (). (29Db)

The explicit relationship between the G and f1, f2is
Gy =W (fi+f)cos(6/2), (30a)
G_=W (f1— f)sin(6/2). (30b)

Comparing (29), (30), (25), and (26) one obtains ex-
pressions for the g7 in terms of phase shifts:

&7 =WLfu+ fam-1= (o) [e*PrerPer-—127,
(31a)

8T =WLju— fasn-J=Gpy1[emise—etian=],  (31b)

where p=2k/W, and I=J—1% here.

The expansions (29) now are replaced by integrals
over b=J/k and the d” functions are replaced by Bessel
functions to which they correspond in the limit J — o
(see Appendix of Durand and Chiu, Ref. 7). At the
same time, the phase shifts é;, are replaced by continu-
ous functions of 82, X,.(s,6%), such that for large [,
Xy [s,LC+3)/k 1 81:(9).

It is convenient to define “flip” and “nonflip” X func-
tions by

Xy=(X4—X_)/2, (32a)
Xo= (X4+X)/2. (32b)

61 E. Predazzi, Ann. Phys. (N.Y.) 36, 228 (1965); 36, 250 (1965).
62 M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959);
see also M. Jacob, in Strong Interaction Processes, edited by M.
Jacob and G. F. Chew (W. A. Benjamin, Inc., New York, 1965).
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In terms of Xp and Xy, the resulting integral represen-
tations are

G (s,0)=ik? cos(6/2) / " bab Jo[b(—5)17]

X[1—ei* cosX;], (33a)

G-(s,t)=Fk? /‘” bdb J1[b(—2)V¥][e*0 sinX,]. (33b)

The expressions (33) give an exact representation, de-
fining the X’s. The eikonal approximation, by analogy
with the spinless case, now can be obtained by equating
the Born approximations for G; and G- to the first-
order terms in the expansion of the integrands in powers
of X, (or Xo and X;). The result is

GB(s,t)=2k? (:05(0/2)/9° bdb Jo[b(—8)Y2]Xo(5,6%) , (34a)

0

G_B(s,1)2k? f bdb Ji[b(—£)V2]X,(5,02).. (34b)

0

The inverse Fourier-Bessel transforms then yield X,
and X;, which can be written in terms of the Born ap-
proximations to f; and f; as

Xo(s,b%) = (%) /0 " i To(od)

XLAE(s, =28+ f5(s, —2%)]  (35a)

and
W 0
X;(s,02) = (;) / xdx J1(xb) sin(6/2)
XLfiB(s, —2%)— f28(s, —a?)],

where x= (—#)1/2=2k sin(6/2); the second equation can
also be written

X/ (s,5%) = G%) /0 " st Ja(xb)

XLfiB(s, —a?)— foB(s, —aB)].

These equations define then the eikonal approxima-
tion for 7V scattering. Further discussion of qualitative
features will require specific assumptions regarding the
potentials.

(35b)

2. Covariant Born Approximations, Helicity Flip
Amplitudes, and Spin-Orbit Coupling

A description of the Born approximations in terms of
the Mandelstam - (singularity-free) amplitudes 4 and
B is convenient for a discussion of specific physical
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models. From Ref. 60,

E+M

ns=( — Jao+r—ms601, 6o
E—M

= ( — Yoot Or--a0 BT, o

where E is the center-of-mass energy of the nucleon, and
M and p are the nucleon and meson masses.

The corresponding representation of the =V scatter-
ing amplitude in terms of the Dirac matrices is®

T=—A+%y (1 +q2)B, 37

where ¢, ¢» are the 4-momentum vectors of the incom-
ing and outgoing nucleons. In the Born approximation
for field-theoretic models including only nucleon poles,
or exchanged vector mesons without direct anomalous-
moment couplings, only B is nonzero. In an S-matrix
approach, crossing relations for 4 and B are utilized to
express their Born-approximation values in terms of
poles associated with particles and resonances in
crossed channels.

In particular, when only a single Regge pole is in-
cluded, the amplitudes 4 and B have asymptotic energy
dependences?

A(S,t)zFA(t)(S/SO)“(‘) )
B(s,t) = Fp(t)(s/s0)*®1,

(38a)
(38b)

where F 4 and Fp are products of signature and residue
functions. As a consequence, the Born approximations
for helicity amplitudes have asymptotic energy depen-
dence

G =[Fa® ) (s/50)*®
+Fs®()(s/50)*Jcos(6/2), (39a)

and

G 3B~ [FA 2 (t) (S/So)"‘ (t)+1/2
+F® (1) (s/50)* =12 Tsin(6/2)

where F 4O, F,® (FgM:.Fg®) are linear in F 4(Fg),
and contain «a(f) and constants. The second expression
can be written

G E=~[F 4D () (s/50)®
FEO0)/50°0 (1 (390)

using (—t)V/2=2k sin(6/2), where F 4@ (Fz®) is again
linear in F4 (F3p) and contains «(f) and constants. The
factor cos(8/2) in (39a) is quantitatively unimportant
since only small values of § are to be considered.

Now from (27), if F 4(£)50, the cross section in Born
approximation has a contribution to its asymptotic en-

6 V. Singh, Phys. Rev. 129, 1889 (1963).
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ergy dependence contributed by G for #0:

doy ~1|F, ® ()] 2 2a(t) 40
<§§>G_~(—l)s |F4®)|(s/s0) (40)

while if F4(#)=0, or at {=0, one obtains only the G,
contribution:

do
(&?2)&'.:: {lFA( )(t)'i‘FB( )(t)l }(S/s()) a(t)' (41)

Assume, for the following argument, that these asymp-
totic Born terms are a good qualitative guide. From
general restrictions based on unitarity, do/dQ at =0
should not grow faster than s* (aside from logarithmic
factors). This limit is satisfied by the Pomeranchuk
pole, a(0)=1; other poles have smaller intercepts.

Experimental elastic-scattering data, at least on high-
energy mp elastic scattering, show that the asymptotic
cross section for #>£0 (compared to the cross section at
t=0) gives no indication of a rise away from the forward
direction as indicated by (40), after the region of energy
containing important resonance contributions is ex-
cluded. This is a strong indication that for each pole,
either F 4=0, or a(0)<3.

In mp scattering, P’ and p poles are required for a good
fit to the data.*3#* (These three are the only trajectories
known to exhibit physical resonances in the ¢ channel
whose quantum numbers are consistent with their ex-
change in 7p forward scattering.) The p pole residues
can be determined by analysis of charge exchange; as-
suming an uncorrected p pole, it is found® that F 4 is
quite large. This is consistent with the above conclusions
if @,(0)<0.50. Detailed analyses® indicate «,(0)=20.60,
but this may be affected if absorptive corrections are
included; in any case the use of ,(0) = 0.50 still provides
a reasonably good fit.%®

In other reactions (e.g., KN scattering) the w trajec-
tory (as well as others) is allowed, but it is believed that
F 4220 in this case on the basis of isoscalar nucleon form
factor analysis. Thus «,(0) is not restricted to be less
than 3.

Returning to mp scattering at high energies, consider
the P contribution to Xo and X;. Since F 4=0, there is a
relation determining X; in terms of X,. It will be shown
below that this relation is exactly the same as in the
case of a static central potential in the Dirac equation,?
in the high-energy approximation W>>M.

Let B(s,t) now represent the Born approximation for
B, and take the Born approximation for 4 to be zero.
From (36),

(fP+ 1) = (E—M*/W)(B/4x), (42a)
(/= fo%)=M(1—E/W)(B/4r). (42b)

¢ G. Hohler, J. Baacke, H. Schlaile, and P. Sonderegger, Phys.
Letters 20, 79 (1966).
6 R. K. Logan, Phys. Rev. Letters 14, 414 (1965).
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This yields, from (35), in the eikonal approximation

47Xo(s,b%) = /’a‘z(EW~M2)‘/M> xdx Jo(xb) B(s, —x?),
’ (43a)

47X, (s,b%) = (2B)~2M (W — E) / " J1(xb)B(s, —a?).

In the limit W>>M, these become

00

47X o(s,b2)=22 / xdx Jo(xb)B(s, —x?), (44a)

MW\ r®
47rXf(s,b2)%'<—4—k2">/ x2dx J1(xb)B(s, —x?). (44b)

Now consider the static-potential theory problem
where the nonflip eikonal X, is derived from a central
potential V,(r) through the expression?

+o0
x0(62)=/ dz Vo[ (z20%)4%]. (45)

The explicit energy dependence of the potentials (and
eikonals) is suppressed. Define the Fourier transform
V. by

sin(Ar)] ’ (46)

Vo(a)=2 /0 i r2dr Vc(r)[

where A= (—?#)Y/2. This is proportional to the Born ap-
proximation for non-spin flip amplitude. Then X, can be
obtained from V, by inverting (46) and substituting
into (45):
Xo(b?) = / AdA To(bA) T(4). (47)
0

Thus
Vo()=B(—x2) /2.

Equation (44b) then becomes

(48)

MWy -
X;(0?) = (4—132) / wdx Vo(x)[aJ1(bx)].  (49)
Using P ’
—[2/1(z) ]=27o(2),
dz

this can be written

X;(6%)=— (g)b [0 i xdx Vc(x)l: /o ) dy y]o(by)] .
(50)

Integrating by parts, and assuming V. drops off rapidly
as x — oo, one obtains

MW ) x _
Xf(bz) =— <z};2—>b / xdx Jo(bx)/ ydy Vc(y) . (51)
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Now

/ ’ ydy Vo(y)=2 / i rdr Vo(r) / ’ dy sin(yr)
[} 0 0

= 2/00 dr V (r)[1—cos(xr)]

-+ (terms independent of x)

© sin(xr)r1 d
=2 / r2dr l:— ——Vc(r)]
0 xr Lz dr

+ (terms independent of x).

As a consequence, (51) for 20 can be written
MW\ r® -
X;(b%)= (—;};)b / xdx Jo(xd) Vi(x), (52)
0

where ,(x) can be considered the Fourier transform of
an effective spin-orbit potential V(r), with

1d
Vlr)=———V.(r).
rdr

(53)

Note that for a Gaussian V. (as indicated by cross-
section data), V, has the same Gaussian shape.

The corresponding phase shifts, in a discrete angular
momentum representation, will be given then [using

(46)] by
MW(+3)7
S LU |
4k3 .
_M+-3)
TR

o0
/ dz V[ (z2+09)12] (54)
and -

1 =
(5H+6;_)/2=5/ dz V. [(z>4-6H)V%].  (55)

These are, as stated above, just the linearized WKB
approximations at high energies for the Dirac equation®
with a potential V,(r), which again shows the physical
content of the eikonal approximation for spin-3—spin-0
scattering.

It may be noted that the formula (52) is used in the
Byers-Yang model® by assuming the relevance of an
effective static potential as in nuclear physics. The es-
sential results of that model concerning polarization in
elastic scattering are then comprehensible within the
framework of a B-type Born approximation, such as a
Pomeranchuk-pole contribution, giving a Gaussian V,
and hence similar V,. Phase conditions may ‘acci-
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dently” yield zero polarization in such a case, if only P
is present.

A point which should be emphasized, however, is that
since X; drops off relative to X, like s71/2 at large s when
F4=0 as in the above work, secondary Regge poles
(e.g., P', p) with F 540 are equally important contri-
butions to X;. A numerical estimate using fitted param-
eters for these poles*® in fact indicates that their F 4
terms dominate the induced helicity-flip contribution
from P.

VI. ABSORPTIVE CORRECTION FORMULAS
IN ELASTIC SCATTERING

As previously remarked, the helicity flip, charge ex-
change, and real parts of nonflip eikonal contributions
are expected to be small compared to the imaginary part
of the nonflip eikonal at high energies. Even for the
latter, the nonlinear powers in the expansion of the ex-
ponential (higher Born approximations) contribute
reasonably small corrections® for small |¢|. Thus it
should be a good approximation to retain only first-
order terms in helicity flip, charge exchange, and real
part contributions to eikonals, at least for small |¢|. By
charge exchange here is meant the difference between
eikonals for scattering in different isospin states. A
treatment of this in the spinless case has been sketched
in a previous paper?® and will not be repeated here; but
the helicity flip formula will be derived, an application
of the real part formula will be presented, and the
polarization in charge exchange estimated, in what
follows.

For the helicity flip case, 7V scattering will be con-
sidered with X; as given by (35b), where (fi¥— f.?) is
presumably given by the Pomeranchon spin-orbit term
(see Sec. V) and p and P’ poles (anomalous-moment
coupling contributions). Then, to first order in Xy, we
have from (33)

G (s,1) ik cos(6/2) / bdb Jo[b(—1)V2]
0
X[1—eXo@™],  (56)

G_(s,)2k2pt / bdb Ji[b(—i)VZ]exo 10X (5,52). (57)

0

With the assumption that X; and ReX, are small, ImG,
should dominate the cross section, and ImX, thus can
be deduced from the inverse Fourier-Bessel transform
of the square root of do/dQ. With X, estimated from
experiment, the formula (57) takes the DWBA form,
simplifying the comparison of pole models with experi-
ment. Application of this formula will require com-
parison of polarization in #+p and 7~ elastic scattering
(or charge-exchange reactions) to separate P’ and p
contributions. An application of such a formula using
elementary boson exchange has been given by Dosch
and Fridman.®

6 H. G. Dosch and A. Fridman, Nuovo Cimento 42, 1 (1966).



153

As an application of the real-part ‘“absorptive correc-
tion” formula, consider pp scattering in a spinless model
at asymptotic energies such that X is dominated by the
Pomeranchuk pole, formula (14). As in Sec. IV 2, as-
sume that the small |/| behavior is most important,
and for an order-of-magnitude estimate take

Fo(8,0)=21,(5,0)(s/50) 1 e~imte’ 12

=ikT exp{io/[In(s/so)—im/2]}, (58)
where T is real and potitive. Let
A2=[2In(s/so)—1m o .
From (8),
o ;T e—b2/242
X(s,62)=T / wdx Jo(xb)e= "4 2= (59)
0

For In(s/so)>>/2, ImXx>>|ReX|, and in (17) only first
order in ReX need be retained. Then (17) becomes

0

A(s,0)=A ,(s,0)+k? / bdb Jo[b(—1)!*]

0

X e Tmx (5 ReX(s,02) (60)
Wlth RGA p(s’t) = 0’

0

bdb J[b(—H)V¥][1—e Tmx D7 (61)

Ap(s,t)= ikz/

0
Now
ReXx(s,6%)=—T Im[A~2 exp(—52%/2A%)].

Let R2=2d’ In(s/so); to first order in the imaginary
part,
AR 141k,
where
k=7/[2In(s/s0)].
So
ReX (5,09 — [ (b%/2R?) — 1 JTR-2~ /2",

From (60),
ReA (s,1) = — kT R-252 /

0

X [(8?/2R?)— 171272,

0

bdb e D2 [B(—)1?]

(62)

Since the experimental (do/dR) is reasonably well fit by
an exponential in £, with effective radius R correspond-
ing to the R defined (63) above,

A (s, )=ik2C2R%! /2
and

1—exp[—ImX(s,b%) J=Ce~¥*/2E* | (63)
p

where C is of order 0.90 in pp scattering. Using (63) in-
stead of the a priori formula (59) implies a model only
for the real part of X, not the imaginary part. Substitut-
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ing (63) into (62), the result is

0

Red(s,)=—«I'R™ / bdb [1—Ce¥128%]

0
X Jo[b(—1)V2][(02/2R2)—1]e t2/2E2

In particular,

(64)

ReA (5,0)=— CkI'R~%? f bdb e212E(1—b2/2R?) . (65)

0
The ratio of (65) to (61) at (=0 yields

a=ReA(5,0)/ImA (s,0) = —«xT/4. (66)

Now

r=C 67

[expanding (61) to first order in I' and comparing
(63)]. With C=0.9, this yields

a2—0.36/In(s/s0) - (68)

A one-pole fit to the high-energy pp scattering gives an
estimate for so which is rather small since the peak does
not shrink very rapidly. A reasonable choice is so=0.50
BeV?; at 30 BeV/c the predicted value of « is then

a(30)22—0.09.

This value is to be compared with the experimental
value®® of —0.332£0.03 at 30 BeV/c. Clearly the mag-
nitude is much too small. The slow energy dependence
given by (68) is to be compared on the one hand with
the experimental constancy*® of a between 20 and 30
BeV/¢, and on the other hand with power-law behavior
expected from secondary poles in Born approximation.®?
The inadequacy of the latter has been discussed by
Sakurai.68

Note that {p scattering at asymptotic energies would
exhibit the same value of o, in contradistinction to
models® wherein vector-meson exchanges are respon-
sible for the real part; in such a case a changes sign. The
w+p and K*p values of & would be comparable to the pp
value at asymptotic energies. However, it should be
noted that pp scattering up to 12 BeV/c cannot be fit
by the Pomeranchon alone, and the conclusions regard-
ing @ should not be drawn until such energies are
achieved that the pp diffraction peak and total cross
section agree with pp. Similar precautions apply to wp
and Kp values for a.

It appears, however, that the small magnitude of «
predicted here rules out a simple (pole-+absorption)
picture of the real part coming from P.

The question of polarization in the reaction #—p
— 7% may be investigated using the absorptive correc-
tion formulas with fiB, f.f given by the p Regge-pole
terms. The polarization vanishes when no absorptive

67 V. Barger and M. Olsson, Phys. Letters 16, 545 (1966).
68 J. J. Sakurai, Phys. Rev. Letters 16, 1181 (1966).
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TasLE I. Neutron-polarization prediction for
small-angle 7~p charge exchange.

—1 (BeV2/c?) P(6)
0.00 0.00
0.05 +0.044
0.10 -+0.048
0.20 +0.054
0.30 0.00
0.40 (=)

corrections are applied because the helicity flip and
helicity nonflip amplitudes have the same phase for all
t; but the absorptive corrections disturb this phase rela-
tionship. If the calculation is done in the same spirit of
approximation as in the estimate of the real part of the
amplitude as above, the integrals can be carried out
analytically and a closed form obtained for the esti-
mated polarization.

Assuming the elastic 7V scattering can be well de-
scribed with an imaginary nonflip eikonal X, which is
chosen to yield the empirical forward =V diffraction-
peak shape

exp[iX(s,b) J=21— Ce~v"/2E*

(where R? is energy-independent), the ‘“correction”
formulas for G;°F and G_CF (retaining only first order
in X¢» and X;*) are
0

bdb Jo[b(—1)1%]
X [1—Ce /2R R2X oo(5,0%)

G =—cos(0/2)/

0

G_=/ bdb J1[b(— V2 [1— Ce P I2B¥ [k2X ;7(5,b?)
0
with

kX pp= W/ xdx Jo(bx)[fl”(s, —x?)+ for(s, —a?)],

x2dx J1(bx)
' X[Lfro(s, —a?)— for(s, —a?)].

For large s, assuming the dominant contributions to
these integrals come from small (—i), and that the
residue functions are slowly varying for small (—{), the
p-pole expressions can be written

W (f1P+ f2#)=2d, (5) (s/s0) " exp(—imta!/2)

k2X,ﬂ= (W/2k>

and

2M (fre— for)=[dy(s)—a(t)d—(s)]
X (s/s0)*" exp(—imia’/2),

where d,. are proportional to the residues for =
— NN (¢ channel) helicity parallel and antiparallel
states,% have energy dependence (s/so)*®, and phase

—Lira(0)]. Here a(f) is the p trajectory function, and
a linear form has been assumed:

a(t)=a(0)+ta’.
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As in the real-part calculation, the factors involving
o' can be written

(s/s0)t" exp(—imta//2)=exp[la/(A—im/2)]
=exp(iR:%/2),

where A=In(s/so), and R;? is complex. Then

E2XoP(s,0)222d f xdx Jo(bx)exp(—x?R12/2)
0
and

2ME2X o (s,b%) =2 f x2dx J1(bx)
0

X{d4—[a(0)—x%'Jd_}exp(—x2R%/2).
These integrals can be evaluated analytically, to give
k2P (5,02)=2d 1 (s)Ri2 exp(—b2/2R,?),

2ME2X42(5,6°)=2R 1% exp(—b%/2R:%){d.(s)—d_(s)
X [a(0)— 4o/ Ri-*— 2o/ Ri=*(8%/2R:2) T} .

The integrals for G, and G_ ,in turn, can be analytically
evaluated. Let n=R?/(R*+R;?) and z=Ry(—1)/2
Then

Gy=—d, cos(8/2)[e*I2— Cne—I2]
and

G_=[(—)"*/2M] [{ds—a()d_}e >~ Cyp?
X{dy—d_La(t)— AT} 2],
where
A@D=LA—n)t+2(1—n)Ri*]e.

Since 7 and R;? are complex, the phases of G and G—
are now different, provided C5%0 and 770. Empirically,
C=20.7 and |7|=20.5. The corrections to the differential
cross section are relatively small, and to estimate polari-
zation, one may use parameters dg, o, @(0) as deter-
mined by Hohler et al.% through a fit to the differential
charge-exchange cross section. The predicted polariza-
tion then has no free parameters, aside from an over-all
undetermined sign, and a possible logarithmic uncer-
tainty in A because so is now well determined.

For energies such that A=4, and using the param-
eters of Hohler ef al.,% the polarization was evaluated
and values are given in Table I. Note these qualitative
polarization features: (1) rapid rise to maximum value
tween =0 and {=—0.05 BeV2/c?; (2) zero around

=—0.30; (3) logarithmic energy dependence of magni-
tude; (4) maximum value about 59.

VII. MULTICHANNEL OPTICAL POTENTIALS

1. Multichannel Formalisms and the
Quasiclassical Condition

Within the context of single-channel reaction theory,
using a model for an exact one-channel optical potential,
it is not possible to treat genuinely inelastic reactions.
However, most of the successful applications of single-
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particle-exchange models with absorptive corrections
are concerned with two-body inelastic reactions such as
7N — pN and NN — N*N*% In order to develop
models for this class of reactions it is convenient to in-
troduce a more general type of potential,”® and a multi-
channel generalization of the eikonal approximation.

An n-channel generalization of the optical potential
is quite simple in the context of a nonrelativistic many-
channel problem as described in Sec. II. One simply
eliminates all but # of the N channels from the N
original coupled Schrédinger equations, yielding #
coupled integro-differential equations involving #2 non-
local potential operators. In the high-energy limit, the
nXn nonlocal (optical) potential matrix can be replaced
with an effective approximate local optical-potential
matrix which is complex above the lowest inelastic
threshold not explicitly included among the # channels.

The eikonal form of solution in the multichannel case
is, however, not always possible. The essential condi-
tion?! is the commutation at different z values [see Eq.
71 below] of the potential operator occurring in the ex-
ponential development of the wave function; this refers
to the optical-potential matrix (local approximation) at
different points along any classical trajectory,?? or
straight line.?! This requires all #-channel momenta to
be the same,” and

LV®), V@) 1=0 (69)

for all 7, #’ (both conditions understood to the degree of
approximation desired). The superscript O on V (denot-
ing optical potential) is dropped in this section.

If (69) is satisfied, a path-ordered matrix exponential
can be replaced by a simple matrix exponential, and the
eikonal expression for the #-channel scattering ampli-
tude at high energies and small angles is

Es,) = i [ " bdb Jb(— ) IexpGix(s )], (70)

where

1 e
x(b2)=; f_ ) dz V[(22+52)17]. (71)

The energy dependence of V and X is not explicitly
noted. These results can be easily obtained from Eq.
(139) of Ref. (21), where the wave function is an #-
component vector in channel space.

In terms of the #-channel Born approximation

sm(xr)] ’ 2)

V(=2 /0 " iy V(r)l:

9 B. Margolis and A. Rotsstein, Nuovo Cimento 42, 180 (1966)
have given an application of such a formula to NN — NN*.

70 This was suggested to the author by Y. Nambu. Such poten-
tials for collective excitation states have been used in nuclear
physics; cf. T. Tamura, Rev. Mod. Phys. 37, 679 (1965); D. M.
(CI%%SS%’ L. Wilets, and A. R. Edmonds, Phys. Rev. 110, 1080

71 This is similar to the coherence requirement of Byers and
Yang (Ref. 5).
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where x= (—#)!/?, the eikonal matrix is

1 ]
X% =- / wdx Jo(xb)V (x). (73)
kJo

The condition (69) applied to V, or in more general
notation to the Born approximation to the scattering
matrix is,

[5(s,0),E6(s,') 1=0 for all 4,¢'. (74)

This condition will be referred to as the “quasiclassical
multichannel condition.”

From an S-matrix viewpoint, (74) can be adopted as
an initial requirement that the eikonal method be ap-
plicable. Then ¥ can be defined by

1 0
K(s,b2)=]; / xdx Jo(bx)fp(s, —x?) (75)
0
and as a consequence of (74), one finds
[%(5,02),%(s5,6')]=0 for all 50’. (76)

Since (76) is satisfied, X can be diagonalized at each s
for all 5 by a (b-independent but s-dependent) similarity
transform in channel indices:

%Xp(s,6%)=S"1%(s,02)S.

The same S also diagonalizes fz since fz is a matrix
functional of X, and vice versa. Thus one obtains # un-
coupled effective one-channel scattering problems, with
complex eigenphases 8;(s). To each of these uncoupled
problems one may apply the eikonal approximation as
defined in terms of prescription (c), and Eq. (8), of Sec.
I1. After transforming with S—! back to the physical
n-channel problem, (70) is obtained, with X as defined
by (75). It remains to be decided what significance fg
has, outside the nonrelativistic framework.

The definition of a two-body multichannel optical
potential in field-theoretic context following the pro-
cedure of Sec. III is straightforward in terms of a speci-
fied ladder set of Feynman graphs, and an #X#» matrix
4-point function V;;(ky,k2; k1',k2") which reproduces the
n? exact S-matrix elements of the exact field theory when
used in this set. If the quasiclassical condition (74) is
satisfied, where fz is given by the mass-shell values
V;(s,t), then the semiclassical results of Torgerson?? can
be generalized to the multichannel case. A simple in-
stance is the VN scattering problem with spin treated
by Torgerson, which in general is intractable by eikonal
method because of coupled spin states, but the special
case of vector-meson exchange without anomalous-
moment coupling gives helicity conservation and hence
(74) is satisfied.

One class of models in which (74) can always be satis-
fied is the class in which all ¢ dependence of Born-
approximation matrix elements is the same, reflecting
a similar radial dependence of the equivalent static-
optical-potential matrix elements. At first thought,
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these seem to be very restrictive, since elementary one-
particle-exchange potentials give very different ranges
for different quantum numbers. However, the Byers-
Yang droplet model® implies exactly such an assump-
tion. The degree of success of this model for inelastic
reactions is open to question, but it is conceivable that
such a circumstance is present at least for non-strange-
ness-transfer reactions within the framework of a multi-
peripheral optical potential, as follows:

The multiperipheral idea applied to such inelastic
two-body reactions suggests that ladder diagrams with
pion ladders will be the important Born approximations
(V) at high energy. The ladders for different V;;, how-
ever, for non-strangeness-exchange processes, can be ob-
tained from each other by changing the first or last
rungs only.!® This idea has been exploited by Berman
and Drell in constructing models for photoproduction of
vector mesons,’? and their models illustrate the similar
behavior as a function of ¢ for all V;;; this ¢ dependence
depends essentially on the existence of large ladders,
and not on their end diagrams, at high energies. A simi-
lar viewpoint can be compatible with Regge poles if all
residues and trajectories drop off at a similar rate with
increasing (—{); such pole characteristics are, of course,
implied if the above multiperipheral ladder diagrams
are represented by Regge poles; i.e., that their contri-
butions dominate the poles of interest in the ¢ channel.
These arguments only raise the possibility that a model
of equal radial distributions might be comprehensible;
comparison with experiment, however, is the real test.

It may be noted that a multichannel formalism, when
possible, is able to include a more complete set of graphs,
if the analogy between QED(w) and Regge-pole Born
approximation is pursued. Diagrams analogous to those
Fig. 3(d), 3(e), 3(f), 3(g) [as well as those analogous to
the single exchange, Fig. 3(a)] appear in the multi-
channel case in a certain approximation, where the
“photon’ and “electron” on the top (or bottom) of the
diagram resonate to form an isobar.

2. Absorptive Correction Formulas and
Reaction Damping

In the case where off-diagonal elements of fz are small
(of order €) and the diagonal (elastic scattering) ele-
ments identical for all channels (to order €2), retention
of first order in off-diagonal X yields the DWBA formu-
las of the absorptive correction model. The equality of
the elastic-scattering Born approximation in all channels
satisfies the quasiclassical condition (to order €?). Since
the results in this case are well known,”-28:2 they will not
be reproduced here.

A more interesting question is the opposite limit,
where the off-diagonal Born-approximation terms are
large. For simplicity the elastic-scattering (diagonal)
Born terms will be taken to be zero, and a simple two-
channel application considered. This example will illu-

72S. M. Berman and S. D. Drell, Phys. Rev. 133, B791 (1964).
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strate the reaction damping mechanism implied by for-
mulas (70) and (75).

Let (f5)uu=(f5)22=0, and (f5)a1=(f5)12=fB. Then
X11=X92=0,

and
Xo1=Xo1=B(5,6?) ,

where ® is 27! times the Fourier-Bessel transform of f&.
The formula (70) now yields (for real ®):

f11(s,t)=f22(s,t)=ik/w bdb Jo[b(—1)1/%]

’ X[1—cos®(s,62)] (77a)
and

f12(S,If) = for*(s,t)= ik/ bdb J o[ b(— 1)V 2 ]sin®(s,b2).
’ (77b)

Unitarity bounds on the f;; are clearly satisfied, at least
if ® is real. (For complex ® one also obtains a damped
result.) This shows that (70) is useful in circumstances
where the DWBA formula is not, and at least gives a
prescription for unitarizing a model of inelastic reactions
which is in better correspondence to a semiclassical pic-
ture than, for example, K-matrix approximations.l®
Note that for real ®, if |®| and |d®/db| are large for
small b, then the integrand in (77a) at small b will be
rapidly oscillating as a function of b; for small (—¢) then
the contributions from cos® will average to zero over
the periods of the trigonometric function, and the
effective “central” opacity will be unity, as in a black
disk model. In this way a semiclassical picture is ob-
tained when the inealstic Born terms are large.

VIII. RESONANCES IN THE s CHANNEL
AND ALTERNATIVE EIKONAL
FORMULATIONS

1. Motivation

In applying the eikonal formalism for either elastic
scattering or inelastic multichannel problems, it is
necessary to assume the absence of important resonances
at the energies of interst. This seems to be reasonable
in pp and Pp reactions at all energies such that £>3>2pu,,
i.e., k! much less than the range of the optical poten-
tial, a necessary condition that the eikonal form be
reasonable.

However, in mp (and possibly for K—p) scattering
cross sections there is evidence’ for resonant structure
at momenta as high as 3 BeV/c. The utility of the
optical-potential-eikonal outlook can be extended, pos-
sibly for momenta down to 1 BeV/c, if a means for
phenomenologically including resonances in given par-
tial-wave amplitudes can be found. Such methods could
be used in the determination of spin and parity of reso-

73 S, W. Kormanyos, A. D. Krisch, J. R. O’Fallon, K. Ruddick,
and L. G, Ratner; Phys. Rev. Letters 16, 709 (1966).
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nances, extending the utility of phase-shift analyses at
high energies.

The simplest and most conservative approach con-
sists in assuming all partial-wave amplitudes except the
resonant one to be given by the eikonal formula; and for
the resonant amplitude, assuming arbitrary phase shift
and inelasticity at each energy. A parametrized phase-
shift formula, for example a Breit-Wigner form with
constant inelasticity chosen to match the eikonal pre-
diction for that partial wave above and below the reso-
nance, would presumably be a reasonable approximation
for a narrow resonance. However, for wide resonances,
the inelasticity may change appreciably during passage
through the resonance, and more parameters must be
introduced at least to describe the energy variation of
the inelasticity in the resonant partial wave.

A more efficient approach should retain nonresonant
contributions, both real and imaginary, to the resonant
partial wave given in terms of the optical potential, and
superpose on them ‘“pure” resonance terms correspond-
ing to a resonance in many channels coupled with a par-
tial coupling to the elastic-scattering channel. Purely
ad hoc methods of this kind have been used,” but there
are many possible ways of accomplishing the purpose.
It is desired to have some theoretical framework within
which to make approximations to ensure consistency.

A dynamical theory of multichannel reactions with
absorption has been proposed by Warnock,?® involving
multichannel N/D equations with arbitrary matrix in-
elasticity input terms. If such a dynamical theory were
used to obtain resonances through introduction of
models for the left-hand cuts (or potentials), and if the
inelasticity were taken from an eikonal formula, it
would be possible to obtain a completely consistent de-
scription of resonances with absorptive background.
Such a theory is more detailed than is desired for the
purposes outlined above, although it might be possible
to introduce effective-range type approximations to ob-
tain phenomenological formulas.”

2. Modified Cheng Representation

A more practical alternative is the utilization of a
representation, proved exact in the nonrelativistic po-
tential scattering context, for the partial-wave scatter-
ing amplitudes, developed by Abbe, Kaus, Nath, and
Srivastava.” " This representation (modified Cheng)
utilizes s-channel Regge trajectory functions and the
Born approximation for the given potential to obtain
an expression including both resonances and an eikonal-
type “background” term in each partial wave. The
representation is valid for absorptive, energy-depend-

4 W. Johnson, . C. Smith, and P. C. DeCelles, Phys. Rev.
138, B938 (1965).

7 R. L. Warnock, Phys. Rev. 146, 1109 (1966).

76 R. L. Warnock (private communication).

77 W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 140, B1595 (1965).

8W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 141, 1513 (1966).
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ent potentials,” and should therefore be adequate for
high-energy physics applications.

Specifically, let the partial-wave Born approximation
be given in the form of an integral representation

1 0
Bils)= /4 ) dm? o(s;mD)Qi(1+m?/2k%).  (78)

Let a, (=0, 1, 2, - -+, ») be the s-channel Regge tra-
jectory functions, and let coshf(s)=1+48u?/k2. Then
the modified Cheng representation, in terms of usual
phase shifts, can be written as

{ [ TR 00D

n(s) -

1 »
§i(s)=Biuls)+— X
2

n=0

P ()]
I+n

X/w dm? ar(s,m2)Pn_1(1+m2/2k2)} . (79)

The a, must be indexed by # in the order in which their
asymptotic values lie in the / plane as s — 4 ; =0
must be highest. It was assumed in writing the last
term in (79) that the a, retreat to the negative integers
as s— o« as with Yukawa-type energy-independent
potentials.”” This property is known to be true also for
potentials with energy dependence’; this suggests that
the representation (79) will be wvalid in S-matrix
theory.” The identification of the Born approximation
with the optical potential defined in Sec. IIT above must,
however, be considered conjecture, based on the identi-
fication of the correspondence of (79) to the eikonal ap-
proximation in the high-energy limit.

Observe that (79) has the form of a background-plus-
resonance contribution in the neighborhood of a reso-
nance, when one of the complex a, passes close to the
integer /. However, the last term is an energy-dependent
correction which would not be expected from the intui-
tive or ad hoc point of view. It is chosen such that the
second and third terms cancel at high energies, away
from resonances.

A representation in terms of Regge trajectory func-
tions is economical in the sense that two or more reso-
nances which share the same trajectory can in principle
be included with fewer additional parameters.®® In prac-
tice, trajectory functions may be approximated with an
effective-range type expression, with real part linear
with energy, and with imaginary part given by two-
body phase space.

The modified Cheng representation has not been
written down for spin-3—spin-0 problems, but the gen-
eralization should be straightforward following lines of
the original derivation.”

79 H. Bethe and T. Kinoshita, Phys. Rev. 128, 1418 (1963).
80 See for example Barger and Cline, Ref. 56.
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] a
-~
b b
Fic. 9. Planar diagrams: without
J-plane cuts.
a a
b b

3. Dispersion Relations in s for Phase Shifts

Another approach to a more complete representation
for the partial-wave scattering amplitude may be ob-
tained from analyticity properties in energy of the
(complex) phase shifts. If no resonances or bound states
are present in the /th partial wave, the phase shift &;(s)
(in a spinless problem) is an analytic function of s with
branch cuts on the negative real axis and on the positive
real axis beginning at the threshold for inelastic proc-
esses.’! If the optical-potential Born approximation is
used for InS;= §;, the result is one of the eikonal approxi-
mation characterizations given in Sec. II, provided a
large number of partial waves (each contributing a com-
parable amount) make up the complete scattering
amplitude.

If this formulation is adopted, it is possible to include
the effect of resonances simply by explicitly incorporat-
ing complex conjugate poles in S;. A reduced phase shift
8, may be defined, in case there is one resonance in the
Ith partial wave, by®!

81="35+1In [(W—=W )24~ [(W—Wo)2—~]
[(W =W o)Ly * L (W —W o) 2—7*]

where W, is the threshold for elastic scattering and y
determines the position width of the resonance. The re-
duced phase shift can then be adopted as the function
approximated by the optical Born approximation at
high energies. This procedure, compared to the modified
Cheng representation, has the advantage that the extra
parameters (a complex v for each resonance) are con-
stants unambigously defined by the formula (80) when
8, is given by the optical Born approximation. However,
the dynamical origin of resonances in this formulation is
completely ignored. Representations such as (80) have
been discussed to some extent by Ball and Frazer.®
The expression (80), with §= B;, represents in some
sense a separation into semiclassical contributions
(eikonal) and purely quantum effects (resonances) in
elastic scattering. At the same time, the relevant equa-
tions of motion are completely concealed, thus making

, (80)

81 N. G. Van Kampen, Phys. Rev. 91, 1267 (1953).
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it difficult to assess the accuracy of the eikonal approxi-
mation for §. The S-matrix significance of a semiclassi-
cal high-energy contribution may be related to the
accumulation of singularities near the physical region
corresponding to classically accessible processes.?

IX. SINGULARITIES IN THE ANGULAR
MOMENTUM PLANE

1. Presence of Cuts with Pomeranchon
in Born Approximation

It is generally true that the asymptotic behavior in
s of the elastic-scattering amplitude is determined by
the singularities with largest real part in complex an-
gular momentum of the ¢ channel amplitude; this can be
exhibited through the Sommerfeld-Watson transform.83
Regge poles give a particular case, in which the domi-
nant poles in the J plane yield a power-law behavior
s2®_ Such simple power laws are, conversely, associated
with poles in J ; asymptotic behaviors involving in addi-
tion nonzero powers of logarithms of s are associated
with branch points in J, at points J=a(f).

If a Regge pole is used in the optical-potential Born
approximation and the eikonal approximation for the
scattering amplitude calculated, it is found that its
asymptotic behavior is quite complicated, and is cer-
tainly not a simple power law or superposition of power
laws. Thus the singularities in the J plane are not simple
poles. The character of the leading singularities may be
investigated by using the simple exponential approxima-
tion (58) for the Pomeranchuk pole at small momentum
transfer, which gives an eikonal such as (59).

Expanding the integrand of (17) in powers of the
strength (T') of the Born term, and integrating term-by-
term, a series of terms all of order [In(s/s¢) I~* compared
to the first (Born) term is obtained. This shows that (17)
yields an infinite sequence of branch points in the J
plane, in addition to the pole term, which are all of com-
parable asymptotic importance (when the Pomeranchuk
pole is considered). Since all terms have the same domi-
nant power of s for /=0, the branch points must all be
coincident at the point J=1 when {— 0, forming an
essential singularity at this point when ¢— 0.

Such a sequence of branch points, generated by an
iteration formula for the leading pole, was originally
obtained in the development of the multiperipheral
model.’%1¢ Tt was originally believed that such branch
points were general consequences of unitarity in the s
channel.’® However, Mandelstam showed!7 this was not
true, by exhibiting a class of once-iterated Feynman
diagrams (containing two exchanged ladders, each hav-
ing Regge-pole behavior) in which the dominant asymp-
totic behavior expected was not present. Such diagrams
are shown in Fig. 9.

( 825, Coleman and R. E. Norton, Nuovo Cimento 38, 438
1965).

8 R. Oehme, in Strong Interactions and High Energy Physics,
edited by R. G. Moorhouse (Oliver and Boyd, Edinburgh, 1963).
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Subsequent investigations,'®=% taking into account
a wider class of diagrams with multiple Regge-pole ex-
change but incorporating multiparticle intermediate
states, have shown that cuts of the above character are
present in the complete field-theoretic scattering ampli-
tude. The structure of the simplest class of these dia-
grams is shown in Fig. 10, there X; and X, are non-
planar subgraphs, and in Fig. 11 is shown a councrete
example of this class in a trilinear coupling (¢°) field
theory.

Thus, if a Regge-pole Born approximation (repre-
sented by a ladder in Figs. 9, 10, and 11) is iterated in
such a way as to include only planar graphs such as in
Fig. 9, a cut should not be obtained; while if graphs
including nonplanar segments (X; and X, in Fig. 10)
are generated during iteration, cuts should be ob-
tained.®* In either case, branch points are generated
having the same location, but the discontinuity across
the associated branch cuts should vanish in the former
case.

In a nondiagrammatic approximation method based
on an S-matrix approach it is not clear, in general,
which dispersion graphs are included in the iterative
process. In the perturbation development of the eikonal
approximation developed by Torgerson,? the reproduc-
tion of the fourth-order generalized ladder diagrams
could be verified directly, but even sixth-order genera-
lized ladder diagrams were not quantitatively checked
because of the computation difficulties. The self-energy
diagrams, in particular, were not included in Torgerson’s
analysis; if it is believed that the eikonal approxima-
tion is a good one at high energies, using one-meson ex-
change as the Born approximation, one must simul-
taneously believe that self-energy, closed-loop, and
renormalization graphs are unimportant in some sense
for elastic scattering at sufficiently high energies and
sufficiently small scattering angles. This was observed
in Ref. 23. This point will be referred to again below.

At first glance, diagrams such as in Fig. 9(a) would
seem to be the only class included (at second order) in
the eikonal approximation with a Regge-pole Born
term. If this were true, the Mandelstam results'” would
preclude any contribution from an associated J-plane
branch cut (with strength of second order in the Born-

Frc. 10. Nonplanar diagrams:
with J-plane cuts.

[ ——

t

84 A model using such an approach has been investigated by E.
Abers, H. Burkhardt, V. L. Telplitz, and C. Wilkin, Nuovo
Cimento 42, 365 (1966).
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Fic. 11. Concret example of
nonplanar diagram with J-plane
cuts.

term strength) as given by the eikonal formula (ex-
panded to second order); this would mean the eikonal
expression is completely misleading when a special Born
approximation, i.e., (17), is used.

The resolution of this difficulty was conjectured in a
previous note.?® The following discussion will be con-
cerned with a more explicit formulation of this possible
means of resolution.

2. External Particles as Regge Poles with Signature

As a means of discussing diagrams with external par-
ticles as composite entities in S-matrix language, con-
sider an amplitude for four particles in and four particles
out.85 If pairs of incoming and outgoing particles can
exist in states with quantum numbers of pairs coincident
with quantum numbers of stable particles ¢ and d, then
a graph such as in Fig. 12 will contribute to the 4-par-
ticle—4-particle S-matrix element a multiple pole which
is a product of simple poles in each of the subenergies
s1, S, 1, s2'. The residue of each such multiple pole is
the ab— ab scattering amplitude. Further, assuming @
and b lie on Regge trajectories, one may continue the
four-particle scattering amplitude away from this mul-
tiple pole and find other such poles corresponding to
Regge recurrences associated with ¢ and &; we can con-
sider such multiple pole residues as defining pole-pole
scattering amplitudes.

A graphical analysis of this pole-pole scattering am-
plitude would include diagrams such as in Fig. 10,
where now X; and X, indicate the amplitudes T',. for
a pole-pole scattering a+c— a4-¢, where ¢ is the ex-
changed pole, in an unphysical region. The graph repre-
sented in Fig. 10 then could be calculated using unitarity
in the ¢ channel, given T4, and Tp..

If the pole ¢ has the Pomeranchon quantum numbers,
one of the important intermediate states in T'q. will be
the pole a. Similarly considering X, as a pole-pole scat-

Fic. 12. Regge-pole
“scattering amplitude”
as a pole contribution
in 4-particle scattering
amplitude.

85 This device has been used in other connections; cf. R. Hwa,

Phys. Rev. 134, B1086 (1964).
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tering amplitude T, there will be a pole in T's, contrib-
uted by &. The graph of Fig. 10 including these poles
only may be considered as a generalization of Fig. 1(b),
but with @/l lines in the diagram representing Regge
poles.

Now if T, and T, contain all three nonvanishing
double spectral functions, as they will in any realistic
model, one obtains in Fig. 10 nonplanar diagrams of the
type required (when e and b are particles) to generate
cuts.?® The presence of the third double spectral function
in T4 and T is guaranteed if there are nontrivi alsig-
nature factors associated with the poles ¢ and b, as in-
termediate states of T4, and T4.. Thus if ¢ and b are
considered as Regge poles with signature, and the corre-
spondence between pole-pole diagrams and dispersion
graphs involving particles is not deceptive, the iteration
of such pole-pole diagrams (including the pole “box”)
will generate cuts. If the eikonal approximation includes
a description of this fact there is no contradiction with
previous results.’”!8 The latter conjecture cannot be
proved at the present state of the art, but is connected
in field-theoretic language with the question of the role
of self-energy diagrams, and in S-matrix language with
the possibility of constructing multichannel eikonals
to take into account Regge recurrences of the external
particles.

The conclusion of this discussion is essentially that
one should not, on the basis of the presence of cuts,
hesitate to use the eikonal method of iterating Regge
poles; the method may give a better idea of reality than
some special Feynman diagrams such as Fig. 9(a). The
composite nature of all particles, external as well as ex-
changed, is presumably important in assessing any high-
energy approximation method in S-matrix theory.

X. SUMMARY OF RESULTS

Aside from introducing the dynamical framework of
the optical potentials, several specific results have been
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obtained in the body of this paper. They are gathered
here for convenient reference, not necessarily in the
order they appeared.

(1) S-matrix characterizations of the eikonal approxi-
mation have been given, but are not throughly justified.

(2) Criteria for validity of Regge-pole and DWBA
approximations for amplitudes have been implicitly
obtained.

(3) A semispecific model for pj annihilations is de-
scribed, and qualitative elastic-scattering features cor-
rectly obtained.

(4) Thereal part of pp and pp forward scattering am-
plitudes at asymptotically high energies has been cal-
culated; the energy dependence was found to be in
qualitative agreement with pp data, but the magnitude
too small.

(5) Aneikonal formalism for relativistic spin-3-spin-0
scattering has been given, and it was shown that an
effective spin-orbit potential is present when the
Pomeranchon pole [or any term with no anomalous-
moment (A) Born term] dominates the eikonal.

(6) An estimate of polarization expected in 7p charge
exchange (absorptively corrected p pole) was given.

(7) A multichannel eikonal formlaism was proposed
which yields a reactive damping effect when inelastic
channels are important.

(8) Phenomenological expressions were given to in-
clude s-channel resonances.

(9) The problem of cuts in angular momentum was
discussed with reference to effects of structure in exter-
nal particles.
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