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as a photon does in ep scattering. This intuitive picture
is useful in further understanding the conditions of
applicability of the present considerations. The mecha-
nism described in this paper can dominate the scattering
amplitude if the excitation spectrum in the s channel
is a "mild" one, so that at infinite energy there is no
appreciable contribution from "compound" reactions.
Our theory thus describes a situation just opposite to
the one where the application of a statistical model is

justihed.
Roughly speaking, a statistical model assumes that

the spectrum in the s channel is infinitely compli-

cated —"compound-nucleon" formation persists up to
the highest energies —whereas according to our basic
assumption ours is (if not the best), in a sense, the
simplest of all possible worlds. It remains to be seen
whether this is indeed the case.
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The tightly bound states of a simple relativistic two-body Hamiltonian are studied. The coupling constant
necessary for obtaining a given binding energy is obtained numerically for a Yukawa-like interaction with
variable range. Some fairly general relations restricting the connection between binding energy, coupling
constant, and force range, expected to be valid in the tight-binding limit, are derived and tested. A com-
parison is made with results obtained by Schwartz for the "corresponding" Bethe-Salpeter (8-S) equation.
It is concluded that, even in the strong-binding limit, the pair, multimeson, and retardation effects taken into
account by the ladder-approximation 8-S equation are not very important, at least as far as the relation
between coupling constant and binding energy is concerned. These results suggest that a Hamiltonian of the
type considered may be a useful tool in exploratory calculations involving quark models. In this connection,
we show that a Yukawa-like interaction leads to relativistic motion in the tight-binding limit even if used in
a Hamiltonian incorporating relativistic kinematics, and we thereby generalize a result of Greenberg s.

I. INTRODUCTION

'HERE has been a considerable revival of interest
recently in composite models of elementary

particles, mainly in connection with the possibility that
heavy triplets such as quarks exist, transforming
according to the defining, three-dimensional represen-
tation of SU(3). The observed particles might then in
some sense be regarded as bound states of the triplet
particles and antiparticles.

The purpose of this note is to present some results
on the bound states of a relatively simple two-body
equation describing the interaction of two particles
and to make a comparison with analogous results
obtained by Schwartz' for the "corresponding" Bethe-
Salpeter equation.

The general form of the equation we wish to consider
was 6rst suggested by Bakamjian and Thomas, ' and
analyzed from the viewpoint of relativistic scattering

*Supported in part by U. S. Air Force Grant No. AFOSR
500-66.

' C. Schwartz, Phys. Rev. 137,8717 (1965).See also C. Schwartz
and C. Zemach, sNd. 141, 1454 (1966).

s B.Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).

with
H = L(is s)s+ (p ~)s]i,

Pos= p, e+psm
h'&=8&(k's)+Es(k s)+s s,

(1b)

Here, the y & are the single-particle momentum
operators, and the interaction operator e'I' is a more or
less arbitrary function of h'&, the c.m. momentum
operator, and the operator p'i', canonically conjugate
to k'&.

' R. Pong and J. Sncher, J.Math. Phys. 5, 456 (1964).

theory by Fong and Sucher. ' For a stationary state
P of energy E, the equation has the ordinary Schrodinger
form

(1a)

where H is a linear operator in the two-particle Hilbert
space 50 spanned by plane-wave product states

~ pz, ps).
For the case of two spinless particles of mass ml and m2,
the general form of II is
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As was shown in Ref. 3, the theory described by
Eqs. (1a) and (1b) is covariant from the viewpoint of
scattering theory. That is, the S matrix transforms
appropriately under Lorentz transformations of the
three-vector momenta on which it depends. The basic
reason is that the two representations of the homoge-
neous Lorentz group I A I determined respectively by the
mapp' g '41.%s ~ssi sos d ' si ss %4sl ass
areidentical when H has the form (1b). (Here Ps, ,s, '+'
is an "in" state with asymptotic momenta qi and tls.)

The bound states of Eq. (1) may be studied as
follows. Let fa, q denote a bound state of mass ma, and
three-momentum Q; if the theory is to give a covariant
description of bound states also, the energy of the state
must then be

»(Q) = (ma'+Q')'.

for which Eq. (5) reduces, with E(k) = (k'+m')&, to

{ 2E(k) —vsa]Pa(k) = — v(k, k')Pa(k')dk', (6a)

and for v(k, k') of the form

v(k, k') =—g m 1 m
(6b)

(2ir)s E(k) (k—k')'+ps E(k')

This choice of v is motivated by two circumstances:
(i) For ~k~ = {k'{, v(k, k') is proportional to the

Born approximation to the scattering amplitude for
the scattering of the two particles of mass m which
would be induced, symmetrization being ignored, by
the interaction

Thus we need

Hya, q =Ea(Q)A, q & (2a)
H, =G:C&(z)C (x)y(*):dx (7)

P $a, q= QPa, q ~ (2b)

We now introduce simultaneous eigenstates ~k, P) of
k'& and P'~ as a basis in X, and de6ne a bound-state
wave function pa(k) via

(k,PI& .q)=~(P —Q)~ (k). (3)

With the ansatz (3), Eq. (2b) is satisfied and Eq. (2a)
may be seen to be equivalent to

Here the field C(x) describes the quanta of mass m
and g(x) is a Hermitian spin-zero field describing
"mesons" of mass p. The factors mjE(k) in Eq. (6b)
arise automatically in this theory, and the correspond-
ence is exact if we set

G= 2mg.

(ii) The Bethe-Salpeter (B-S) equation' for a bound
state of four-momentum I' is, for the theory described
by (7) and in the ladder approximation,

(k I
[(ho,)syQs)1

~

kl)~a(kl)dk'= (~as+ Q2) &pa(k) . (4)
L(-'&+p)' — '3L(-'&—p)'- '3~.(p)

A necessary and suflicient condition that Eq. (4) be
satisfied for all Q is that it be satisfied for Q=O, in
which case it reduces to

~.(&). (&)
(2~)' (P &)'-

v(k, k') =—(ki v'&i k').

This equation has been studied numerically in Ref. 1,
{ El(k)+E2(k) isa]a4 a( k) v(k)k )4 a(k )dk ~ (3) so results are available for comparison. Both Eqs. (6)

and (8) have the same nonrelativistic limit, the equal-
mass Schrodinger equation for a Yukawa potential
V(~):

pa(k) must be a square integrable function of k since
the normalization condition

Q aq~ 4 aq) = &(,Q Q,
'), —

appropriate for the states of an "elementary system"
of mass m~, implies

~ya(k) ~'dk=1.

Note that the assumption made in (3) that Qa(k) is
independent of Q is justified by Eq. (5) in which Q
does not appear.

We shall study the relation between binding energy
and coupling constant for the equal-mass case,

mg= m2= m )

V( )= (—g' j4 ) ( ""/ )

It is therefore of interest to compare the binding
energies predicted by these equations for the same
value of the coupling constant, for the case of strong
binding (and relativistic motion).

From the viewpoint of the hypothetical underlying
field theory determined by Eq. (7), Eq. (6) differs from
Eq. (8) in the following sense: The B-S equation sums
(exactly) the effects of the ladder diagrams correspond-
ing to repeated meson exchange. Each of these Feynman
diagrams corresponds to a set of time-ordered diagrams.
Equation (6) may be regarded as summing (approxi-
mately) those time-ordered diagrams in which there are
no intermediate states containing any extra particle-
antiparticle pairs, or more than one meson, and with

' H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951).
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retardation neglected. A comparison of these two
equations thus gives some insight into the importance
of such effects as far as binding energies are concerned.

The method of numerical solution of Eq. (6) is
brieRy described in Sec. II. Some general features of
the relation between coupling constant, binding energy,
and force range for a tightly bound system are discussed
in Sec. III. The numerical results are described in
Sec. IV and compared with the fairly general relations
obtained in Sec. III. A comparison is also made with
results available for the corresponding B-S equation.
Finally, the relevance of the results for models of mesons
as quark. -antiquark. bound states is brieRy discussed.

II. NUMERICAL METHOD

Consider any equation of the form

For the purpose of numerical computation it is con-
venient to introduce new variables y, y' with

and y' similarly dered, and a new function

X(y) =kys(k) .

Equation. (12) may then be rewritten in the form

~ 'X(y) = &(y,y')&(y')dy'

where

$28(k) —~,]y,(1)=— V(k,k')y(k')dk', (9)

with V(k,k') invariant under rotations:

V(k, l ')= V(k,k'; k k').

Q'e may write, with x=k k',
det(A —X ')=0 (1S)

where 2 is an N&&js matrix, with A,;=8;IC(y,,yj'),
where E; and the mesh points y; are chosen according
to the method of Gauss. Equation (15) may be written
ln the form

&(y y') = L2&(k) —~sj '(—g~'/g') Vo(k, k')kk'(dk'/Zy').

Equa, tion (13) may be regarded as an eigenvalue
problem for the quantity I, ' and may be solved
numerically by standard methods. ' Use of Gauss's
n-point quadrature formula leads to the condition

V (k k') = V(k k' x)J', (x)d~

and pI(g) is the LegeIIdre polyIlomial. Fol' a bouIld
state of angular momentum /, we set

A(k) =II(k)VI-(k)

where F~ (k) is the usual spherical harmonic. On
substitui. ion of (10) and (11) into (9), we get, using

and the I'; calculated by the method of Leverrier-
Faddeev 6

For a given value of jc/m and rrIs/rje, the left-hand
side of Eq. (16) was computed for values of X in the
interval (0.05, 20), and the smallest value of X for
which the left-hand side of Eq. (16) vanishes was found.
The results are given in Table I and discussed in the
Anal section.

J'I(k k')YI {k')dk'=
4'

FI {k),
21+1

TanLz I. Value of coupling constant X =g'/4s giving an g-wave
bound state of mass mf, =pm for various values of inverse force
range p =pm.

the reduced equation 0.0 0.1 0.2 0.3

$2E(k) —jII s jyI (k) = —2m VI(k, k')qSI (k') k"dk'. (l2)

We restrict ourselves to 1=0 and the choice for V(k,k')
implied by Eq. (6b). Then

0.1
0.2
03
0.4
0.5

6.24
7.19
8.09
8.99
9.92

6.00
6.92
7.79
8.67
9.57

5.76
6.65
7.50
8.35
9.23

5.52
6.38
7.20
8.03
8.88

Vo(k, k') =—g 1 8) +je rrj rs
X X-

(k—k')s+js Z(k) Z(k')

' J B Sc»borouglI, Ivamerical Vajhemajicaf Aaafyeie {The
Johns Hopkins Press, Baltimore, Maryland, 1955},3rd ed.' D. K. Faddeev and V. N. Faddeeva, Computational 3fethods ofLilac A/gehrig I',W'. H. Freeman and Company, San Francisco,
1963}.
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III. SOME GENUG FEATURES OF THE
RELATIVISTIC TWO-BODY PROBLEM

As an example, assuming, in anticipation of the numeri-
cal results, that

0.8&pp/m & 1,

0& )&0.3,

( cIX)
I

~- —l(—zw~) =1
a()A. Variation of 1with Binding Energy

The purpose of this section is (1) to derive first an
approximate relation restricting the variation of the
coupling constant with binding energy for a highly
relativistic system, and (2) to obtain a similar relation the exact Fq (24) imphes that
on the variation of the coupling constant with the range
of the force, for the case of a Yukawa-like interaction.

(25a)

(25b)

(26)

Consider an equation of the form

IIg=mbg,
where

(17)

H=Z+XV, (18)

with X a variable coupling constant, V a 6xed inter-
action operator, and

to better than 20% accuracy, regardless of the precise
form of V. Of course, the very requirement that the
motion be relativistic for strong binding itself imposes
restrictions on the shape of V, as the example of the
square well shows.

B. Variation of 2 with Range of Force

K= 2[(y'&)'+m'j&. (19) Suppose that V, in Eq. (18), depends on a parameter
ti. On differentiation of Eq. (21) with respect to tb, with

We can regard both X and Q as functions of the mass mb mb and m being kept fixed, we obtain
of the bound state. With

we have
(~l~)=1, (20) (27)

9 l&l~)= (21)
For a Yukawa-like potential V, such as defined by

Using a prime to indicate differentiation with respect Eq. (6b), we have approximately
to mb, we get on differentiation of Eq. (21),

Q lH'ly)=1, (21a)

the terms involving P' vanishing because Kq. (20)
implies

8 l~')+(~'l~) =0.
Since

=—rv.

This suggests that in this case we define an effective
mean separation ro of the constituents of the bound
state by

On defining
rt =tb/m,

(22) Eq. (27) then assumes the form
N

( —Q l&l~)) =1.
Bmp

Z-'(aX/a~) =mr, .

a'=(ax/amb)v and (qblvl@)=& '(mb —Ql&14)),

Kq. (21a) may be rewritten in the form

(29)
On defining an egectipe mean momentum pp by

(yl2((y'&) + p)&mlp)—=2(p '+m')&

and introducing a dimensionless parameter $ by

(=mb/m,

(23)
Although neither pp nor rp are, respectively, identical
with the root-mean-square momentum p and separation
r defined in the usual way, we may expect that p/pp 1
and r/rp 1, so that if 7ir 1 (from the uncertainty
principle) we also have

Kq. (22) assumes the form pprp~1
& (30)

( N)
l

X-'—l[g—2(1+(pp/m)')'3=1.
api

Now in the extreme relativistic limit, with

we expect, roughly,
pp/m 1.

X '(cjX/Brt) 1, (31)

to within a factor of two or so.
The approximate relations (26) and (31) of this

section are compared with the numerical results in the
next section.

say to within a factor of 2. From Eqs. (29) and (30),
(24) we then expect, for relativistic motion (m/pp 1) that
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X=0.376. (32)

This agrees quite weB with the value obtained from
solution of the ordinary Schrodinger equation, ' as
it shouM; in the nonrdativistic limit the factors
m/(ms+ps) 1 included in Kq. (6b) are practically unity
for values of p for which the wave function is large.

For the strong-binding situation considered in
Table I, the corresponding coupling constant is of
course much larger; inspection of Table I shows that

5&X&10 (33)

for 0(]&0.3, 0&ii(0.5. Equation (33) can be roughly
understood by noting that for very strong binding,
Eqs. (18) and (21) imply, on neglecting mo compared
to Q ~K~y) and using Eq. (23), that

) =—2(po'+m')'/(4 I
I'l 4) (34)

Since V= —r 'e I'", we may de6ne another e6ective
separation rq by

(35)

and we may expect that rg ro. Since the second factor
on the right-hand side of Eq. (35) is certainly less than
unity, Eq. (34) assumes the form

)i&2(po'+m') fri.

Assuming ri ro 1/po and po/m 1 we get

X&3,

in agreement with Kq. (33).

TAsLz II. Value of —X '(M./a&)2V2 for a variety of
values of $=my/m and o =y/m.

IV. RESULTS AND DISCUSSION

A. Discussion of Numerical Results

The value of the coupling constant X=g'/4~r necessary
to 6rst produce a bound state of mass my&2m is given
in Table I for a variety of values of P=mo/m and
rl =p/m.

As a cheek on the method of computation, the value
of the coupling constant necessary to bind (scalar)
nucleons into ihe deuteron state was found. Thus,
when we put ii=m„m= (m„+m )/2, and ms=my, and
hence

)=1.998,

numerical solution of Eq. (6) gave

More interesting than the magnitude of X is its
variation with $ and rf F.rom Table I it can be seen
that, in the domain under consideration, X is linear in
$ for fixed rl, and linear in ri for fixed $, to a high degree
of accuracy. This feature of the numerical results is
closely related to the approximate relations derived
in Sec. III to which we now turn. According to Kq. (26)
we expect that, if Kq. (25a,b) is satisfied,

TmLE III. Value of X 'I'BX/8y) for a variety of
values of g mi/m=and o =@/m.

0.1 0.2

0.15
0.25
035
0.45

1.41
1.18
1.06
0.97

1.42
1.19
1.07
0.98

1.43
1.20
1.08
0.99

1.45
1.21
1.09
1.00

have Eq. (25a) satisfied, i.e.,

and the motion is relativistic.
The linearity in $ can now be understood since Kq.

(36) implies, on regarding it as an approximate differ-
ential equation for X=X($,tl), that

) (p ~) =e-«is~i) (0 ~)

e-«'~s=1 —P/Ã2

for 0& /&0.3, to better than 1%.
Turning now to the behavior of X as a function of g,

we recall that Eq. (31) should hold to within'a factor
of 2 or so, or, equivalently,

(X 'W./8&) (—2v2) =1
to better than 20%%uq accuracy. In Table II, the left hand
»de of Kq. (36) is tabulated for a variety of values of $
and 7/I. It can be seen that the values obtained are indeed
very close to unity, confirming the validity of Eq. (36),
which, it is to be emphasized, is independent of the form
of the interaction V. Conversely, Table I and the exact
relation (24) can be used to evaluate po

——po(g, rl) to
good accuracy, without knowledge of the wave func-
tion; more simply, the accuracy with which Eq. (36)
holds shows that in the domain of interest we indeed

0 5(X '(N. /Brf) (2, (37)

0.1
0.2
0.3
0.4
0.5

1.11
1.08
1.05
1.02
1.00

1.16
1.13
1.10
1.07
1.04

1.22
1.18
1.15
112
1.09

Values of X 'BX/Btl obtained by interpolation from
Table I are shown in Table III. It can be seen that they
satisfy the inequality

0.9(X '(W/Btl) &1.5,
/'

so that (37) is very well satisfied, indeed with surprising0.35; see, e.g., R. G. Sachs and M. Goeppert-Mayer, Phys.
Rev. H, 991 (1938). accuracy, since the argunmnt leading to (31) was q„,te
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rough. The appropriate linearity in p again follows
more or less from (37) as the linearity in P followed
from (36), since, e.g., e+e=1+rf to 8% or better for
p&q&p. 5.

YAszE IV. Value of coupling constant X needed to produce an
S-wave bound state of mass mb g=rs (for v =p/m = 1) from Eq. (6)
and for Eq. (8), the Bethe-Salpeter equation in ladder approxi-
mation.

0.0 0.8 1.2 1.6 1.8

B. Comparison arith the Bethe-Salpeter Equation

In Table IV the value of X is listed separately for the
case fr=m(rf=l), for a variety of values of $. This
facilitates comparison with numerical calculations
made by Schwartz' for this case for the "corresponding"
Bethe-Salpeter equation, Eq. (8) of this paper. As is

seen, the values of X giving the same binding energy
are equal to within 10%or better, for P&0.8, and are not
very different, even for /=0.

These results indicate that even in the strong-binding
limit the pair effects, multimeson effects, and single-
meson retardation effects taken into account by the
ladder-approximation B-S equation are not very
important, at least as far as the connection between
coupling constant and binding energy is concerned,
when g 1.We do not expect this conclusion to depend
very sensitively on the value of p.

C. Implications for Quark Models

There have been a number of proposals to consider
hadrons as bound states of massive quarks, the motion
being nonrelativistic despite the large binding energy'
as a result of a sufficiently broad potential well. It
has been emphasized by Greenberg' that the motion is
necessarily relativistic if the quark and antiquark
interaction is a Yukawa potential inserted in the
nonrelativistic Schrodinger equation. One might raise
the question as to whether this continues to be so when

a Yukawa-type interaction is used in a relativistic
wave equation in which the correct expression for the
kinetic energy is used and in which kinematic factors
which suppress the importance of high momenta, such
as rrs/E(p), are present as in Eq. (6). The present
investigation shows that in fact the relativistic motion

' G. Morpurgo, Physics 1, 95 (1965);R. H. Dalitz, in Proceed
ings of The Oxford International Conference on Elementary Particles,
1065 (Rutherford High-Energy Laboratory, Harwell, England,
1966); Y. Nambu, in Symmetry Principles at High Energy, II,
edited by B. Kursunoglu, A. Perlmutter, and I. Sakmar (W. H.
Freeman and Company, San Francisco, 1965).

' O. W. Greenberg, Phys. Rev. 147, 1077 (1966).

1.0
(present work)
1.0
(Ref. 1)

14.9 11,0 8.86 6.4! 5.03

10.1 9.70 8.55 6.60 5.25
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~oIndeed, if one so chooses, Eqs. (6)—(8) may be regarded
simply as diGerent covariant approximations to the same field-
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persists even in this case. The similarity of the
results obtained from Eq. (6) to those from Eq. (8)
strongly suggests that relativistic motion will also
result from the latter, the B-S equation, in the strong-
binding limit.

D. Concluding Remarks

The results of this paper suggest that an equation
such as Eq. (6), which may be generalized to include
spin and spin-dependent interaction, may be a useful
tool in the study of highly relativistic bound states.
Its main advantage over an equation of the Bethe-
Salpeter type is that for bound states one is led in
general to an integral equation involving only one
variable, which facilitates numerical computations
considerably. As has been seen, one can expect the
results to be similar to those arising from the "corre-
sponding" B-S equation, so that especially for explora-
tory, speculative type of calculations (e.g., quark
models) the question of "field-theoretic origin" need
not trouble one."These remarks have added force for
the three-body problem (baryon states in quark
models) where a generalization" of Eq. (6) seems still
to be tractable from a numerical point of view, while
use of a three-body B-S equation would present quite
formidable difhculties in the strong-binding limit.


