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A simple model of the n-p mass difference is exhibited, in field-theoretic terms, in order to illustrate one
way in which the inelastic feedback mechanism may be expected to operate.

KCENTLY, two new derivations of the rt-p mass
di6erence have been given'' which attempt to

include inelastic Compton effects by exhibiting a so-
called feedback term with the effect of reversing the
over-all sign of earlier estimates. The purpose of this
note is to give a simple, field-theoretic example of how
the feedback mechanism may be expected to operate.
We consider the difference, t&Z(&o), of the nucleon self-
energies obtained by iterating the difference, t&Z&'&(&e),

of the Feynman-Speisman (FS)—type' electromagnetic
self-energies between an increasing number of virtual
pions. This difference of sums over the subset of proper
self-energy rainbow (or ladder) graphs, illustrated in

Fig. 1, is supposed to approximate the rt-p mass dif-
ference, and provide the mechanism whereby inelastic
states of one photon plus many pions can react on the
strong-interaction determination of the nucleon masses.
These graphs are chosen only because they can be
generated by the iteration of a linear integral equation,
which we do not attempt to solve. 4 Rather, we observe
that, if a solution exists for which ImhZ is not pathologi-
cal near threshold and vanishes rapidly for large or, then
the feedback mechanism can be sufhcient to reverse
the sign of the initial hZ( ) estimate. When evaluated
with the aid of reasonable charge and moment form
factors, the latter leads to the incorrect result for
hrrt= rrt„rrt, of amount —Ant &'& = —ZhZ &"(nt) +-',
MeV, where Z denotes the nucleon wave-function
renormalization constant.

We represent by 8Z=x„l&Z„+x„8Z„the sum of such
self-energy graphs for the nucleon, obtained by the
iteration of the simpler, electromagnetic 8Z")=x„bZ„&')
+x„5Z„to&. Here, xo, „denote isotopic projection oper-
ators for proton and neutron, respectively, while 8Z„„
and SZ„,„('& are the corresponding self-energy functions.
5Z& ) is illustrated by the first term on the right side
of Fig. 1; it is of order e' and is understood to be given
in terms of realistic charge and moment distributions

X»L—iv (p+k)] v, , (1)
m+iv (p+k)

where we neglect the variation of pion and nucleon
masses in Eq. (1) because 5Z is already of order e'. Both
e' and g' are taken as renormalized, with g'/4sr=15.
Inserting isotopic representations, one easily finds, for
AZ= SZ„—5Z„)
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where hZ "~=bZ~&" —8Z ".
It is useful to employ for AZ(&o) the form of the very

general representations' valid for Z(o&),

EZ((o) = drt
t& p~(rt) -Ap (rt)

+

/
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of the electromagnetic vertex. The model may thus
be defined by the equation'

5Z( iv—p)=5Z "&(—iv p)
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* Supported in part by the U. S. Atomic Energy Commission.' H. Pagels, Phys. Rev. 144, 1261 (1966).' H. M. Fried and T. N. Truong, Phys. Rev. Letters 16, 559
(1966); 16, 884(E) (1966); Phys. Rev. (to be published). The
relation of this method to that of the conventional calculation is
described in the latter paper.

3 R. P. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954).
References 1 and 2 contain or lead to an exhaustive list of the
relevant literature.

'For simple hZ«), this equation has been studied by many
authors; e.g., D. Falk, Phys. Rev. 115, 1069 (1959).

FIG. 1. Pictorial representation of an approximate integral
equation for bZ, and its iterative solution.

5 More precisely, one should begin with the unrenormalized
mo, go, and include self-energy corrections to the pion and nucleon
propagators and to the ps vertex; extract the appropriate renorma-
lization constants which convert go to g; and then approximate the
renormalized propagators by their respective pole terms, and each
renormalized ps vertex by p5~;.' See, for example, M. Ida, Phys. Rev. 136, B1767 (1964).
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