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Determination to Fourth Order in External Momenta*

N. N. KHUuxt'

Stanford Linear Accelerator Center, Stanford, California and Rockefeller University, Nm York, ¹mYork

(Received 26 August 1966)

We derive a set of new consistency conditions for the pion-pion scattering amplitude. These conditions
hold for any s, t, I in the cube 0&s, t, u&p, ', with the four external mass variables o6 the mass shell and
restricted so that qP=O, qP=s, qa' ——t, and q4' ——u. Using these consistency conditions, we determine the
coeKcients of the power-series expansion of the pion-pion amplitude up to and including second-order terms
in the variables s, t, I, and q; .We use this expansion to calculate the pion-pion S-wave scattering lengths and
thus check the consistency of Weinberg's recent calculation of these numbers to the next higher order. The
final result is within 10% of that obtained by Weinberg.

I. INTRODUCTIOÃ
' 'N a recent paper Weinberg' has used current algebra
~ ~ to calculate the pion-pion S-wave scattering lengths.
The answer he obtained is smaller by at least a factor of
5 from what had been believed to be reasonable esti-
mates of them. m scattering lengths from dispersion theory
or comparison of peripheral models with experiment.

Weinberg's result does not follow from current algebra
alone. The restrictions given by current algebra and
partially conserved axial-vector current (PCAC) on
the m7i- amplitude give us information at unphysical
points and unphysical external masses. The problem
is to extrapolate these results to the physical threshold.
This is relatively easy in the case of mal scattering
where there is a small number, p/M, and where one
neglects terms of order ys/Ms, etc. For e-e- scattering
there is no such number. What Weinberg does to effect
an extrapolation is to expand the amplitude in a power
series of s, t, I, and the external mass variables, q,
i =1, 2, 3, 4, and keep terms only up to 6rst order in
these variables. One can then determine the three
coefficients in the expansion from Adler's consistency
condition and a low-energy theorem for mw scattering.
Once the coeKcients are known one assumes the ex-
pansion is still good up to threshold and calculates the
scattering lengths.

Such a method of extrapolation is rather dangerous.
It is known that the expansion used is divergent at
threshold. One can get around this difhculty by as-
suming that the unitarity branch point is a weak
singularity which allows us to use the expansion at
least as an asymptotic expansion up to and maybe a
little beyond threshold. Since Weinberg gets small
scattering lengths in the end his argument is self-
consistent, but it does not in fact prove that the scat-
tering lengths are indeed small. Even if one accepts the
asymptotic nature of the expansion one does not u priori
know at what order it gives a good approximation to
the amplitude near threshold. There is no a priori

+ Work supported in part by the U. S. Atomic Energy Com-
mission.

$ Permanent address: Rockefeller University, New York, New
York.' S. Weinberg, Phys. Rev. Letters, 17, 616 (1966).

reason, for example, to assume that the second-order
terms, s', st, I', etc. are smaller than the erst-order
terms. One would feel much more at ease with Wein-
berg's results if one were able to estimate these higher
order terms and compare them with the lower order
ones. This becomes even more pertinent when we recall
that the results of Ref. 1 give much smaller scattering
lengths than had been expected from previous
arguments.

In this paper we derive a set of new consistency
conditions on the xm amplitude that hold in addition
to the Adler' consistency condition. We then use these
consistency conditions to estimate the coeKcients of
the expansion of the xm. amplitude to second order in
the variables s, t, I, and q . The remarkable result is
that the second-order terms turn out to be negligible
and Weinb erg's results are essentially unchanged
within our approximations.

Adler has derived consistency conditions on xS and
m~ scattering which hold with one pion taken off the
mass shell. ' If one tries to derive a consistency con-
dition for mE scattering with two pions off the mass
shell, then one has to estimate the matrix element of a
scalar density between tw'o nucleon states. ' This scalar
density essentially arises from the equal-time com-
mutator of the axial-vector charge with the divergence
of the axial-vector current. Thus as in Ref. 3 one does
not get a new consistency condition but a relation
between the scalar matrix element and mX scattering.

In the case of mx scattering it turns out that one can
essentially eliminate the matrix element of the scalar
density between two single-pion states and get new and
stronger consistency conditions. The main new tool
that one needs to do this is to know the equal-time
commutator of the axial-vector charge with the scalar
density. There are several ways to do this, all leading
to the same answer for our purposes. One can use

directly the commutators of the axial-vector charge
with the scalar densities, I;, and the pseudoscalar
densities, e;, given by Gell-Mann. 4 We can then use

' S. L. Adler, Phys. Rev. 137, 81022 (1965).' K. Kawarabayashi and W. W. %ada, Phys. Rev. 146, 1209
(1966).

4 M. Gell-Mann, Physics 1, 63 (1964).
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the densities v;, i=1, 2, 3, as an interpolating field for
the pion. It is reasonable to assume that these pseudo-
scalar densities are smooth interpolating 6elds like
B„A;& and allow us to make extrapolations off the mass
shell of the order of the pion mass without introducing
large errors. In fact in some models like the quark
model (or the o model), B„A;" is just proportional to
~;. In a general quark model B„A;& is proportional to
v; plus SU(3)-breaking terms. Anyway, no one ever
proved. that 8„A,& was a good interpolating 6eld. This
was just verified by experience starting with the success
of the Goldberger-Treiman formula. In the same way
one can only verify whether v; are good interpolating
6elds by the results of using them as such. One can
easily see, for example, that the Adler consistency
condition for xS scattering follows also from using v;
as an interpolating field for one of the pions and B„A;&
for the other and the commutation relation (1).

If one does not like to introduce a new interpolating
6eld one can get results identical to ours in the following
way: First, one uses the commutator of A 0(x,t) with
B„A;& to define a scalar density. One assumes this
scalar density is a local 6eld. To compute the com-
mutator of the scalar density with the axial charge, one
uses the Jacobi identity to get a result essentially
identical to our Eq. (2'). In this way, one would just
have to replace v; by B„A,& wherever it appears in our
paper and the results will be the same.

In Sec. II, we derive a new consistency condition on
mw scattering with two pions taken with zero external
mass. We also show how one can get Adler's consistency
condition using our methods. These two consistency
conditions are used to calculate the coef6cients in the
Weinberg expansion up to 6rst order, so that we may
verify that our method gives the same results.

In Sec. III, starting with a reduction formula for the
~x amplitude in which all four pions are reduced out,
we derive a general consistency condition on the ampli-
tude. This consistency condition does not only hold at
one point in the six-dimensional space of the off-shell
mm variables, but holds for all s, t, I in the domain
0&s, t, I&p,', with the external masses restricted such
that q&'=0, q2'=s, q3'=t, q4' ——u. All four external-mass
variables are taken off the mass shell.

Finally, in Sec. IV we use this general consistency
condition to evaluate all but one of the coef6cients of
the expansion of the xw amplitudes up to and including
second order in s, I, I, and q . We then give arguments
to show that the one coef6cient left undetermined is
small. Our 6nal result is that all the 6rst-order coef6-
cients remain the same as in Ref. 1, and all the second-
order ones are negligible within our approximations.
Even if we carry over some correction terms to our
main approximation we find that they only change
Weinberg's value for the scattering lengths by 5%%uz.

Q,~ = d'x A,'(x,t), (3)

and A,"(x) is the usual axial-vector current. In a quark
model I; and v; are given by

n, =-,'h, t; v, = —(i/2)tvgh, t, i=0, 1, , 8. (4)

Most of the results obtained from PCAC or current
algebra follow from using 8„A & as an interpolating
6eld for the pion. The success of PCAC strongly suggests
that B„A & is a good interpolating field in the sense
that it allows us to go off the mass shell by an amount
of the order of the mass of the pion without introducing
large errors. One can also use ~, n=1, 2, 3, as an
interpolating field for the pion. This would not make
any fundamental difference for the results derived in
this paper, but it will we think make certain points
clearer. We would expect v to be also a good inter-
polating 6eld like B„A & since in models like the quark
model4 B„A„I'is proportional to v plus SU(3)-breaking
terms. (In. one specific quark model where the sym-
metry-breaking Hamiltonian is proportional to u8,
B„A " is proportional to v for n=1, 2, 3.) The only
problem with using ~ is that we do not know its
normalization to the one-pion state. We shall see how
we can get around this problem by using Eqs. (1) and
(2) together and getting a relation in which the un-
known normalization of the ~„'s is canceled by the
unknown ~m scalar vertex.

Since in this paper we deal only with pions, i, j,
k=1, 2, 3, we simplify Eq. (1) and Eq. (2) by first
defining the scalar density o.(x) as

ex= 32NO 3N8.

Then instead of Eq. (1) and Eq. (2) we have

[Q. (t),v (x,t)j=H. (x,t),

(5)

[Q "(t),v(x, t)j= i8 ~v~(x, t), n,—/=1, 2, 3. (2')

II. A NEW CONSISTENCY CONDITION ON
THE PION-PION AMPLITUDE

In order to clarify our method we derive a consistency
condition on the x~ amplitude with two pions taken with
zero external mass. Our main point is to show how one
can get a consistency condition on all three zm. ampli-
tudes which, unlike the xS case, does not depend on
the matrix elements of the scalar densities. We then
show how this consistency condition when coupled. with
Adler's consistency condition will lead to Weinberg's
scattering lengths.

Our starting point is the commutation relations of the
axial-vector charge with the scalar and pseudoscalar
densities given by Gell-Mann in Ref. 4,

[Q,"(t),v, (x,t)]= vd;, oui (x,t),

[Q'"(t),~i(x,t)1= —id'»~(x, t);
i, j, k=0, 1, , 8; (2)

where
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These last two commutation relations are the only
ones we shall use in this paper. We should perhaps
remind the reader that Eqs. (1') and (2') are also true
in the 0 model if one identifies ~ with the unrenor--

malized pion field and o. with the unrenormalized 0.

field. We stress here that our Gnal results will not
depend on the 0. GeM or its matrix elements.

As we mentioned in the introduction, one can avoid
using the e 's and use B„A & in their place in the fol-

lowing way. First, one de/mes a new 0' from the com-
mutation relation, [Q ~(t), ct„Ap'(x, t)]=ib p—o'(x, t), and
assumes that this 0' is a local Geld. To calculate the
commutator [Q "(t),0'(x,t)j one now uses the Jacobi
identity and the known commutator [Q ~(t),QP"(t)]
to get a result similar to Eq. (2), [Q "(t),ir'(x, t)j

ib pit, A—p" (x,t).'
We deGne the normalization constant a of the s

Geld as

&o I a-(0) I ~p(q)) = (2~)"z(2q')'"~-b-p (6)

In our reduction formulas we shall make both the
replacements:

B„A.&( )x—+ c.ti'it .(x), c.=Mvg"/G. zi~, (7)

v (x) -+ iz.y.(x).

If we identify ~ with B„A & as in Ref. 3, then in that
case a = c zzz '. In that case Eq. (1) and Eq. (2) remain
unchanged with o. replaced by some o'. Since we are
only interested in the relative normalizations of v and
0 we do not worry about cases where a is zero and deal
with a as if it were finite. This does not affect our final
answers.

Our first step is to relate a to the O.mm vertex by the
usual Fubini-Furlan trick. ' ~ We write

(zr (k)
~

&r (0)
~

zr p (q) )= (2zr) '(4k'q') "'8
p

Xf (q', k'; (q-k)') (9)

From Lehmann-Symanzik-Zimmermann (LSZ) we can
express f as

f'(q' k' (q
—k)')~.pc-t '/(2~)"'(2q')'"

z(pz kz) dzx eik x

X(ol2'(a„A. (*) (0)) t p(q)). (10)

This is an identity, as k' ~ p, ', and the usual PCAC tells
us that f is a slowly varying function as k' varies from
k'=tz' to k'=0. Integrating Eq. (10) by parts we get

5 We thank S. Weinberg, W. Weisberger, and M. Nauenberg
for stressing this point. One assumes here that B„A t' is part of a
chiral quadruplet to get 0-' multiplied by 5 p, see Ref. 1.

6S. Fubini, G. Furlan, and C. Rossetti, Kuovo Cimento 40,
1171 (1965). See also V. Alessandrini, M. A. B. Beg, and L. S,
Brown, Phys. Rev. 144, 1137 (1966), and Ref. 7.' W. Weisberger, Phys. Rev. 143, 1303 (1966).

the identity

b pf~(q k (q k—) )c,tz /(2 zr)
t (2q )'t

=k„(ti'—k') d'x e"'(0~ T(A "(x)ir(0))~zrp(q))

—i(p,'—k') d4x e'"'*5(xo)

f (ti',0; ti') = —iz./c. , (12)

where the first two variables in f always refer to the
external masses of the pions in the 0~x vertex and the
third variable is the momentum-transfer variable. The
constant a was defined in Eq. (6) and c is the pion-
decay form factor which, if one uses the Goldberger-
Treiman formula, is c =M~g"/G zi~. Both a and f
are in general unknown but the relation (12) helps us
eliminate them from our final answers as seen below.
(If one chooses a = i7„A &—then in that specific case

f = —m.'.)
To get our consistency condition we define the oR-

the-mass-shell invariant xm amplitude by

zM (q4b, qzy; qzP qin) [c tiza /(2zr)'(4q4'qzo)'tz j
= (t

'—qz')(t '—qi')

X(~z(q4) I T(~pA-'(x)~v(0)) I~p(qz)) (13)

Here q~'= q42= p' and is not varied in this section. As
qzz~ti' and qiz~tz', M as defined in Eq. (13) is
guaranteed by the LSZ formalism to give the correct
xx amplitude, assuming we have chosen a B„A & and

a~ that are relatively local. (We have factored out
the energy-momentum —conserving 5 function and

qz=qi+qz —
q4 )

Integrating the right-hand side of Eq. (13) by parts,
we get

zM (qib, qzy; q,P,gin) [c.ti'iz. /(2zr)'(4qz'qzo)'t'7

iqi (tzz qlz) (+2 qzz) d4x e i&& z—
X(~i(q ) I2'(A-"(x)~v(0)) I~p(qz))

—(tz' qi') (tz' q') d'x e
——' '*—

X(~ (&) I[A-'(x),~ (0))l~p(qz))b(xo) (14)

We now let both qi ~ 0 and q3
—+ 0. The first term is

x(01[A-'(*), (0)jl p(q)) (11)

In the limit as k„—+ 0 the Grst term on the right is zero.
The second term using Eq. (2) gives as k„~0 and q

remains on shell,
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zero and the second term, after using Eq. (2) and Eq.
(9), gives us

lim lim M(q4b, q2p; q2P, q&a)c t4'a
Q1~ Q~

t
—'f'(u', u'; 0)~«.bp~ (15)

Let us assume that f is a slowly varying function of
the external-pion masses as q' varies between zero and
p2 and the same for the transfer variable, and write

fa(u2 0.u2)~ fa(u2 u2. P) (16)

We justify this approximation in detail at the end of
the next section. As far as varying the external-mass
variables are concerned this is just the usual PCAC
assumption. Varying the third variabl" -i.e., the one
in the 0 channel —could be more dangerous and we
study it in detail later.

With Eq. (16) we can use Eq. (12) to eliminate f'
and a from Eq. (15) and get

To go from Eq. (21) and Kq. (22) to a statement
about physical quantities such as scattering lengths,
one has to go through extrapolations which at first
sight would seem quite dangerous. Weinberg's method
of extrapolation consisted of expanding A, 8, and C
in powers of s, t, u, and q2 and keeping terms only up
to first order in these variables. Crossing symmetry
and Bose statistics require the off-mass-shell amplitude
to have an expansion of the form

A =a+b(t+u)+cs+0(s2, st, ,q 2', ,q,4, ),
B=a+b(s+u)+ct+ .
C= a+b(s+t)+cu+

(23)

The main point here is that in Kq. (23) there could be
no first-order terms in the q variables.

In this approximation one can use Eq. (21) and Eq.
(22) to determine a, b, and c. From Eq. (21) we get
two equations:

p2
lim lim M (q48, q2y; q2P q2u) =—.b„bpp.
91~0 Q~ C 2

(17)
a+t42b+t42c =0,

a+2t42b =t42/c ', (24)

We recall the isospin decomposition of M into the three
amplitudes .4, 8, and C given by

M(q4b, qsy; q2P, qzc4) =Ab p8~4+Bb, bp4+Cb 4bp~, (18)
a+2t42b+t42c= 0.

The solution of Eqs. (24) and (25) is

(25)

and from Adler's consistency condition, Kq. (22), we
have

A =A(s, t,u; qp, q22, q22, q42), etc. ,
a=442/c ' b=p; c= —1/c ' (26)

and
S= (qr+q2)

t= (qr —q,)',
u= (qg

—
q4)

4

s+t+u=P q,2.

A(+2 A+2. P+2 +2 + ) B C P (22)

In terms of 2, 8, and C, our consistency condition in
Eq. (17) becomes

A (s= t42 t =0, u =t4' qua =0 q22= t42

q22=0, q4'=t42) =0,
B(u2 P u2 . 0 +2 P +2) —u2/c 2 (21)
C( 20u2 ~ Pu2P 2) P

The Adler-Weisberger sum rule for xx scattering also
has two external-pion momenta taken to zero. However,
it essentially gives a consistency condition on the
derivative of the odd xm. amplitude at v=0.

One could easily repeat our calculation to get Adler's
consistency condition' for the ~x amplitude with
q& ~ 0 and q2, q3, q4 all on the mass shell. We do not
do this here since the Adler consistency condition is a
special case of the general consistency condition to be
derived in the next section. Adler's consistency con-
dition gives

where c =M~g"/G ~~. This is the same as the result
obtained by Weinberg, where in his notation c = Ii /2.
If one uses Eq. (23) to give the amplitude at threshold,
one gets the scattering lengths given in Ref. 1.

However, there are several troubles with the ex-
pansion in Eq. (23). First, it is known to be divergent
at threshold. Weinberg gets around this difBculty by
assuming that the unitarity branch point is a weak
singularity which allows him to use Eq. (23) at least
as an asymptotic expansion up to and somewhat
beyond threshold. Since he gets small scattering lengths
in the end, this shows that his argument is self-con-
sistent, but does not prove that the scattering lengths
are indeed small.

The strong consistency condition which we obtain
in the next section enables us to estimate the coeScients
of the power-series expansion up to second order in s, t,
I, and q,~. The remarkable result is that all the second-
order coeKcients are not only small but also negligible
within our approximation.

III. A GENERAL CONSISTENCY CONDITION
ON THE PION-PION AMPLITUDE

In this section we extend our method to get a general
consistency condition on the mm amplitude which gives
restrictions not only at one point in the six-dimensional
space of the xw-scattering o6-shell variables, but in a
three-dimensional region.
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We write for the off-shell xw amplitude the following
reduction formula:

In the limit as q~& —+ 0 we have the following relations
between the six variables of arm scattering:

i(2—qr)'b(qt+qz qz
—q4)—311(qqb, qzy qzp qtn)a c Jll qz= qs+qq; (31)

and hence when qi"=—0,

XexP(—iqi xi—iqs x2+iqz xz+iq4 xq)

X(OI T(a„A:(»)es(xz)e~(xs)»(xq)) I o) (»)
Again in the limit where all q,' —+ p,', M as defined
above gives the exact 7rvr amplitude.

If we integrate Eq. (27) by parts we get the identity

z(2)r)—'b(qt+q2 qz q—4)3f—(qqb)qzy; qqP)qin)a~'c, 'y,

4

=zq. (II (t '-q"))

S= (qz+q4)'= qp,

"=(qq—q4) =qz )

u= (qq
—qs)'= qp.

Thus Eq. (20) becomes

1 f'(t,u; s)
lim M(q, b,qzv; qzp, qtn) = —(tz—z s)— b Sb„
CI~o G~

(32)

Xexp( iqi x—i iqq x—z+iqz xz+iq4 x4)

X(ol T(A.~(xz)xs(xz)e, (xz)ez(xq)) I 0)

—(g (tz2 —qP)) d xi ~ dqxqb(xz xz )

Xexp( —iqi xi—iq2 x2+iqz xs+iq4 x4)

x(ol T(LA-'(»), es(x2) jew(»)»(x4)) I o)

—permutations of the last term over the 2's. (28)

In the limit qi —+ 0 the first term in Eq. (28) vanishes.
The other three terms, after using the equal-time
commutation relation, Eq. (1'), give us three terms
proportional to the Omx vertex.

Ke obtain

i lim —M(qqb, qsy; qzP, qin)a 'c
CI~o

= (' q') -'f (q—',q";(q+q)') -b
+z(u' qz')a-'f (qz',—qq'; (qq qq)')b-~bsz-
+z6' qq')a-'f'(qz', q—z" (qz qs)')~-z—~p7 (29)

where to obtain Eq. (29) we have used the identity

a 2fr(q2 P2 (q P)2)b

1 f (s,t;u)——(tz' —u) b.zbs, . (33)

We now use Eq. (12) to eliminate a from Eq. (33)
and get a relation between the o6-shell mm amplitudes
and the 07rvr vertex. In terms of the amplitudes A, 8,
and C we now have

A(s, t, u; qP=O, qP=s, qP=t, qP=u)

1 f'(t, u; s)=—(u'-s)
c ' f (tz'0 tz')

B(s, t, u; qP=O, qP=s, qP=t, qP=u)

1 f (su;t)=—(u' —t), (34:)
C 2 f))(u2 ().us)

C($) t) u) qP=O q '=s q =t) qP=u)

1 f'(s, t; u)=—(t '-u)
c 2 f))(u2 ().u2)

(tz2 l) 2) (tz2 q2) dqxdqy c )'q ~ ) c+)2 2

x(ol 2'( (o)o.(x).,(y)) I
o). (3o)

This follows from applying the reduction formula
directly to Eq. (9).s

' With both pions on the mass shell it does not matter whether
we use the definition (30) or (10) for f' In principle, when .we go
off the mass shell, f' defined with B„A & as an interpolating field
could be different than f' defined by the v 's. However, we have
assumed that both v and B„A t' are good smooth interpolating
fields and we only use (30) for 0&q', k2&pP. So as long as we do
not go too far off the mass shell, f~ as defined in (30) and as
defined in (10) are within our approximations the same. This
problem, of course, would not have arisen if we had used B„A„t'
instead of the v 's all through.

The functions f' are by definition symmetric in the
first two variables, i.e., the external-pion masses, so

Eq. (34) is manifestly crossing synunetric. What we

have succeeded in doing so far is to show that when

qi.&=—0, then if one sets the other three external-mass
variables equal to s, t, I, respectively, one gets a
relation between the o6-shell amplitude and a ratio of
the a~x vertex at two diferent points. Thus the problem
reduces to a study of how fast f' varies in all three of
its variables.

We restrict ourselves to the domain 0&s, t, N&p, '
and show that in this region

f (t,u; s)if'(tz2, 0; tzz) —1; 0(s) t, u(t)2. (35)
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The fact that f'(x,y; s) is slowly varying in the first
two variables is actually part of the PCAC assumption
(or the assumption that n is a smooth interpolating
6eld) as long as x and y do not vary much from their
on-mass-shell value, x=y= p'. This can be justified by
pion-pole-dominance arguments similar to those used
by Weisberger. 7 For example, if we let g' be given by

the derivative of f',

1 df
(p',p'; s)f.(p' p' o) ~s s=o

Cpp, (si 4p2)1i2 a
ds—

4„~ s"f' 6mp,
(41)

5 y
g'(p' k' (q

—k)')—
(2 )"'(2q')'"

e' 'd x(0~T( (0)p (x)) ~ e(q)),

g2 p2 (36)

then as a function of k', for fixed (q
—k)', the function

g' has a pole at k'= p' and the residue of that pole is
just f'(p', p', s), where s—= (q

—k)'. The PCAC assump-
tion tells us that for 0(.k'(p, ', and s fixed and small,
the pion-pole term dominates over contributions from
other singularities in the k' plane. We get

g(r(p2 k2. S)~fear(p2 p2. s)/(k2 p2) 0(k2(p2 (37)

But comparing Eq. (36) with Eq. (10), we get

(p' —x)g'(p', x; s) = f'(p', x; s),

and hence

f'(p', x; s)=f'(p' p'; s); 0&x&p'. (3g)

Extrapolation in the other pion-mass variable can be
handled in the same way. To a good approximation we
can therefore write

f (x,y; s) f (p',p',—s), 0&x, y&p'. (39)

The behavior of f' in the third variable, the one
corresponding to the square of the 0 four-momentum,
could in principle be much more dangerous. Indeed one
would argue that a strong mw S-wave, I=O, interaction
could give the vertex f (p',p'; s) a large derivative in s
at s= 0. Fortunately, dispersion theory gives us a fairly
reliable way of estimating the eRect of rescattering on
a vertex. The Omnes formula for f' would give us

f~(p2 p2. s) -s ao g 0(si)
=exp — -- ds'

f (p', p'; 0) 2r 4„S'(S'—S)
(4o)

where 50' is the S-wave, I=0, ~m phase shift. The slope
of f (p', p'; s) at s =0 co, uld be large either because of a
large scatter'ing length or because of a low mass reso-
nance in the l=O, I=O channel. Let us erst estimate
the eRect of a scattering length on the slope. Starting
with L(s—4p')/s]'" cot82' ——1/a2p, we use the expression
82'(s)—a2pp(s —4p')/s]'" in Eq. (40) and obtain for

We note that the form we have used for 82' in Eq. (41)
does not vanish as s —+ ~, as it would have if we had
included an effective range. This makes our correction
term in Eq. (42) larger than it actually is. Nevertheless,
we easily see that even if ao is as large as p ', the cor-
rection term in Eq. (42) is at most 1/62r=0. 05, as s
varies in the interval 0&s&p'. In the next section we
shall keep the second term on the right in Eq. (42) in
our calculation of the scattering lengths and show that
it only changes Weinberg's result by a few percent.
Even including these corrections our final result for ao
is still ao—0.20' '. For the region 0(-s, t, N&p' one
can thus safely neglect the second term in Eq. (42).

If there exists an actual 0. resonance, in the 1=0, I= 0
channel, then the correction to Eq. (35) will be of the
form

fr(p2 p2. s) p2—1+(s—p')0; 0&s, t, u&p'. (43)
f (p'p'0) m '

There seems to be no evidenceforanarrow (I'(100 MeV)
o particle with mass lower than 600 MeV. Thus we
can also neglect the correction term in Eq. (43). The
only possibility left is for a very broad ~m. resonance in
the region below 600 MeV. But the eRect of such a
broad resonance (F)200 MeV) on the slope of f' at
s=0 will be very similar to that of a large scattering
length which we have already shown does not affect
our results appreciably.

The consistency condition in Eq. (34) can now be
written as

A(s, t, u; qP=O, q '=s, q22=t, q4' ——u)=c '(p' —s);
0+s) 3) I+p

B(s, t, u; qp= 0, q22= s, q22= t, q42= u)
—c. '(p' —t),

C(s, t, u; qua=0, q22=S, q22=t, q42=u)

=c '(p, '—u) .

(44)

As we have mentioned earlier, these consistency con-
9 M. Deutschmann et al. , Phys. Letters 12, 356 (1964); see also

V. Hagopian, W. Selove, J. Alitti, J. P. Baton, and M. Neveu-
Rene, Phys. Rev. 145, 1128 (1966).

Thus the ratio in Eq. (35) is approximately given by

f (t,u;s) f (p',p';s, ) ap=1+ (s—p').
fg(p2 0.p2) fa(p2 p2. p2)

0&s(p' (42)
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ditions are much stronger than the usual ones which
hold only for one point; these hold for any s, t, I that
lie in the cube 0&s, t, I&p', if the masses are restricted
as in (44).

IV. THE POWER-SERIES EXPANSION OF
THE PION-PION AMPLITUDE

We use the consistency condition (44) to estimate
the m-m. amplitude up to second order in the variables s,
t, u, andq .

We expand A, 8, and C in a power series of the
variables s, t, u, 7P, where u=Q q,

4 s t. To—se—cond
order in these variables, crossing symmetry and Bose
statistics require the expansion to take the form

A (s,t,u; qin, q22, q44, q4') =a+b(t+u)+cs+d(t+u)'

that one is h which, as we mentioned earlier, we expect
to be small.

In order to estimate the scattering lengths ao and u2,

we need to assume that the expansion in (45) is at least
numerically good up to s=4p, '. In extending s ~ 4p, ',
we shall keep track of the correction terms in (42) in
order to make sure that they do not make important
contributions.

If we keep the correction terms from (42) in the con-
sistency condition (44), then instead of (47) we obtain
for the coefficients

a—(t4'/c. ') (1—aot4/6ir),

b—0,
c——(1/c ') (1—aot4/3m-),

f—= (llc-')—(oo/«u),
and

+etu+ fs'+ g (t+u)s+h P q,sqt2; (45) d—0;

and 8 and C are obtained by exchanging s and t in
(45) or s and u, respectively. No terms linear in the

q variables appear. Also terms of the form q s, q t,
etc., can after using crossing and Bose symmetry be
reduced to forms already in (45). Before applying (44),
we note that there is one remark we can make in general
about the coeKcients a, b, c, , g, A,. There is no
a priori reason to assume that any of the second-order
coeKcients are small except for h. For if h is not small,
then the amplitude will vary strongly with the external-
pion masses; a situation which is in contradiction to the
PCAC philosophy. ' For example, if this were the case
and h were large, then the Adler-Weisberger sum rule
for xm scattering would be practically useless even if
we were someday able to measure the xx total cross
sections exactly.

Let us use (44) to determine the coeKcients a, b, c,~, h. We restrict ourselves to the domain 0&s, t, I&p'.
Comparing (45) with qi4=0, q22=s, q42=t, q42=u, with
(44) we get

We have mentioned earlier that h must be small
compared to the dominant lower order terms. This
indeed has to be so if we are to be consistent with the
approximation used in (37) and (38). For example, let
us consider in detail the m'm' —&x'x' amplitude, Ii,
given by

F=A+8+C
—iArM+ 2A 1=2

3 3 (49)

F(s=u, t=0 0 p,
' 0 t4'

=F(s=u, t=0; 44', 44' 44' 44'). (50)

A similar result was written for the even mE ampli-
tude in Ref. 3. The argument is very similar to that
used in (36)—(39) above and one can refer to Ref.
7 for details. What we have done here is to keep 3=0
fixed, and s=u, (v=0, fixed) and extrapolate two ex-
ternal-mass variables, q»' and qs', from p,

' to zero. On
the other hand, we can compute both sides of (50) from
our expansion (45). For F, using the coeKcients in (47),
we have

a+b(t+u)+cs+d(t+u)2+etu+ fs'+g(t+u)s
+h(st+tu+su) =c. '(t4' s); 0(s, —t, u&t4'. (46)

This gives us
a=t4'/c '

b=0,
c= -1/c, ',
d= f=0;

(47) F(s,t,u; qP, qP, qP, q4') =3a+4ts'c —3h(st+tu+su)

Let us 6x our attention on the symmetry point s=l,
and t=0. Then by using the arguments of Ref. 7,
considering dispersion relations in the external-mass
variables q»' and q3', and assuming dominance by the
double pion pole we get

and.
h= —e= —g.

+3h Q q 2qts, (51)

Note that u, b, and c still have the same value obtained

by expanding only up to 6rst order. Only one constant
is left undetermined in the second-order terms; and

' In all this paper, we are assuming PCAC is a good approxima-
tion. We want to estimate the relative magnitude of the 6rst- and
second-order coefBcients under that assumption.

where u=P;q, s s t always. W—e—now use (51) to
calculate the diR'erence:

F(s=u, t=O t4', t4', t4', t4')

F(s=u, t=O 0 t4' 0—t4')—6ht44. (52)

Thus to the extent that (50) is a good ext apolation,
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29@27 1 p
Qp= 1

8x c ' $92x'c ' (54)

The numerator of this last expression is exactly Wein-
berg's result. The quantity (29''/192m'c ') is about
0.04. Therefore keeping the correction terms in (48)
will only change the result by 4%. We get

ap—0.29

This means that the ratio in (42) is indeed close to
unity and the quantity ac+/6' is of the order of 1%.
The coefEcients are therefore given by (47) to a good
approximation.

In a similar way the corrections terms do not affect
a2 in any appreciable way and one still gets

a,——-,'(p/g~c ')—0.06@ '. (56)

In conclusion we write a dispersion relation for the
forward x'm' —& x'm' amplitude Ii and show how it can
be used to give a sum rule for h. It is more convenient
to use the laboratory energy v instead of s as a variable,
where

s=2p'+2'. (57)

For t=0 the expansion for F(v) for physical masses,
keeping h, is

F(v)~ —(p'/c ')+18hp4 —3h(4p, '—s)s
——(p'/c '}+12''(v'+ ~p'), I

v
( (p. (58}

we conclude that 6hp4 must be small when compared
to the dominant term in (51) which is (3a+4p'c)
= —p'/c~'. Here

tj,'/c. '=y'G. ~rr'/MN'gx'= (8/9) x .

At the end of this section we write a sum rule for h
and discuss its magnitude further; however, it is clear
that to be consistent with our approximations on f'
earlier we must neglect h. We can now compute the
scattering lengths.

The 5-wave scattering lengths are related to our
expansion coefficients by

ae——(1/327rp) [5a+12v, c+48fy +30hp j,
ap——(1/32m. p) [2a+ 12''7. (53)

We have kept both terms proportional to f and h in
(53). Following our estimate of 6hp4 when compared
with p'/c, ', we see that 30'' is also negligible when
compared with (Sa+12p'c)= —7p'/c '. Even if 6''
were as large as 20% of p'/c„', keeping the term 30hy4 in
(53) would only change Weinberg's result by 13% and
raise the scattering length at most to ap—0.23@, '.

We thus have, setting h=0,

ae——(1/32vrp) [Sa+12v,'c+48fv4]. (53')

Substituting the values (48) for a, c, and f we get an
equation for ap which we can solve and obtain

This expansion is good, even convergent, for
~

v~ (p.
We note that at the points v = Hip/v2, F (v) is through
(58) given by —p'/c ' and not dependent on h. We can
therefore write a twice-subtracted dispersion relation
for F(v) and if we choose the subtraction points to be
v= Rip/V2, the subtractions do not depend onh. We get

+2 2 (v2+ 4+2) ao

F(v) = ——+
2 'r

ImF (v') v'
dv'. (59)

(v"+-'t ') (v"—v')

The expansion (58) is certainly good at v=0, and it
gives

F(0)——p'/c '+6hy4. (60)

We see that 6'' is just the difference between F (v=0)
and F(v=itr/V2) Our a. ssumption is that this is small
compared to the value of Ii at either of these two points.
Comparing (60) with (59), we get a sum rule for tr:

p' " ImF (v')
6j'&4=-

Vi v v
(61)

We recall that F is the physical forward fully symmetric
amplitude and only I=0 or I=2 contribute to ImF.

The Erst thing we learn from (61) is that h is nega-
tive; ImF in our normalization is negative. The con-
tribution of resonances like the f' to h through (61)
will certainly be negligible for our purposes; so will that
of any high-mass (i.e., greater than 500 MeV) resonance.
If a low-energy narrow resonance exists, say in the
3=0, I=O channel, it could change our result appre-
ciably, but it is hard to see how it can increase the
scattering length up to more than Op=0.3p at worst, .
Such a resonance would make the Weisberger extra-
polation quite bad for xx scattering, and it has of course
not been established experimentally. ' Many of the
theoretical arguments for its existence, like the analyses
of &t4 decaying and 7 decay i2 have lately been rendered
unnecessary. The only remaining question is the
saturation of the Adler-Weisberger x~ sum rule. "
That sum rule has one less power of v in the denominator
than in (61), and it could easily be saturated with, in
addition to known resonances, an t =0, I=0 resonance
of mass&600 MeV. It does not necessarily force us to
predict a low-lying resonance. There is one contribution
to (61) which might be dangerous and whose effect
we can approximately check; namely, the contribution
from ImF (v') near threshold that is related to the l=0,
I=O scattering length. This will give a contribution
that is proportional to ap' from the low-energy part in
(61) and that when substituted in (53) will change the
functional form of our resulting equation for ap. To
make sure that this will not appreciably change our
results, we divide the integrationr ange in (61) into two
parts, a& v&6p, and 6@&v& ~. In the first interval we

"S.steinberg, Phys. Rev. Letters 17, 336 (1966)."H. D. I. Abarbanel (to be published)."8. Adler, Phys. Rev. $40„873$ (1965).
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ImF (v')
6hp4 —2a—esp'+ ps/rr d v'.

s„v'(v"+ ',p,')- (62)

If we ignore the second term in (62) and assume it to
be a fraction of p,'/c, '—Srr/9, we obtain on substituting
(62) into (53)

ao = —(I/32z p)[—7 (p'/c ') —10assps j. (63)

approximate ImF by the contribution from the 1=0,
I=0 channel and use 5s' [(s—4)/s]'~sasp and get

This last equation has two roots for ao. One will, to
within 2%, give us back the same answer as before,
a0=0.2p '. The other root is ridiculously large,
ao—10' ', and clearly unphysical. The latter root will

also give a very large value for u2.
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We show that the recent high-energy 7I p polarization data from CERN are explained in a natural way
by the three —Regge-pole model. The prediction of this model for w+p polarization differs greatly from that
for v p polarization in theregion where (t ~

(0.6 (GeV/c)'. In particular, in this region, the z+p polarization
has an opposite sign and comparable magnitude to that for ~ p.

'HIS paper shows that recent high-energy z- p
polarization data from CERN' are explained in a

natural way by the three —Regge-pole model. ' The pre-
diction of the model for z+p polarization has an opposite
sign and comparable magnitude to that for z. p.

Elastic xS scattering at small momentum transfer is
dominated, in this model, by three Regge poles in the
crossed channel. Thus it is a more complicated problem
than the charge-exchange reactions, with only one or
two poles, for which the Regge hypothesis has had great
success. ' ' However, this complication is largely com-
pensated by the greater variety of data available.
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