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We study baryon states of spin <$ using a dynamics based on an approximation to the Bethe-Salpeter
equation which includes baryon and meson-exchange forces. Considering only S- and P-wave vertices, we
perform a multichannel calculation using an SU (6) description. A solution to a 56+:70~ bootstrap model
(superscript denotes parity) is found which qualitatively reproduces the experimental coupling constants
and has a mass difference, M (70) — M (56) =260 MeV. Analysis of symmetry-breaking effects in this model
gives qualitative agreement with experiment. A solution to a 56*:70~:20* bootstrap is found with 56, 70~,
20+ approximately degenerate, thus supplying theoretical evidence for the existence of 20" in nature. The
multiplet 20~ is found to exist only with a 56+:707:20%:20~ model. A separate study of long-range forces in
pseudoscalar meson-baryon scattering predicts an effect in the isospin-zero Py/; wave of the KN system and
possibly the occurrence of a family of Py, resonances belonging to the SU(3) mutliplet, 10, but not con-

taining the Roper effect.

1. INTRODUCTION

ECENT phase-shift analyses of the #N system!
have exhibited the existence of resonances in .S, P,
D, F, and G waves, and there is evidence from total
cross-section and backward-scattering measurements?
for resonances of even higher spin. A most interesting
feature of this abundant spectrum is the appearance of
families of particles with the same parity, different
strangeness, and roughly equal mass. In addition, there
is a striking amount of inelasticity present in the
resonance region which, for the most part, has not been
satisfactorily explained by various theoretical models.
The work described here is an attempt to at least
partially account for the above experimental effects by
studying S- and P-wave dynamics of states with baryon
number one and angular momentum <32. There are
two reasons for partitioning the particle spectrum in
this manner: (i) the states with small angular mo-
mentum have relatively low mass, so, as a practical
matter, one expects these states to have the simplest
structure because of the small number of open channels;
(ii) there is hope that having understood the nature of
the “ground states,” we might gain insight into the
dynamics of the “excited states” in a relatively straight-
forward manner.®4
Since the particle spectrum is closed under experi-
ment in the sense that no radically different type of
entity (with, say, nonintegral charge or baryon number)
has yet been observed, a natural explanation of the
baryonic states appears to be given by the bootstrap
dynamics. In this paper, we carry out a series of boot-
strap calculations based on vertex and normalization

* Supported in part by the U. S. Atomic Energy Commission.

1B. H. Bransden e/ al., Phys. Rev. 139, B1566 (1965); Phys.
Letters 19, 420 (1965); P. Bareyre et al., ibid. 18, 342 (1965);
A. Donnachie et al., ibid. 19, 149 (1965).

2 A. Citron et al., Phys. Rev. 144, 1101 (1966) ; S. W. Kormanyos
et al., Phys. Rev. Letters 26, 709 (1966).

3P. A. Carruthers, Phys. Rev. 133, B497 (1964); Phys. Rev.
Letters 12, 259 (1964).

4 E. Golowich, Phys. Rev. 139, B1297 (1965).

153

equations as developed by Cutkosky and Leon.?¢ Since
we wish to account for some of the inelasticity observed
in scattering experiments, we adopt a multichannel ap-
proach, using SU(6) to facilitate description of particle
multiplets and correlation of interaction vertices. Unlike
many current papers employing higher symmetries, we
require that the SU(6) satisfy the consistency condi-
tions imposed by the dynamics, i.e., the symmetry
appears as a consequence of the forces.

To summarize the contents, Sec. 2 contains a de-
tailed discussion of the model, Secs. 3 and 4 involve
specific applications, Sec. 5 is devoted to a discussion
of a low-angular-momentum effect recently seen in the
KN system, and Sec. 6 contains conclusions and a
discussion of the results.

2. DISCUSSION OF THE MODEL

This section is divided into two parts, the first of
which surveys our dynamical model, while the second
discusses the role SU(6) plays in our calculations.

We base our dynamics on a bound-state description
of particles given by the Bethe-Salpeter equation.56 As
seen in Fig. 1, vertex and normalization conditions are
described by single-particle exchange graphs. Taking
external particles on the mass shell and approximating
all vertices by coupling constants, we generate a set of
bootstrap equations relating coupling constants and
mass differences. In short, the vertex equations repre-
sent an average over momentum of various Born terms,
with the important constraint that the equations are
symmetric with respect to interchange of the external
baryons, a feature not generally seen in the familiar
N/D approach.® The vertex and normalization equa-
tions have the form

(1a)
(1b)

b= c,78as8ev8er D ap®’
No=21,e.78argeves8atW @y,

5R. E. Cutkosky and M. Leon, Phys. Rev. 135, B1445 (1964);
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for baryon exchange processes and

(2a)
(2b)
for meson exchange, where the superscript ¢ implies
that two distinct types of dynamical factors, D®, can

occur because of the existence of S- and P-wave vertices.
Explicit forms of the D® factors are given here:

gab= chacgcbguD(i)abc 5
Na: Zb,cgabgbcgcagp,W(i)bca y

baryon exchange—
1 f“ kdw
127%) , (w+M;—M,)(0+M.—My)
Xcabef )

D ef =

(3a)
Ca®’; (3b)

1 rA kdw
D(2)abef=__f
4/, ((J)_I_Mf_Ma) (w-I—Me—Mb)

meson exchange—

1 A Bdw
DPuyr=—— Car®, (4a)
12724 (0+M . —M,)(w+M.—My)
1 A kdw
D(Z)“bcz_ Cabcy (4b)

472/, (o+M.—M,) (w+M . —My)

where M ; are baryon masses, u is the average meson
mass, o is the meson energy, the factors C,p%/, Cop® are
proportional to crossing coefficients, and the same cutoff,
A, is used for all integrals. A class of crossing coefficients
not available in the literature but relevant to the
above equations is calculated in Appendix A and an
explicit derivation of one of the D is given in Appendix
B. The normalization factors W are too numerous
to list explicitly, but are evaluated in a man1er similar
to those discussed in Ref. 6. The bootstrap equations
are simplified by expanding both vertex and normaliza-
tion dynamical factors to first order in the baryonic
mass differences. Explicit spin dependence of propaga-
tors is suppressed since we employ static-like nonrela-
tivistic kinematics, and also use an SU(6) description
for the particles.

We now discuss the assignment of physical particles
to SU(6) multiplets, considering first a vertex consisting
of one mesonic and two baryonic particles. An SU(6)
multiplet may be written as a direct sum of submulti-
plets labelled by (U,J), where U, J denote the dimen-
sionality of SU(3) and SU(2) multiplets, respectively,
the latter corresponding to an angular momentum. For
fermions, we take this angular momentum as the spin,
e.g., the baryon octet is assigned to (8,2). The assign-
ment of negative-parity mesons is based on j-5 coupling?
and thus depends on the relative intrinsic parity of the
two baryons. Consider a vertex coupling of a pseudo-
scalar meson to two spin-3 baryons of opposite relative
parity. By conservation of parity, the allowed orbital
angular momenta are /=0, 2,4, ---. Conservation of

7R. H. Capps, Phys. Rev. Letters 14, 31 (1965); J. G. Belin-
fante and R. E. Cutkosky, 7bid. 14, 33 (1965).
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angular momentum implies /=0 or 1, and hence the
meson appears in an /=0 state. Since, for j-j coupling,
j(meson)=1+s(meson), then j=s and the following
assignments obtain: vector meson octet (8,3); pseudo-
scalar octet (8,1); vector meson singlet (1,3), all of
which forms a 35. When the baryons have the same
relative parity, conservation of angular momentum and
parity plus a requirement that the mesons be assigned
to 35 implies /=1. However, submultiplet assignments
are not unique here, since we can form j=1 states from
both Vo and VXV, where ¢, V are pseudoscalar and
vector-meson states, respectively.® In general, we must
write (8,3)=05V ps+BsV X Vs and (1,3)=a1V1+81V
X V; in assigning mesons to 35 for a P-wave vertex.
This ambiguity may be eliminated if we adopt a par-
ticular dynamical model. In the calculations to follow,
we take ag=a;=1/V3, Bs=p1=V2/V3, a choice which
comes from a Fermi-Yang model of the mesons and also
from W spin. The only way to fill (§,1) for a P-wave
vertex is with V- V, which represents a coupling of /=1
and s=1 to form j=0.

Since the trimeson vertex has rather different kine-
matics from the vertices discussed above, our discussion
does not proceed along the same line of reasoning. In-
stead, we define this interaction in a manner described
by Capps, based on W spin. The vertex thus defined is
Lorentz invariant, obeys permutation symmetry, and is
self-consistent within a bootstrap model.® We normalize
these couplings with the prm decay width.

We conclude this section with some general remarks
about the model. The physical origin of the SU(6)
operators that we use to describe baryonic vertices lies
in an extension of the Chew-Low model. It is therefore
natural that we assign mesons to 35 according to their
total angular momentum in the baryon rest frame.
Since we are forced to use nonrelativistic kinematics in
view of the above picture, our numerical results have
at best semiquantitative significance. However, this
defect is more than offset by our need for SU(6) in
carrying out a multichannel analysis, which would
otherwise be too cumbersome. In addition, the baryonic
spectrum has proved such a difficult problem that, in
general, even a qualitative understanding of it is still
lacking, and thus previous success of SU(3) and SU(6)
in classifying particle multiplets gives us further in-
centive to use SU(6) here.

3. 567:70- BOOTSTRAP MODEL

Our first application is to a 56*:70~ reciprocal boot-
strap [the superscripts denote the parity of the SU(6)
multiplet]. The chief experimental motivation for
studying the existence of 70~ comes from recent analyses
of wV phase shifts,! which indicate the existence of Si;,
Ss31, and Dy3 resonances (we use the notation Lar e,

8 J. G. Belinfante and G. H. Renninger, Phys. Rev. 148, 1573
(1966).

9R. H. Capps, Phys. Rev. 144, 1182 (1966) ; 148, 1332 (1966);
Bull. Am. Phys. Soc. 11, 369 (1966).



1468

where T, J are the isospin and spin quantum numbers,
respectively). Along with the So¥¢*(1405), this set of
observed particles supplies at least one candidate for
each submultiplet of 70—, whose content is 70~= (8,4)~
@ (8,2)~®(10,2)-®(1,2)". The identification of 56,
whose content is (8,2)*® (10,4)* with physical particle
states is, of course, complete. The theoretical motivation
for this model comes from a study of the relevant SU(6)
crossing matrices,®''! where one finds rather large at-
tractions and no repulsions occurring for both baryon-
and meson-exchange graphs.

Before we introduce the bootstrap equations, a short
review of previous models for states in 70~ is given,
since to a certain extent, the forces we consider here
have not yet been studied. The usual explanation for
the (8,4)~ states is the Cook-Lee? model of strongly
coupled D-wave baryon—pseudoscalar-meson and S-
wave baryon—vector-meson composites held together by
meson exchange. One also sees attempts to use the
nucleon-exchange pole leading to 3-3 isobar production.
Both of these, which acknowledge the inelasticity of the
(8,4) resonances with respect to the incoming meson-
baryon scattering state, involve D waves and so are
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importance of meson-exchange forces in generating the
70~ multiplet as an S-wave 56t ® 35~ composite.!s While
agreeing with this viewpoint and including it in our
model, we believe an understanding of S-wave reso-
nances with this mechanism alone is difficult to justify.
By including the 70~®35~ P-wave composite, we have
a natural resonance-generating mechanism with a long-
range attractive force and a centrifugal barrier.

We now turn to the calculation. There are three
vertices, two P wave, g(56*; 56*; 357), g(70—; 70—; 35-)
and one S wave, g(70~; 56t; 35~). The 70—:70~:35-
vertex is not unique, since the product 70~®35~ con-
tains 70— twice. However, in a bootstrap model where
the 70~ self-exchange force accounts for an appreciable
part of the 70—:70~:35~ vertex, it can be shown! that
the antisymmetric coupling of 70~ to 70~®35~, which
is proportional to the SU(6) generators, dominates, and
is thus used in this paper. Defining the dimensionless
coupling constants go= (D®,)"2g(56%; 56*; 357), g
= (D®,)"?g(70~; 56%; 357), ga=(DW3)"%(70~; 70—,
357), and mass difference x= (M[70]—M[56]) D>,/
D®, where

A RS
excluded from our model. The best known model for D(l)ﬂ:i Fde , (52)
the ¥¢*(1405), classified in this paper as (1,2)7, is that 1272/, on
of Dalitz and Tuan,”® who use an NK S-wave bound- A
state description. This possibility is included in our D® =_1_ kdw (5b)
calculation, although only as a small part, since the " Ag? wn
S U(6) Clebsch-Gordan coefficient for the Y¢*KN ver- *
tex is (32)"Y2. Capps has repeatedly stressed the we have the following bootstrap equations:
11 12 1/8\12 3710\
0o=—go+— 4% (1—2x)+—<—> ? +—(—> g, (1—2x)
1580 ( > ré2 \1s &08u a\3 r8u
g2 9/5\!2 378\ x 172\ x
o LA v ) el )l D
La s\ STTA\1s) ST o\ T/
7 5 1/2 2 1/2 1 2 1/2
—gt+— 2 (1+2x)+<——) ? +~<——) 20, (142x) ,
= (3) g’go ) e\ & )
Doz 11 512 975\
=—g"+—~(1 2x—nx)g4+< ) v (1—3n2)g0g1"g +-<—) (1—22)gog?’
DWK, 15 16 T Ta\s3 REREAEY sugree
572\ 3x 3/710\1/2 3/710\12 178\12
+—<—) (1—2x——>g2gg+~<—) (1= 3m)gegi'g +—(—> (1—22)g2 +—(—) ;
s\11 i\ ¥ BT\ s BTN/ B
7 1/2 9 5 1/2
1—gz+ (1+nx+2x)g (—E> vgog12g2(1+3nx)+g<£> (14-2x)gog1’ga
3/78\12 3p\ 172\2 172\12 2\12
+—(—> g (1+2x+——)+—(—) 782818 (1+3nx)+—(~> 20, (14-2x +<—> s, (6
) e STy e A\ g2g1°x (14 22) ) o (6)

10V, Singh and B. M. Udgaonkar, Phys. Rev. 139, B1585 (1965).
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where g, represents a dimensionless trimeson coupling

constant, A=1.05 BeV,

y=[D®,D®]/[DV;D®,],
and (N
n=[D®,D® /[ DD ].

A solution of this set of nonlinear equations was found
with go=0.87, g1=0.525, g,=0.55, x=0.26 (no other
solution was found). The most important contributions
to each vertex are shown in Fig. 2. The 56*:56%:35~
vertex is dominated by the 56* exchange graph and the
meson exchange force in elastic 56*®35~ scattering.
This is in accord with previous models of this vertex
employing lower symmetries, and also points out the
importance of meson-exchange forces in describing the
dynamics of the baryon states. Another interesting
feature of the solution is the near equality of the S
wave 707:56+:35~ and P wave 70—:70~:35 vertices.
Since we fix the cutoff A of the D,® [see 5(a), (b)] by
normalizing the 56+:56%:35~ vertex to give the experi-
mental value of the NN« coupling constant, we can
compare the theoretical 70~:56+:35~ coupling constant
with the experimental value as given by, for instance,
the ¥Y¢*(1405) — Zr decay width. Using a simple S
wave Breit-Wigner fit to the scattering amplitude, we
have

gy:z/4r=3T/k, @®)

where T is the decay width and % the final momentum
in the Y, rest frame. We find g(expt.)=0.38 while
g1(theory) =0.52, which is within the order-of-magnitude
agreement we ask of our results. A further comparison
of SU(6) predictions for the decay of particles in 70~
and the corresponding experimental widths is given in
Appendix C. Possible experimental determination of the
coupling g(70—; 70—; 357) is meager at this time, but
recent indications'® of the importance of the ¥'1*(1660) —
V¢*(1405) 7 decay mode is consistent with our result.

0 - -
- g
N\ T 2anf 2 ‘\\
b e,f c
b b

(a)

(b)
F16. 1. Vertex (a) and normalization (b) equations. -

16 P, Eberhard et al., Phys. Rev. Letters 14, 466 (1965); and
R. R. Rau, Phys. Rev. 143 1034 (1966).
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F1e. 2. Graphs in the 567:70~ vertex equations with large
coefficients. Single, double, and dashed lines represent 56+, 70,
and 46~, respectively.

’
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The mass difference between 56+ and 70~ corresponding
to =0.26 is 260 MeV and is of the correct sign.

Since our dynamics relies heavily upon the notion of
self-consistency, it is essential that the solution to the
bootstrap equations not imply any larger set of par-
ticles than was originally put into the model. We
study this point by determining the eigenvalues of the
“potential matrix” as described in Ref. 6. The basic
idea is that the bootstrap equations can be considered
a mapping of coupling constants

(8a)o=2_7 Vis(a) (ga) s, (92)

be (d) = Zc gcbgchabcf+Zp gjbg,‘Dabf. (9b)

In a given channel, self-consistency occurs if the trans-
formation V has an eigenvalue of unit magnitude and
all others smaller. The 56+:70~ solution discussed
above has a potential matrix with the following eigen-
values in the 56+, 70— direct channels: Ass=1.0, —0.02
and A=1.0, —0.02. Hence, this solution definitely
satisfies the self-consistency criterion.

A consequence of the use of SU(6) symmetry is the
occurrence of degenerate multiplets of particles. The
extent to which we can reproduce the qualitative
features of the actual mass spectrum is an important
point which we now discuss.” Probably the simplest
and crudest approach is the “effective-threshold”
method where one writes a Clebsch-Gordan expansion
for some state, uses real masses for the particles in the
expansion, and assumes that the mass of the state is
proportional to the resulting number. This works nicely
for the picture of 561 as a 56+® 35~ P-wave bound state,
predicting that (10,4)* has a bigger mass than (8,2)+
along with the correct strangeness ordering. If we take
70~ as a 56*®35~ S-wave state, we find in particular
the following ordering of particle states: N(10,2)~
>N@84)>Y*(1,2)~>N(8,2)~, where by N, Y,, we

17 Previous work along this line has been done by I. P. Gyuk

and S. F. Tuan, Phys. Rev. 140, B164 (1965); J. G Behnfante,

ibid. 140, B154 (1965); J. G. Koerner, Northwestern University
report, 1966 (unpubhshed) , and references cited in these papers. .

where
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F1c. 3. Graphs in the 56+:70~:20* vertex equations with large
coefficients. Single, double, and dashed straight lines represent

56*, 70~, and 357, respectively. The curved single line repre-
sents 20*.

mean the strangeness 0 and —1 members of the SU(3)
multiplets shown in the parentheses. Although there
appear to be at present two potential candidates for
the strangeness-zero (8,2) slot in 70—, neither is lighter
than ¥¢*(1405) and so the above qualitative prediction
is incorrect. A more accurate description of the 70~
spectrum must come from a study of its coupling to
both composites, 56*®35~ and 70-®35~. We do this
with SU(6) tensor analysis,'” concentrating on deter-
mining the effect of the meson mass splittings. If we
do not take assignment mixing (discussed in Sec. 2)
into account, we may accurately describe the meson
spectrum for P-wave assignments with tensors trans-
forming as 35 and 405, whereas the S-wave assignments
require 35 and 189. The effect of assignment mixing is
to admit small amounts of 189 mass-breaking effects
into the P-wave meson spectrum. Using expressions
derived by Belinfante" for tensors transforming as 189
and 405, we have the following relations for submulti-
plets of 70~

Xuos: M(8,4)=M(10,2)=M+0.85M,
M(82)=M,—2.15M,
M(1,2)=M,—5.15M. (10)

Xigo: M(8,4)=M(1,2)=M+24N,

M(10,2)=M,—3.6N,
M(8,2)=My—0.6N.
The main consequence of these relations is that the

high mass of (10,2)~ and low mass of (1,2)~ can be
qualitatively understood as due to a combination of the

E. GOLOWICH
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above tensors, whose origins lie in the P- and S-wave
vertices. Further, this analysis points to the Nn en-
hancement being preferred to the more elastic entity
near 1700 MeV as a candidate for 70—, However, re-
membering that the mass value of a given state is
properly a matter for a dynamical calculation, we feel
that more work remains to be done on this important
point.

4. DYNAMICS OF THE MULTIPLET 20
A. Positive Parity

There are rather strong experimental and theoretical
motivations for studying the possible occurrence in
nature of a positive-parity 20-dimensional multiplet of
SU(6). Phase-shift analyses show a strong attraction in
the Py state of the mV system!!® and production experi-
ments indicate an enhancement in mass distribution at
center-of-mass energy 1.4 BeV with the spin-parity
quantum numbers of the nucleon.® Noting that the
content of 20* is (8,2)t@(1,4)*, we interpret the above
as evidence for the strangeness-zero number of the
octet. There is no clear evidence yet of a spin-§ unitary
singlet of positive parity, which may not be surprising
if the resonance is highly inelastic with respect to
pseudoscalar-meson-baryon scattering states. From our
dynamical point of view, a study of the relevant SU(6)
crossing coefficients indicates sufficient attraction in
both 70~®)35~ and 20+X)35~ to warrant a bootstrap
study of this system. The situation is not completely
clear, however, since there is an ominous mutual re-
pulsion of 20+ and 56 in 70-&)35~ scattering whose
effect can only be judged by completely solving the
bootstrap equations.

In view of this 56%:20* repulsion, we first determine
whether the 70—: 20+ system contains sufficient attrac-
tion by studying a 70—: 20+ bootstrap model. This model
includes a mechanism for 20+ previously advocated by
Capps,s a 70-®35 composite held together by meson
exchange. In addition, there are all possible meson and
baryon exchanges allowed by SU(6) occurring in the
internal structure of the following vertices: go= (D®y)1/2
Xg(70—:70:357), gs= (D®)2g(70—; 20*; 357), ga
= (DW,)12¢(20F; 20+; 357). The only mass difference
occurring here is described by the parameter x= (M[20]
—M[70])D®3/D®,. A seli-consistent solution for the
70—:20* bootstrap equations exists with g,=0.69, g4
=0.82, g3=0.46, x=—0.205. These equations can be
obtained from the 56:70:20+ equations [Eq. (11)] by
omitting all factors referring to 56+. We proceed im-
mediately to a discussion of the 56+:70—:20* system
since there is no inherent interest in a 70—:20+ model
other than showing a 20+ may exist at that level. In
searching for a solution of the 56+:70—:20+ equations,
we note that both the 56*:70— and 20+:70~ models

18T, D. Roper, Phys. Rev. Letters 12, 340 (1964).

19 E. W. Anderson et al., Phys. Rev. Letters 16, 855 (1966);
G. Belletini et al., ibid. 15, 167 (1965); S. L. Adelman, ibid. 14,
1043 (1965).
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have a solution with the 70~ the less tightly bound of with the 70~ bound as tightly or more tightly than either
the two. Since both 56+ and 20+ attract 70— and in- the 56* or the 20+. This turns out to be the case as we

directly repel each other, one expects to find a solution solve the equations

11 9/5\n 178\ 371017
—g3—|-( ) 2 (1—2x)—|——(—> 2 +—(—) 2y (1— 22,
T g B Ito) s tgly) elel—2e

l:g1+ <5>1/2 +1(2 1/2 < X1 +3<8 12 (+x1 ' )
=] — 1—— )4+~ — 14— )—gf(1—x1—x )
BT s\ss) B 11) s 7) 4 15) ok 7) s 2]g1

7 95\ 2\ 112 172\
TS 2 (1+2x)+(——> 2 +—(—) 2 (1422
ST <33> gr80 Y1) 8T\ o v

5,7\ 3/2\12
+—<—) g32g4(1—2x2)+5<ﬁ) g5°gu(1—2x2) ,

7\11

1 g3 3/72\? X9 1/2\12 1 X9
ga—[— (+x1+xz)+(77)112g2g4+ +- (11> gzgu(1+;>+-2‘<;> g4g,‘( ”‘;)]ga,

3 5,7\ N\ 1/2 T\1/2
g4—;g43+ (11> g32g2(1—|—2x2)+<;> g42g,.+(g> g5°gu(1422) ,

[DW, 11 178 \1/2 \ : Sy 0512
= M Al B
DW,K, 15g ot <15> gogn+g1|:16(1 2061 —n%1) g1 +4<33) v(1—39x1)goge

(3

112 572\ 311 3/10\12
) 1- 2x1)gog2+( > (1~2x1———)gzgu+—<——> v (1—31%1)gogu
8\11 % 8\ 3
1/2 5
) (1—2x1)gog“—zy(1—2x2~n(2x1+x2))ga2]
7 2\Y 0/5\1/2
=Hg24+(ﬁ> g2gﬂ+gl|: (1+nx1+2x1)g12+—<§g> v (14-3721)goge

9/5 3/8\12 172\
+ (33) (1+2x1)gogz+;(1§> (1+2x1-|— )gog,rl- (11) (14-3n%1) g8

27\1/ 7\ 12
"Z—(H gzgu(1+2x1)]+g3|: (1—17x2—2x2)832+;<ﬁ) ¥ (1= 3nx)gags
57 7\
;<—1—1 g284(1—2x2) — g2 (140 (221+w2) — 22)+ (1—1 (22+%1)+ 221))
112 Bus 372\ 32\
i ) a2 ]
\7) & *2 " + " v(1—3nx)gsg +2 " (1—2x2)g2g

1/2
—g4 At-g? |:—7(1+2x2+nx2)g32+ ( ) v (14-3nx2)g2g4
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where go, g1, g2, 7, 7, g are as in Sec. 3, g3, g4 are as
defined previously in this section, x;= (M[70]—M[56])
XD(Z)a/D(z)z and x,= (MEZO]—M[70])D<2)3/D(2)2 The
solution referred to above is go=0.95, g1=0.16, g.=0.87,
23=0.39, g,=0.685, x;=—0.05, x2=—0.065. No other
solution was found. The largest terms for each vertex
are shown in Fig. 3. Before examining these numerical
results, we consider to what extent quantitative sig-
nificance should be attached to them. The main point
is that in SU(6), the vertex 56+:20+:35 is zero whereas

a phenomenological coupling constant obtained from

the N*(1400) — N7 width is fairly substantial. In view
of our crude kinematics and the inadequacy of SU(6)
to properly describe the 56+:20+:35~ vertex, we ex-
amine the results for their qualitative features only.
The most important aspect of the solution is the near
degeneracy of the 56t, 70—, 20+ masses, the values of
%1, ¥2 corresponding to 56%: 70~ and 70~: 20+ mass dif-
ferences of 53 and 65 MeV as compared to an average
meson mass of 750 MeV. This means that there do exist
important attractions for the 20+ which, according
to this model, are probably strong enough to produce
resonances even with actual masses and coupling con-
stants used. As before, the internal structure of the 56+
system is a consequence mainly of self-exchange and
meson-exchange processes in 56t(X)35~ composites. The
70— behaves in this model in an analogous manner.
However, the 20* is a more complicated entity, relying
heavily upon both itself and 70~ in its internal structure
(see Fig. 3). The array of forces seen in this 56+:70—: 20+
model leads to a partial understanding of the strong
inelasticity seen in meson-baryon scattering experi-
ments in the resonance region. Inclusion of the spin-3
decuplet of isobars and the vector mesons into 56+ and
35—, respectively, along with the spin-} baryons and
pseudoscalar mesons implies the dynamical equivalence
of all these particles and naturally explains the ease
with which the former pair are produced experimentally.
Study of the forces generating the 70— multiplet not
only explains the generation of most of the observed
negative-parity states but also describes the inelasticity
of these states relative to the original scattering states.
Also, interpretation of the 20% as, to some extent, a
baryon-two-meson composite and the importance of
70—:20* forces gives us a look at a whole range of
dynamics lying outside the simple pseudoscalar-meson—
baryon two-particle system.

Analysis of the “potential matrix” (described in Sec.
3) shows that the solution is self-consistent in the
56+, 70—, 20+ direct channels, having eigenvalues there
of A(56¥)=1.0,0.21; \(70~)=1.0, 0.55, —0.05; A(20%)
=1.0, 0.21. Anticipating the discussion of 20~ given in
the next section, we also examine the potential matrix
in the 20~ direct channel as reached by 70~®35~ and
20+35~ scattering. The potential matrix is now a
function of the 20~ mass, so we can determine what
mass value will give an eigenvalue of 1 or assume the
mass to be small and determine the resulting eigen-
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values. In either case, we find a large cancellation of
attractive and repulsive forces such that there is no
evidence for generating 20~ with the solution found in

the 56+, 70—, 20+ model.

B. Negative Parity

As with the 20+, there are both experimental and
theoretical reasons for considering the possible existence
of a negative-parity 20. On the basis of dynamical argu-
ments? and decay branching ratios, there is little doubt
that the spin-§ ¥¢*(1520) is a unitary singlet, and as
mentioned previously, there appear to be two isospin-%
S-wave resonances in the mN system. Thus, the avail-
able states in 20, i.e., (8,2)"@®(1,4)~, have experi-
mentally observed candidates. A study of the relevant
SU(6) crossing matrix elements shows that there are
several attractive forces for the 20~ and no mutual
56t:20~ repulsions. However, there do exist some mu-
tually repulsive 70~:20~ forces, a circumstance which
makes it necessary to study first the 70—:20~ system
to ascertain whether the 20~ is bound (addition of 56+
to the model will only tend to bind 70— more tightly
without affecting 20). This model was studied and no
solutions were found, implying that the 70~ repulsions
are too great to overcome. The only other possibility
for generating a 20~ lies in a 56+:70~:20+:20~ model in
which the parity doublet contains strong, attractive
self-exchange forces. We emphasize that even if a solu-
tion to such a model is found, it would lie far from
reality in the sense that experiment implies the states
we wish to put into 20~ are strongly coupled to the
pseudoscalar-meson-baryon system. However, it could
point to a connection between the ¥¢*(1520) unitary
singlet and a higher mass octet of S-wave resonances.
Therefore, we have undertaken a study of the 56%:70~:
20+:20~ system and have found a solution having the
following features:

() 56+ and 70~ are nearly degenerate, lying roughly
300 MeV above an approximately degenerate 20+:20~
parity doublet;

(ii) The 20—:70—:35 coupling is almost zero, as
expected from the above discussion.

The next step is to see how a more realistic model
might affect the solution. For instance, consider how
the unphysical mass difference (i) would change if the
20 states were allowed to couple to 56+. First, the bind-
ing of the 56+ would be strengthened by these couplings.
A larger effect might come from the decreasing im-
portance of graphs involving only 20:20:35~ and
trimeson vertices. The trimeson vertex, an input not
determined by our calculation, is the source of “re-
generative feedback” effects, brought on by the im-
portance of the meson-exchange graphs which to a large
extent produce the tight binding of the 20+:20~. Reduc-
tion in the relative importance of these graphs in a
more realistic model might vitiate the feedback effect,
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TasirE I. Born phase shifts in various partial waves of S=1;
T=0,1 channels. W is the center-of-mass energy in the KN
system. The states of definite angular momentum and parity are
denoted by Lj, where L is the orbital angular momentum.

S=1 T=0
W (MeV) Py Py Ds/2 D32 Frye Fyys
1600 —13.0 546 —0.7 3.6 —0.2 0.5
1815 —339 big —4.3 142 =28 43
S=1 T=1
W (MeV) Py Py Dyg)e Dyys Fap Fy)s
1600 3.6 —19.7 03 -—-20 01 -02
1815 49 —455 —0.6 —99 02 -—17

thus reducing the binding of the parity doublet. Also,
if we decrease the size of the input trimeson coupling!!
to correct for a possible overestimation, the binding of
the parity doublet decreases relative to the 56+:70~.

5. KN SCATTERING EFFECT

Structure has recently been seen in K-D scattering®
with baryon number one, strangeness one, and isospin
zero.?! In this section we make a prediction based on
long-range forces as to the spin and parity of this
effect and the likelihood of observing related structure
in channels of different strangeness.

Working along the lines of Ref. 4, we compute the
Born phase shift for 77=0, 1 KN scattering in states of
definite angular momentum and parity as generated by
the exchange of the following particles: ¥1*(1385),
Y *(1660), A, =, V¢*(1647), p(750), ¢(1020) (vector and
tensor coupling). Noting that such an analysis cannot
be trusted for .S waves because of the lack of a cen-
trifugal barrier, we plot in Table I P-, D-, and F-wave
Born phase shifts. There is a large attraction in the
T=0 Py, partial wave and no similarly large value
elsewhere. The main contributors to this force are the
¥ 1*(1385) exchange and the tensor coupling of vector-
meson exchange. We therefore conclude that the 7=0
KN system has the potential of exhibiting structure
due to either a resonance in the Py channel or a sudden
variation in the wave due to the opening of an inelastic
channel, say K*N, which opens just 35 MeV below the
reported structure. At present, the phase-shift analysis
reaches only 1600 MeV and predicts a large P wave of
unknown parity since no polarization information has
been obtained. It appears unlikely that a deep under-
standing of the 7’=0 effect will come until a phase-shift
analysis is carried out at higher energies.

The SU(3) classification of the 7=0 KN system is
10. A natural question to pose is how large the forces
are in the other Py, 10 states and, in particular, whether

2 R. L. Cool ¢ al., Bull. Am. Phys. Soc. 11, 326 (1966); Phys.
Rev. Letters 17, 102 (1966).

21 There is also possible structure in the 7=1 channel but this
can only be ascertained after much more careful treatment of the
data. Note that in Table I there are no strongly attractive forces
for T'=1, implying that any structure is probably related to isobar
production.
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the Py, S=0 effect at 1.4-BeV energy could be re-
lated.?? Using the methods of Ref. 4, we investigated
this point and found all forces at a given energy to
typically be less than that occurring in the 7=0 KN
channel, the ordering being S=0, T'=1; S=—2, T'=%;
S=—1, T'=1 in decreasing strength. This analysis pre-
dicts that it is not likely that one should expect to see
structure in Py, 10 states other than the KN channel
at center-of-mass energies below 1.7 BeV, which rules
out the 1.4-BeV entity. Also, the forces show that the
equal-spacing rule will not occur here. On the other
hand, we wish to point out that there is evidence for a
strangeness 0, Py resonance in the 7V — AK reaction,
which peaks at roughly 1.7 BeV with a total cross sec-
tion of over 1 mb. As shown by various phenomeno-
logical analyses,® the Py, assignment is consistent with
polarization and angular-distribution measurements.
The Py effects just discussed certainly warrant further
study, particularly since they represent fairly strong
evidence for the appearance of an SU(3) family of 10
resonances. In view of the large mass of these states
and the present uncertainty of their existence as reso-
nances, we make no attempt to classify them according
to SU(6) at this time.?

6. CONCLUSION

In the first part of this section we list and discuss
the most important of our results, and then proceed in
the second part to comment on excited states of the
baryon spectrum.

(1) The SU(6) multiplets 56+ and 70~ have been
put on a dynamically firm footing on the basis of a
self-consistent bootstrap model. In this model, the
negative parity 70~ is seen to couple equally strongly
to S-wave 56t®)35~ and P-wave 70~X)35~ composites.
The next step in understanding the physics of these
multiplets is the abandonment of a strict SU(6) de-
scription with the introduction of mass nondegeneracy
in a given multiplet and coupling-constant deviations
from SU(6) values. A brief study carried out in Sec. 3
indicates the qualitative success of such a program. A
further consequence of this model is that dynamics of the
baryon spectrum relies upon both baryon- and meson-
exchange processes and any calculation which omits
either is likely to prove inadequate.

(2) A positive parity 20 can be dynamically generated
in a 56+, 70—, 20* bootstrap model. The correspondence
of this model with reality suffers from the lack of a
56+:20%:35~ coupling in SU(6), but there is strong
evidence for suspecting the existence of 20+ in nature.

22 C. Lovelace, CERN report, 1965 (unpublished).

% G. T. Hoff, Phys. Rev. 139, B671 (1965); H. Thom, bid.
151, 1322 (1966).

2¢ However, we note that the multiplet 700 contains an anti-
decuplet of Pys states and that use of the wave-function approach
for determininé mass splittings (described in this paper) applied
to 700C56®35 indicates the Py 10 particles would have lower
mass than any other states in 700.
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In particular, we assign the P13 N*(1480) effect to this
multiplet. We wish to point out that the 7V P;; ampli-
tude contains both a probable resonating part as well
as a strong, highly absorptive background, and further
phenomenological analysis is necessary to produce a full
comprehension of this complex situation. The success
of the 56*, 70—, 20+ model points to important forces in
multimeson-baryon systems, thus helping us to under-
stand the large amount of inelasticity present in the
resonance region.

The main purpose of our study of 20~ was to investi-
gate the possibility of relating the ¥*(1520) unitary
singlet to an octet of S-wave resonances containing
N*(1700). Subsequent discovery of a solution to the
561:70—:20*:20~ model rasies the intriguing possibility
of explaining all baryon states of spin<$ and mass<1.7
BeV by means of four multiplets of particles. The next,
essential, step is to explain how the 20~ states could
become strongly coupled to the pseudoscalar-meson—
baryon system.

(3) On the basis of a study of long-range forces in
pseudoscalar-meson-baryon scattering with real masses
and SU(3) coupling constants, we predict a Py, effect
in the isospin-zero KN system. Examination of 10
states in channels of differing strangeness shows the
decuplet equal spacing behavior does %ot hold here, and
the S=0 forces are not strong enough to generate the
Roper effect. However, there may be a Py» 10 reso-
nance with zero strangeness which appears as a peak
in the 7N — AK cross section at roughly 1700 MeV.

We conclude with remarks on excited states in the
baryon spectrum. Probably the chief motivation for
this paper is an attempt to explain as many as possible
of the baryon states with spin <§ by means of a few
fundamental entities, and we use group theory to ac-
complish this. At present there appears to be no
group-theoretic way for describing the high-spin states.
Seemingly SU(6)X0(3), in which one vectorially adds
angular momenta J=1,2,3, --- to an SU(6) ground-
state angular momentum, gives far too many states to
fit the observed pattern. However, in analogy with
previous work done using SU(2)? and SU(3)*, we may
be able to predict which “excited states” of our ground
state are likely to appear. It can be shown for pseudo-
scalar-meson-baryon systems? that a potential arising
from single-particle exchange processes which is at-
tractive for some orbital angular momentum L will also
produce attraction for states of L42, L4, --- with
decreasing strength at a given energy due to centrifugal
barrier effects. That is, the AJ=2 recurrence picture
of the baryon states in a natural consequence of the
exchange forces. Conjecturing this to be true for the
general spin case, the P-wave 56+:56%:35~ vertex
becomes an F-wave interaction. The spin (§)* octet
thereupon predicted has been experimentally verified
and at least two members of the spin (§)* decuplet
have been detected. The excitation energy here is
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roughly 700 MeV. The excited 70~ has at this time at
least two experimentally observed candidates, the ()~
N*(2190) and (%)~ ¥1*(2260), which we interpret as
excited states of the spin-3 particles N*(1520) and
Y1*(1660). The S=0, D15 resonance at 1700 MeV can
be interpreted as an excited state of S11 N*(1500) only
if there is a mechanism for explaining the abnormally
low mass of Dj; and the high mass of S1i. Recently
Auvil and Brehm have analyzed the D;5 using a Cook-
Lee type approach with an S-wave N*(1238) —p final
state. This non-SU(6) mechanism could conceivably
lower the Dy; mass by several hundred MeV. It is
possible that SU(6) symmetry-breaking effects can in
part explain the high mass of the Sy particularly if the
coupling-constant deviations which couple this and
sister states so strongly to p-baryon composites are
taken into account.
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APPENDIX A: EVALUATION OF CERTAIN
CROSSING COEFFICIENTS

We exhibit here techniques employed in evaluating
inelastic crossing coefficients. Since we assign the mesons
to 35, the regular representation of SU(6), and consider
only the antisymmetric coupling of 70~ to 70-&)35-,
the Clebsch-Gordan coefficients, Cg%, describing the
vertex RCR®35~, where R=20, 56, 70, are propor-
tional to the generators Ga® of SU(6). We use Greek
indices for states belonging to 35 and Latin indices for
states of 56, 70,20. The proportionality is fixed by
adopting a particular normalization for the Clebsch-
Gordan coefficients. In particular, if

Cap*Cap®= da l} (Al)

where d, is the dimensionality of the multiplet to which
state a belongs, we have the symmetry relation,

Car?=(do/da)?C 0, (A2)

where the phase has been chosen positive. The second-
order Casimir operator and the “square” of the group
generators are related:

TrG2=G*(a)d,. (A3)
From (A1) and (A3),
Gar*=((do/d)G*(a))*Car*. (A4)
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Fi1c. 4. (a) Diagrammatic
representation of projection
operator. (b) Crossing coeffi-
clent describing projection of
crossed-channel state 7 into
direct-channel state x. The
states b, x belong to the same
irreducible representation as do
the states 7, a. (c) Crossing co-
efficient upon reshuffling of in-
dices, corresponding to the
analytical expression (A6).

Hereafter, Cop® stands for an arbitrary Clebsch-Gordan
coefficient, proportional to a generator only when
specified.

With our normalization, the projection operator,
Pig,aa, shown in Fig. 4(a) has the form

Prg,aa=CrsCaq’.

The projection of a state 7 belonging to multiplet R
in a crossed channel to state x belonging to multiplet X
in the direct channel is described by the crossing
matrix element A, which is evaluated as follows:

Cos"Cpa"=AC45"Cop™t- - -,
Caa®Crp"Crs"Cpa”= AC1a?Cas?,
A= Caa”Cbﬂbea’C,gJ/da .
Consider evaluation of the class of crossing coeffi-
cients shown in Fig. 4(b). By a shuffling of indices using
(A2), we may express the crossing coefficient in the

form seen in Fig. 4(c), which corresponds to the
analytical expression

A= (dy/de?)CaP[Caa®Crr*]C 1.
Using relation (A4), we may express (A6) as

G* (@) —G*(a)—G2(b) :l

(AS)

(A6)

A=(§f)m[62<a>cz<b>}w[
’ (A7)

Throughout our calculations, we choose the phase of
(A7) to give positive values for the coupling constants.

APPENDIX B: EVALUATION OF A
DYNAMICAL FACTOR

For definiteness, consider a vertex consisting of two
baryonic particles of opposite relative parity and an
S-wave pseudoscalar meson. We first treat the angular-
momentum decomposition of the vertex, starting with
the interaction term

ghviot+He, (B1)
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where we temporarily ignore internal symmetries. A
momentum-space decomposition in a Cartesian basis
yields in the baryonic spin space

2(k)
¢k+H.C.,
(20V)i2

g2k (B2)

where v(k) describes the baryon structure in the static
limit, w(k) = (k*4%2)'2 is the pion energy, and V=vol-
ume of box quantization. Expanding ¢, in a spherical
basis, we have

¢k=%((2;)3)m(§)mzm,z(—almm(szk)alm(k), (B3)

where R is the radius of sphere quantization. Then we
have
v(k)

g k )
— (22 Yk 1 m —— (=) Y ™ (Qu)a™ (k)
v Beoll?

R [
- / o) i (=) @0 (8) , (B4)

dn? J ko'l
noting that > x — V (27)*/ d%. Thereupon,
g R\'2 r* kdk
<——) / —(k)ad (k).
Jo 1/2

(4n2)12\ 1 I3

(BS)

We now consider a particular term in the expansion
of an S-wave vertex as shown in Fig. 5(a). Considering

ﬁbz 0=\e + LI
b
N A eSS
a b @ b o 7

(@)
(b)
Fic. 5. (a) S-wave 70-:56%:35~ vertex along with a particular

contribution. (b) Three time orderings of vertex contribution
shown in (a).

only the contribution of the first time-ordered process
shown in Fig. 5(b), the dynamical factor has the form

(47r2)‘”2q—v§z—)Gabg(70:56:35)
w

0 2 9
— (47r2)_1/2q7)(Q) GafGefGeb/ Li; (k)k dk
0

472
3(70:56:35
g( ) .. (B6)
(w0+M;—M,) (0+M,— M)

w2 3




1476

which reduces to
1 kdw
5;5/ (ot M= M) (- M~ I3)
£2(70:56:35)
X-—'4—————+ .

£(70:56:35)=

where the factor of 1 is the relevant SU(6) crossing
coefficient for this process. We consistently neglect
contributions of baryon-exchange graphs corresponding
to the latter two time orderings since such graphs are
notorious for giving unrealistically large forces in a
study of single-particle exchange processes.

APPENDIX C: COMPARISON OF SU(6) PREDIC-
TIONS WITH SOME EXPERIMENTAL
DECAY WIDTHS

Since comparison of 56+:56%:35~ coupling constants
with experiment has been treated rather extensively in
the literature, we restrict ourselves to decays of the
70— multiplet. In order to systematically relate decays
into final baryonic states of spin 4 and 3, we use the
results of free-field Lagrangians.?> With the notation J?»
(initial baryon) — J? (final baryon)+J7 (final meson),
we have

30
:® Mg T
£ 5r - (C1)
4r  k E+
3= 30
g2 3M, T

. (C2)
dr  k [B(E+M)+ (QF/3M2)(E+2M)]

- 1—~.
’-‘)§O :

N

¢ 3M, T
4r B E+M

% J. G. Rushbrooke, Phys. Rev. 143, 1345 (1966).
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TasiE II. Comparison of experimental and SU(6) coupling
constants of 70~. M is the mass of the decaying state given in
pion masses and T is the partial width. The experimental values
used are taken from references.

g g
Mg I' —(expt.) —(SU(6))*
Decay M) MeV) 4r 4r
Nu* (1557) — N« 112 110 0.06 0.06
Nyt (1700) —» N7 122 210 0.09 0.06
Nyt (1690) — N= 121 130 0.10 0.09
Yot (1405) — = 10.1 35 0.045 0.045
7+ (1660) — V,+(1385)r 11.9 8 0.01 0.03
=t (1820) —» =2+ (1530)= 13.0 4 0.003 0.03
Nyt (1525) — N+ (1238)x 109 25 0.03 0.12

a Normalized to correct Yot (1405) value.

where M =mass of final baryon, M ,=mass of resonance,
I'=partial decay width, E=energy of final baryon in
resonance rest system, and kZ=momentum of decay
particles in resonance rest system.

The experimental values and corresponding coupling
constants are shown in Table II. Since there is evidence
for two S-wave resonances of isospin % in the 7V sys-
tem, we have assumed each to belong to 70~ for com-
parison. The resonance parameters for these states are
taken from Refs. 1 and 26. In general, the numbers in
Table II indicate order-of-magnitude agreement be-
tween SU(6) and experiment. The two Sy; N* reso-
nances each give a reasonable fit to the experimental
N partial width, so there is no reason to reject either
on this basis. Decay of this state into the Ny channel is
forbidden by SU(6). No information is available on
the N*(1700) — Ny partial width although this reso-
nance appears to be rather elastic with respect to the
N system. However, N*(1557) decays strongly into
Nn, having a phenomenological coupling constant
g (N*Nn)/4w=0.16. Therefore, examination of coupling
constants favors slightly the assignment of N*(1700)
to 70— over N*(1557), although in view of the over-all
deviation from SU(6) predictions, this result is not
convincing.

26 F. Uchiyama-Campbell and R. K. Logan, Phys. Rev. 149,

1220 (1966) ; A. H. Rosenfeld et al., University of California Lab-
oratory Report No. UCRL 8030, revised, April 1966 (unpublished).



