PHYSICAL REVIEW

VOLUME 153,

NUMBER 5§ 25 JANUARY 1967

Subtractions in Dispersion Relations*

W. S. Woorcock
Depariment of Physics, University College London, London, England
(Received 20 June 1966)

Assuming the unitarity bound in the physical region on a partial-wave amplitude for an elastic scattering
process, and assuming further that the amplitude satisfies a dispersion relation, it is shown that the necessity
for subtractions in order to make the integral over the left-hand cut converge implies an oscillatory behavior
of the discontinuity across the left-hand cut, the violence of the oscillations increasing with increasing number
of subtractions. A theorem given by Sugawara and Kanazawa is provided with a rigorous proof and is
applied to pion-nucleon and kaon-nucleon dispersion relations.

I. INTRODUCTION

HIS work arose from a study of the implications of
the unitarity bound, in the physical region, on a
partial-wave amplitude for an elastic scattering process,
for the behavior of that amplitude when continued into
the complex s plane (s being the square of the total
energy in the center-of-mass system). In particular,
assuming that the amplitude satisfies a dispersion rela-
tion, is it possible to make any statements about the
number of subtractions required or about the behavior
of the discontinuity of the amplitude across the left-
hand cut? Jin and Martin! have shown, using also the
threshold behavior of the amplitude, that, independ-
ently of the number of subtractions, there is a minimum
fluctuation of the sign of the discontinuity across the
left-hand cut which increases with increasing angular
momentum. In Sec. IT of this paper we prove a quite
different type of result, one which relates the necessity
for subtractions in order to make the integral over the
left-hand cut converge, to the existence of an oscillatory
behavior of the discontinuity across the far left-hand
cut, the violence of the oscillations increasing with in-
creasing number of subtractions.
This led to an attempt to provide a rigorous proof of
a theorem given by Sugawara and Kanazawa.? Such a
proof is given in Sec. III, with sufficient conditions
clearly stated. Finally, in Sec. IV we give an application
of this theorem to a case of practical interest, the pion-
nucleon and kaon-nucleon dispersion relations.

II. PARTIAL-WAVE DISPERSION RELATIONS

Let f(x) be a partial-wave amplitude for an elastic-
scattering process, x being the square of the total energy
of the two particles in the center-of-mass system. (We
adopt standard mathematical notation, since we shall
state the main result of this section as a mathematical
theorem.) It follows from the unitarity of the S matrix
that f(x) may be represented in the form

f(@)=[n(x)e** = —17]/2iq(x)
for x>y, where xo= (m1+ms)?, m; and m. being the
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1Y.S. Jin and A. Martin, Phys. Rev. 135, B1369 (1964).

2 M., Sugawara and A. Kanazawa, Phys. Rev. 123, 1895 (1961).
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masses of the two particles. Here 0<9(®)< 1, 6(x) is
real and ¢(x) is the magnitude of the momentum of
either particle in the center-of-mass system.

We now define the real-valued function F(x) by

QQI / d /
F(x)=Ref(x)——1P / Imf=)er (1

w X—x

for x> x,. We suppose that Imf(x) satisfies a Lipschitz
condition for each x>x,; this will ensure that the
principal-value integral exists. The integral clearly con-
verges at infinity, since 0<Imf(x)<1/¢(x) and
g(x)~1xl/2 as x — 0, Now suppose further that

|Tmf(x+k)—Imf(x)| <K|h|*, (0<K,0<a<l),

uniformly for all sufficiently large x and for |%| <1, say.
This condition includes the possibility of cusps in
Imf(x) at energies where inelastic thresholds open up.
It then follows?® that the principal-value integral in (1)
approaches 0 as x — . Since |Ref(x)| <1/2¢(x), we
have F(x) — 0 as x —, '

The Mandelstam hypothesis? enables us to assert that
f(x) is the boundary value, as x approaches from above
the segment x> x of the real axis, of an analytic func-
tion f(z) whose other singularities in the z plane are
deducible from the postulated singularity structure
of the .S matrix. For strong-interaction processes of
interest, these singularities consist of poles and cuts
in the finite z plane and a cut extending to — o« along
the negative real axis. Singular points of f(z) occur in
complex-conjugate pairs and f(z*¥)=f*(z) when z is not
a singular point. In writing dispersion relations below,
for convenience we omit terms arising from the poles
and cuts in the finite 2 plane, since these do not affect
our argument. (These omitted singularities may include

3 W. S. Woolcock (to be published). Under the slightly stronger
condition that

[+ Imf(e+h)—212 Imf(x) | <K |k|%  (0<K, 0<a<1),

uniformly for all sufficiently large x and for |%| <1, say, it may

be shown that
jm Imf(x)dx’'
P| =
0 X —%

where C is a constant. This stronger result does not lead to an
improvement of the theorem we are going to prove.

¢S, Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741
(1959) ; 115, 1752 (1959),
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a cut extending below x, if inelastic channels are open
below the elastic threshold.) We simply take f(2) to
have the two cuts (— o, —xo] and [xo,%), with xo> 0.
For each x such that |x|>x,, we assume that f(z) ap-
proaches a limit [which we shall denote by f(x)] as
z— x from above the real axis. We shall use this word-
ing in the statement of theorem 1, but its precise
meaning needs to be made clear. Given an arbitrary
>0, we mean that it is possible to find a §>0 such
that | f(z)— f(x)| < e for all z for which |z—x| <8 and
Imz>0. Note that f(x) is a continuous function of
for each x with |x|>xo, and that the discontinuity
across either cut is 27 Imf(x).

In order to write a dispersion relation for f(z) it is
sufficient to assume that there exists a non-negative
integer NV such that

f@)/z -0,

Applying Cauchy’s integral theorem to the function
f(2)/2¥ and assuming that f(z) (z5Fx0) — 0 as z— ==x,,
uniformly for |arg(zFxo) | < 7, we see that, if z is not a
singular point and R>max{x,,|z|}, then

uniformly as |z|— for |args| <.

j="5 L / il
=0 gN=i g ). ¥’V (' —2)
1 = Imf(x')ds’ ' 1 f(&)ds
+1—r /_R V(' —3z) 7 i 2N (3 —2) '

The constants a; are real; the last integral is taken
round the circle |z| = R. Now as R — o, the last integral
approaches 0. But the first integral converges as R — o,
and so, therefore, does the second. Multiplying by 2%,
we have

—00 I !
f(z) Z anJ_‘_ M

T J oz &V (x'—2)

+ﬂ =20 Imf(x’)dx’. @

T Jow V(& —2)

We use an arrow always to indicate that the limit of a
Riemann integral is being taken.

We now use the following identity® to alter the form
of the dispersion relation (2):

z/x(x—2)=1/(x—2)—1/x.

Suppose that % is the smallest non-negative integer for

which

exists; clearly #<N. Successive applications of this

Imf(x)dx

xn+l

8 The argument given here was also used by J. Hamilton, T. D.
Spearman, and W. S. Woolcock, Ann. Phys. (N.Y.) 17, 1 (1962)
and by J. Hamilton and W, S. Woolcock Rev. Mod. Phys 35,
737 (1963)
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identity then give the dispersion relation
: = Im f(x')dx’
= Z 4 Z’-&- B
7=0 ™ J oz x —2Z
z* o Imf(x')dx’
+—[ ===
T J o (' —2)

where the real constants 4; will in general be different
from the constants a;. Since Im f(x) satisfies a Lipschitz
condition for each x> x,, it follows that

1 /—m Imf(x')dx . IP/—’“’ Imf(x)dx i)

Tz @ —2)—iy 7 Joz o—x

as y— 0 from above. Therefore, using Eq. (3), we see
that the function F(x) defined in Eq. (1) has the
representation

N1 ==z | Ndx'
F=E 4 / Imf@E

A —a)

To see the consequences of the fact that F(x) — 0
as z—x, we write Eq. (4) in the form

1 === Imj(x')do’
- / Imj=)ds L E@/an (5)

T (& —2) k=(n—N+1)  gF

By a standard theorem,® the integral on the left side of
(5) approaches 0 as x — . Since the second term on
the right side also approaches 0, it is clear that the sum
in the first term on the right side must begin with the
term A,-i/x; all the constants A,, -+, Ay—1 must
vanish. Hence Eq. (3) becomes

—noI ’d
@)= EA;Z’-F il
TJoz *—3
n -—)—zoI Id/
i_/ mf(x)x' ©)
T Jow «(x—3)

This means that if # is the number of subtractions re-
quired in order to make the integral over the left-hand
cut converge, then the degree of the polynomial in the
representation (6) of f(z) is (n—1).

To obtain the most interesting result, note that Eq.
(5) may now be written

1 /"—x" Imf(x')ds’

™

hid An—k
-3

22 —x) k=1 %

—>—00

This means that, if #> 1, we have
/"“’0 Imf(z)dx'

e )~—1rA,._1/x as
e XM —x

X—>®0 .

8 D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, New Jersey, 1941), Chap. VIII,



153

Further, since # has been chosen to be as small as
possible, we know that, whenn > 1, S-_, [Imf(x)dx/x"]
does not exist. We now appeal to the following theorem
of Hardy and Littlewood”:

Let g(x) belong to L(0,X) for every X>0, and let
the integral
—° o (%' )dx'

o ¥4z

converge. If a constant K >0 exists, such that either
(1) gx)>—Kx! (0<x<»), or (i) glx)<Kx
(0<x< ), then f(x)~Ax" (x— ) implies that

fx)=

/_M glx)dx=A.

It is clear that, for the theorem to hold, it is sufficient
that either of the conditions (i) and (ii) hold for all
x> X, where X is some positive number. The application
of the theorem is straightforward; neither of the con-
ditions (i) and (ii) can hold for Imf(x)/x* when #>1.
It is therefore impossible to find constants K >0, X > x,,
such that either Imf(x)>—K(—x)"'! or Imf(x)
<K (—x)**for all < —X. Thus, if > 1, Imf(x) must
have an oscillatory behavior as x — — e, and this oscil-
latory behavior becomes more violent as # increases.

We conclude this section with a full statement of the
results we have proved.

Theorem 1. Let f(2) be an analytic function, regular
in the whole z plane cut along the real axis from x, to
o and from —xo to — o (xo>0). Suppose that, when z
is not a singular point, f(z*)= f*(2). [For this it is neces-
sary and sufficient that f(x) is real for —xo<x<xo.]
For each x such that |x|>x,, let f(2) approach a limit
[which we denote by f(x)] as z— x from above the
real axis.

Suppose that (a) Ref(x) — 0 as x — o, (b)

/‘m Imjf g(cx)dx

exists and Im f(x) Inx — 0 as x — 0, (c) Im f(x) satisfies
a Lipschitz condition for each x> xo, and (d)

| Imf(x+k)—Imf(x)| <K|k|*, (0<K,0<a<l),

uniformly for all sufficiently large  and for |4| < 1, say.

Suppose that there exists an integer N2> 0 such that
f()/2¥ — 0, uniformly as |z|— for |argz| <,
and that f(z)(sFx¢) — 0 as z— %xo, uniformly for
|arg(s7Fxo) | <w. Further, let # be the smallest non-
negative integer for which

Imf(x)dx
/ o xu—H

7 G. H. Hardy and J. E. Littlewood, Proc. London Math. Soc.
30, 23 (1930).

exists.

SUBTRACTIONS IN DISPERSION RELATIONS

1451

Then f(2) has the representation

n—1 1 - | / d ,
= st [0

TSoey *—32

z# oo Imf(a’)do

T a2 —2) ’

where the A4; are real constants.

Further, if >0, it is impossible to find constants
K>0, X2z, such that either Imjf(x)>—K(—x)"
or Imf(x)<K(—x)* 1 for all x< —X.

III. ANOTHER THEOREM

We now give a rigorous proof of the theorem given
by Sugawara and Kanazawa,? stating clearly a set of
sufficient conditions. We begin by assuming that the
conditions of the first paragraph of theorem 1 are satis-
fied by f(z). Again we omit for convenience poles and
cuts in the finite z plane. Likewise, the condition that
f(z*)= f*(2) when z is not a singular point is convenient
but not necessary; it could be dropped at the expense
of a more tedious statement of the theorem.

Conditions (a) and (b) are replaced by Ref(z) — ¢i,
as x—o0 ; Imf(x) > co%0 as x — o ;

—00 dx
f rtmf ) —c]
X

exists and [Imf(x)—cz] Inx — 0 as x — 0. The rest of
the conditions remain as in theorem 1.

We can now write for f(3) a representation analogous
to that given in Eq. (3), namely,

¥y—1 g 2 Imf(a’)dx
f@)=2% 4+~ —_—
=0 TJ sz % (&' —2)
z oo Imf(a')da'

[ =, o

T Joaw (2 —2) ’

where the A4 are real constants. When z approaches the
cut [, ) from above, we replace the left side of (7)
by Ref(x) and the first integral on the right side by a
principal-value integral. Now

xP /“"” Imf (x’)dx’= P /“’” [(Imf(x')—coldx’

T Joz @& —2x) 7)o *—x

1 /"” [Imf(x')—co]dx’

’
-0 X

Ca =% 1 1
+—P / dx’' < ————) .
T Jomn ¥—x

The conditions imposed above ensure that the first

™
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integral on the right side approaches 0 as x — =, so that

x 2 Imf(x')ds 2

—P/ ————=——1Inx+c+o(1) for large x,
T Joz 2(@—2x) T

where

c=— Inxy——

/
™ ™

->z) X

2 1 f"” [Imf(x')—c;]dx’

It follows from Eq. (7) that

n—-1

An—k

k=(n—NH) xF

ENE

for large x, with A¢'=A4¢+c—c1. Again we know that
the left side approaches 0 as x — . Since the first term
on the right side cannot be cancelled by the other terms
as £ — o, we must have > 1. It follows, as in Sec. II,
that the constants 4,, - - -, Ay—; must vanish. Further,
if #>1, the left side of (8) ~—A4,_1/% as x—x, so
that, applying the Hardy-Littlewood theorem, we have:
(i) If »>1, it is impossible to find constants K>0,
X>x, such that either Imf(x)>—K(—x)*! or
Imf(x)<K(—x)*" for all x< —X; (ii) If there exist
constants K>0, X > x, such that either Imf(x)> Kx or
Imf(x)<—Kwx for all x<—X, then n=1. We assume
that condition (ii) is satisfied and proceed.
Equation (7) now takes the form

&)= Aot / - dx'(Imf(x’)+Im ;::,)) |

™

1 /"““ Imf(x)dx’ calnx

T (' —x)  wan

—>—0

/
-z ¥

%—z
which may be rewritten as

1 [~ da/[Imf(x')—cq]

&= A+~ ,
T J s x'—z
+:z /‘*w dx'[Imf(—x")—ca]
T J >0 x,(x’_l-z)
C2 =% 1 1
2 [Ca(——), o
T J s 2 —z &'tz
where

T szg X

1 [~ dy
A=Ao—"'/ —,[Imf(x')—czj

Hence, as x —x,

x /’*"” dx’[Imf(—x’)-—cﬂ_) ().

~ ¥ (& +x)

Provided that there exist constants K>0, X 2> %o such
that either Imf(x)> — K or Imf(x) <K for all ¥ — X,

T J sz

WOOLCOCK

153

it follows from the Hardy-Littlewood theorem that

1 dy
- [ Ztmf-s)-cd=a-a,
->x)

K X

so that Eq. (9) becomes

/ (z)=61+~1- / @) e [Im/()—ca]

T J sz x—3z

1 /"” dx'[Imf(—2)—cs]

— a0 2’4z
Co =% 1 1
+— / dx’( — ) (10)
™ J sz x"—'Z x,+z

Y v G0

x'—z &'z

Finally, we note that, by a simple extension of the
theorem quoted in Ref. 6, we may assert the following.®
The first integral on the right side of Eq. (10) approaches
0 as |z|— in any direction for which argz0, uni-
formly for 6 argz< 2r—34, where §>0. Similarly, the
second integral approaches 0 as |z|— in any direction
for which argzs#r, uniformly for |argz| < 7—8. Further,
by a simple computation, we see that the third inte-
gral—ic; as |z|— in any direction for which
0<argz<m, uniformly for §argz{m—4§, and — —ic,
as |z|— in any direction for which —wr<argz<0,
uniformly for —r+3 < argz< — 8. Hence f(z) — (c1+ics)
as [z|]—e in any direction for which O0<argz<m,
uniformly for §<argz<r—3, and f(3) — (c1—ics) as
|z]— in any direction for which —w<argz<O0,
uniformly for —r+§<argz< —§ (6>0).

We now write down a statement of the theorem we
have proved.

Theorem 2. The conditions are exactly as in theorem 1,
except that (a) and (b) are replaced by Rejf(x) — ¢,
as x—o0 ; Imf(x) > ce%0as x— w0

™

—>00 dx
[ I f () —cs]
X

exists and [Imf(x)—cz:]lnx— 0 as x—. ¢; and ¢,
are constants. We also impose the extra condition that
there exist constants K>0, X>xo such that either
Imf(x) <K or Imf(x)>—K for all x{ —X. Then f(z)
has the representation

f(z)=,;1+.{ _mdx,(Imf(x) Imf(—x)). (11)

T

x'—z ¥4z

Further, f(z) — (c1-+ics) as |2|— in any direction
for which 0<argz<m, uniformly for §argz<~—4§ and

8 For a full proof see W. S. Woolcock (to be published).



153

f(2) = (c1—1ics) as |z|— in any direction for which
—r<argz<0, uniformly for —r+8§<argz< —8 (6>0).
If f(2) is taken to be f(x) on the upper side of the cut
[%,) and [f(x)]* on the lower side, the uniform
convergence may be extended up to argz=0, instead of
to 6 or —4.°

IV. APPLICATION TO =*-p AND Ki-p
DISPERSION RELATIONS

The dispersion relations for 7%-p and K#-p elastic
scattering provide a straightforward application 'of
theorem 2. Let f.(w) denote the forward-elastic-
scattering amplitudes for 7+(K*)-p scattering in the
laboratory system, where w is the total energy of the
7(K) in the lab system. Denote the analytic functions
of which f,(w) are the boundary values by f.(z). We
shall assume that the only singularities of f.(z) are the
cuts [u,) and (— 0, —u], where u is the 7(K) mass.
The cuts extending below the physical threshold for
7—p and K—p scattering and the single-particle poles
provide extra terms in the dispersion relations which we
do not want to write down here.

In writing dispersion relations for f.(z) we make
use of the crossing relations

Refy(—w)=Refz(w),
Imf,(—w)=—Imfz(w),

and the optical theorem

Imf:i:("’)=%:20':k(w) ’

where ¢(w)= (0*—1)1/2 is the momentum of the 7(K)
in the lab system and o (w) are the total cross sections
for 7£(K*)-p. We denote Ref,(w) by D (w).

We intend to write a dispersion relation for f,(z)/z.
The required conditions are

(a) Dy(w)/w— c, a constant, as w—>,
(b) ¢4 (w) — (), a constant, as w —,

=% dw
f Zor@)=ox(=)]

exists and [0} (w)—04 ()] Inw— 0 as w — o,

(c) oy(w) satisfies a Lipschitz condition for each
w>p,

@) |op(wt+h)—op(w)|<K|k|e, (0<K, 0<a<l),
uniformly for all sufficiently large » and for |4|<1,
say, and

(e) there exists an integer N>1 such that

f+(&)/5¥ -0,
uniformly as |z|—« for |argz| <.

9 This is true under the uniform Lipschitz condition on Imf(x)
on the right-hand cut. See Ref. 3.
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The conditions at w=-4u and the condition on
Imf,(—w) are obviously satisfied.

Applying theorem 2, we see that f,(z)/z has the
representation

f+(2) C

C _

/-ﬁw q(w /o’_,.((.d) 0'- )) 12)
2 w' —2z o'tz ’
where C= f,(0). Adding the extra condition that o_(w)
satisfies a Lipschitz condition for each w>p, letting z
approach the cut [u,) and the cut (— o, —u] from
above, and using the crossing relation for Ref;.(—w)
in the latter case, we obtain the dispersion relations

) —0
D:b (w) = :wa+C+—;P/ do’
»

8

) 74() o)
,+w) @)

These relations are in a very convenient form for
numerical calculations.’® Empirically it is found that an
acceptable statistical fit is obtained when ¢ is taken to
be 0. This may be taken as indirect evidence that
D, (w)/w— 0 as w— .

It is worth noting that, under the conditions assumed,
the integrals

w \w —w

=% dw % dw
/ o @=oy(=)] and f o )=o)

exist, but it is not necessarily true that ¢_(w) — ;.(®)
or that oy (w)—o_(w)— 0 as w—w. If, however, we
assume in addition that ¢_(w) — o_(), a constant,
as w— o, it follows from the existence of the integral

[ @

that o, (®)=0_() (the famous Pomeranchuk theo-
rem!). If we go further and assume that conditions
(b), (c) and (d) hold with o, (w) replaced by o_(w), it
follows that D_(w)/w— —c¢ as w—> .

It will have been observed that there is an asymmetry
in the conditions required in order to establish Eq. (13).
In making our assumptions we could have interchanged
the subscripts + and —. throughout. This asymmetry
seems to be necessary if one tries to establish relations
of the type (13), with just two constants, by imposing
the physically reasonable conditions D, (w)/w — ¢, and
04(w) — 0. () as w — . All these conditions together

0 For the 7*-p forward relations, see V. K. Samaranayake
and W. S. Woolcock, Phys. Rev. Letters 15, 936 (1965), and for
the K*-p relations, see R. Perrin and W. S. Woolcock (to be
published).

1 This result was first suggested by I. Ta. Pomeranchuk, Zh.
Eksperim. i Teor. Fiz. 34, 725 (1958) [English transl.: Soviet
Phys —JETP 7, 499 (1958)]
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are more than sufficient; only one pair is required. On
the other hand, if one attempts to keep the condi-
tions symmetrical by writing dispersion relations for
f+()%f_(z), then the above conditions on D and ¢
are not the natural ones to impose.

We conclude by remarking that theorem 2 can also be
applied to the fixed momentum-transfer dispersion rela-
tions for the invariant amplitudes A4 (v,f), By(»,f) for
nt(K*)-p scattering. The invariant ¢ is minus the
square of the four-momentum transfer and the invariant
v=w-1/4M, where M is the proton mass. The crossing
properties of these amplitudes are

Red . (—v, )=Red=(»,1),
ReB,(—v, t)=—ReBzx(»,}),
ImA, (—v, t)=—ImA=x(»,0),
ImB,(— v, )=ImBz(»,).

The cuts in the amplitudes are [vg,0) and (— 0, »,],
where yo=u-#/4M. Under the conditions

Red (»t)/v—0,
ReB, () >0,

ImA, (v,f)/v — constant,
ImB, (»,t) — constant,

as v—, for —#(>0) small (or the same conditions
with the subscript 4 replaced by —), together with
conditions analogous to the other conditions for the
forward-dispersion relations which it is unnecessary to
write down, we have the dispersion relations

’

Red s (v,0) = A ()+—P / =

™ 14

o (ImAi(u',t) ImAq:(v',t)) '

V—v v'+v

1 ImB.(v) ImB=x(Vt
ReBi(V,t)=-P/ dv’( * =0 )) .
T

- V—y P

W. S. WOOLCOCK
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An exhaustive study of the practical applications of
these relations will be found in the review paper of
Hamilton and Woolcock.!?

Note added in proof. While the manuscript of this
paper was being prepared, a paper by T. Kinoshita on
the same subject appeared [Phys. Rev. Letters 16, 869
(1966)]. He uses a form of partial-wave amplitude
which is bounded as x — =, and looks for conditions
under which f(2) satisfies a once-subtracted dispersion
relation. His method, which is based on that of Jin
and Martin,! requires the following conditions: (a)
There exist constants C, R(>0), «(>0) such that
f(&)<exp[C(ln|z|)*=] for |z|>R. (b) N(x), the
number of times that Imjf(£) changes its sign in the
interval (x, —x,), where x < — %o, satisfies the inequality
N(x)<C'(In|z|)*"= for all x sufficiently negative,
where C’ is a constant and o is the same as in (a). Our
method, which is a quite different one, makes a stronger
assumption than (a), namely, that there exists an
integer N such that f(z)/z¥ — 0, uniformly as |z|—o
for |argz| <. This in turn makes it possible to weaken
assumption (b). It is clear from the discussion leading
to theorem 1 that, provided there exist constants K >0,
X2>x such that either Imf(x)<K or Imf(x)>—K
for all x< —xo, a dispersion relation may be written
for f(z) without subtraction (»=0). The general
conclusion is that, in order to write a dispersion relation
for f(z) with the minimum number of subtractions
possible, it is necessary to assume some uniform bound
on f(z) as |z|—=, and also to make some assumption
about the behavior of Imf(x) on the left-hand cut.
However, there is considerable freedom in the choice of
these assumptions.
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