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Subtractions in Dispersion Relations*
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Assuming the unitarity bound in the physical region on a partial-wave amplitude for an elastic scattering
process, and assuming further that the amplitude satis6es a dispersion relation, it is shown that the necessity
for subtractions in order to make the integral over the left-hand cut converge implies an oscillatory behavior
of the discontinuity across the left-hand cut, the violence of the oscillations increasing with increasing number
of subtractions. A theorem given by Sugawara and Kanazawa is provided with a rigorous proof and is
applied to pion-nucleon and kaon-nucleon dispersion relations.

I. INTRODUCTIOÃ

'HIS work arose from a study of the implications of
the unitarity bound, in the physical region, on a

partial-wave amplitude for an elastic scattering process,
for the behavior of that amplitude when continued into
the complex s plane (s being the square of the total
energy in the center-of-mass system). In particular,
assuming that the amplitude satisfies a dispersion rela-
tion, is it possible to make any statements about the
number of subtractions required or about the behavior
of the discontinuity of the amplitude across the left-
hand cut? Jin and Martin' have shown, using also the
threshold behavior of the amplitude, that, independ-
ently of the number of subtractions, there is a minimum
Auctuation of the sign of the discontinuity across the
left-hand cut which increases with increasing angular
momentum. In Sec. II of this paper we prove a quite
different type of result, one which relates the necessity
for subtractions in order to make the integral over the
left-hand cut converge, to the existence of an oscillatory
behavior of the discontinuity across the far left-hand
cut, the violence of the oscillations increasing with in-

creasing number of subtractions.
This led to an attempt to provide a rigorous proof of

a theorem given by Sugawara and Kanazawa. ' Such a
proof is given in Sec. III, with sufhcient conditions
clearly stated. Finally, in Sec. IV we give an application
of this theorem to a case of practical interest, the pion-
nucleon and kaon-nucleon dispersion relations.

G. PARTIAL-WAVE DISPERSION RELATIONS

Let f(x) be a partial-wave amplitude for an elastic-
scattering process, x being the square of the total energy
of the two particles in the center-of-mass system. (We
adopt standard mathematical notation, since we shall
state the main result of this section as a mathematical
theorem. ) It follows from the unitarity of the S matrix
that f(x) may be represented in the form

f(*)=Ln(x)e""'-1)/»q(x)

for x)xo, where xv ——(mt+ms)s, mi and ms being the
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'V. S. Jin and A. Martin, Phys. Rev. DS, B1369 (1964).
~ M, Sugawara and A. Kanazawa, Phys. Rev. 123, 1895 (1961).

masses of the two particles. Here 0&~st(x) ~&1, 5(x) is
real and q(x) is the magnitude of the momentum of
either particle in the center-of-mass system.

We now define the real-valued function F(x) by

1 "Im f(x')dx'
F(x)=Ref(x) ——F

SQ

for x)xs. We suppose that Imf(x) satisfies a Lipschits
condition for each x&xo, this will ensure that the
principal-value integral exists. The integral clearly con-
verges at infinity, since 0 &~ Im f(x) &~ 1/q(x) and

q(x) —',x'" as x-+co. Now suppose further that

IImf(x+h) Imf(x) I «IItl (0&If:,o«&1),
Nrtiformly for all sufficiently large x and for

I
h

I
&~1, say.

This condition includes the possibility of cusps in

Imf(x) at energies where inelastic thresholds open up.
It then follows' that the principal-value integral in (1)
approaches 0 as x-+~. Since

I Ref(x) I &~1/2q(x), we
have F(x) —& 0 as x —+~.

The Mandelstam hypothesis4 enables us to assert that
f(x) is the boundary value, as x approaches from above
the segment x&xo of the real axis, of an analytic func-
tion f(s) whose other singularities in the s plane are
deducible from the postulated singularity structure
of the S matrix. For strong-interaction processes of
interest, these singularities consist of poles and cuts
in the finite 2, plane and a cut extending to —~ along
the negative real axis. Singular points of f(s) occur in
complex-conjugate pairs and f(s*)= f*(s) when s is not
a singular point. In writing dispersion relations below,
for convenience we omit terms arising from the poles
and cuts in the finite s plane, since these do not affect
our argument. (These omitted singularities may include

' W. S. Woolcock (to be published). Under the slightly stronger
condition that

)
(x+4)'~2 Imf(x+h) —x»s fmf(x) [ &Z[h[~ (0&Z', 0«&1),

uniformly for all suKciently large x and for
~
h ) &~ 1, say, it may

be shown that "Im f(x')dx
( )xf x

where Q is a constant. This stronger result does not lead to an
improvement of the theorem we are going to prove.

4 S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741
(1959);115, 1752 (1959),
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f(s) ~ (cr—ice) as lsl-+~ in any direction for which
—rr&args&0, uniformly for —~+8&~args&~ —8 (8&0).
If f(z) is taken to be f(x) on the upper side of the cut
Lxs, ~) and Lf(x)7* on the lower side, the uniform
convergence may be extended up to argo=0, instead of
to 5 or —b.'

IV. APPLICATION TO ~+-p AND X+-P
DISPERSION RELATIONS

The dispersion relations for rr+-p and E+-p elastic
scattering provide a straightforward application of
theorem 2. Let f~(ra) denote the forward-elastic-
scattering amplitudes for s+(Z+)-p scattering in the
lgboro, tory system, where co is the total energy of the
s.(K) in the lab system. Denote the analytic functions
of which f+(ra) are the boundary values by f~(s). We
shall assume that the only singularities of f~(s) are the
cuts Lp, ~) and (—~, —p7, where p is the s.(Z) mass.
The cuts extending below the physical threshold for
rr p and E p scattering and the single-particle poles
provide extra terms in the dispersion relations which we
do not want to write down here.

In writing dispersion relations for f+(s) we make
use of the crossing relations

Ref~~(

—at) =Refv (ra),

Im f~(—ra) = —Im fp (ra),

The conditions at co= &y and the condition on
Imf+( —ra) are obviously satisffed.

Applying theorem 2, we see that f+(s)/z has the
representation

f+(s) C 1 -",C(~') a+(~') o-(~')
=c+—+ dna' —,(12)

s s 4rr s ra M s (a +s
where C= f+(0) Add. ing the extra condition that a (ra)

satisfies a Lipschitz condition for each co&p, letting s
approach the cut Lp, ~) and the cut (—~, —p] from
above, and using the crossing relation for Ref+(—ea)

in the latter case, we obtain the dispersion relations

Dg((a) =+era+ C+ I'
4x'

These relations are in a very convenient form for
numerical calculations. "Empirically it is found that an
acceptable statistical fit is obtained when c is taken to
be 0. This may be taken as indirect evidence that
Dy(ra)/ra ~ 0 as cv~ ~ .

It is worth noting that, under the conditions assumed,
the integrals

and the optical theorem —
L -(~)—+(")] and

dM—Ea+(~)—~-(~)7
v(~)

Imf~(ra) = a.p(ra),
4

where q(ra) = (&a' —1)'" is the momentum of the s.(E)
in the lab system and az(ra) are the total cross sections
for rr+(Z+)-P. We denote Ref~(ra) by D~(ra).

We intend to write a dispersion relation for f+(s)/s
The required conditions are

(a) D+(ra)/ca —+ c, a constant, as ra~co,
(b) a~(ra) ~ a+(ae), a constant, as ra~~,

—La+(~)—a+(")]

exists and La.+(ra) —o+(~)] Inta ~ 0 as ra~~,
(c) a+(ta) satisffes a Lipschitz condition for each

(oP p]
(d) lo+(~+&)—o+(~) I

&It I&l (0&@, 0&&&1),
NNiformly for all sufficiently large a| and for lhl &~1,

say, and
(e) there exists an integer S&1 such that

f+(s)/z" +0, -
uniformly as lsl~~ for largsl &7r.

' This is true under the uniform Lipschitz condition on Imf(x)
on the right-hand cut. See Ref. 3.

exist, but it is not necessarily true that a (ra) ~ a+(~)
or that o+(ra) —a (ra) —+0 as ra—+~. If, however, we
assume in addition that a (ra) —+a (~), a constant,
as or —&~, it follows from the existence of the integral

—l:a+(~)-a-(~) 7

that o+(ao) =a (~) (the famous Pomeranchuk theo-
rem"). If we go further and assume that conditions

(b), (c) and (d) hold with o~,(ra) replaced by a (ca), it
follows that D (ra)/ra —+ —c as ra—&~.

It will have been observed that there is an asymmetry
in the conditions required in order to establish Eq. (13).
In making our assumptions we could have interchanged
the subscripts + and —throughout. This asymmetry
seems to be necessary if one tries to establish relations
of the type (13), with just two constants, by imposing
the physically reasonable conditions D~(ca)/&a ~ c+ and
a~(ra) —+ a~(~) as ra —+~. All these conditions together

"For the ~+-p forward relations, see V. K. Samaranayake
and W. S. Woolcock, Phys. Rev. Letters 15, 936 (1965), and for
the E+-p relations, see R. Perrin and W. S. Woolcock (to be
published).

"This result was erst suggested by I. Ia. Pomeranchuk, Zh.
Eksperim. i Teor. Fis. 54, f25 (1958) LEnglish trsnsl. : Soviet
Phys. —JETP 7, 499 (1958)j.
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are more than sufhcient; only one pair is required. On
the other hand, if one attempts to keep the condi-
tions symmetrical by writing dispersion relations for
f~(s)+f (s), then the above conditions on D and o

are not the natural ones to impose.
Ke conclude by remarking that theorem 2 can also be

applied to the fixed momentum-transfer dispersion rela-
tions for the invariant amplitudes A~(v, t), B~(v,t) for
w+(K+)-p scattering. The invariant t is minus the
square of the four-momentum transfer and the invariant
v=cv+t/41IE, where M is the proton mass. The crossing
properties of these amplitudes are

ReAg( —v, t) =ReAp(v, t),
ReB~(—v, t) = —ReBp(v, t),
ImA~( —v, t) = —ImAp(v, t),
ImB~(—v, t)=ImBp(v, t).

The cuts in the amplitudes are Lvo, ~) and (—~, voj,
where vo tl, +t/4——3f Under .the conditions

ReA+(v, t)/v —+ 0, ImA+(v, t)/v v constant,

ReB+(v, t) v 0, ImB~(v, t) —+ constant,

as v~~, for —t(&&0) small (or the same conditions
with the subscript + replaced by —), together with
conditions analogous to the other conditions for the
forward-dispersion relations which it is unnecessary to
write down, we have the dispersion relations

V dV
ReA, {.,t) =A(t)+-P

pp V

An exhaustive study of the practical applications of
these relations will be found in the review paper of
Hamilton and Woolcock. "

Pote added ie proof. While the manuscript of this
paper was being prepared, a paper by T. Kinoshita on
the same subject appeared )Phys. Rev. Letters 16, 869
(1966)j. He uses a form of partial-wave amplitude
which is bounded as x —+~, and looks for conditions
under which f(s) satisfies a once-subtracted dispersion
relation. His method, which is based on that of jin
and Martin, ' requires the following conditions: {a)
There exist constants C, E()0), a()0) such that
f(s)(expLC(lnIsI)'- j for IsI )E. (b) E(x), the
number of times that Imf($) changes its sign in the
interval (x, —xo), where x(—xo, satisfies the inequality
E(x)&~C'(inIxI)' ~ for all x suSciently negative,
where C' is a constant and u is the same as in (a). Our
Dlcthod which is a quite diferent onc Qlakcs a stI'ongcI'

assumption than (a), namely, that there exists an
integer E such that f(s)/z" ~0, uniformly as IsI~~
for

I argsI &~z-. This in turn makes it possible to weaken
assumption (b). It is clear from the discussion leading
to theorem 1 that, provided there exist constants E&0,
X&~xo such that either Imf(x)(K or Imf(x)) —K
for all x&» —x~, a dispersion relation may be written
for f(s) without subtraction (n= 0). The general
conclusion is that, in order to write a dispersion relation
for f(s) with the minimum number of subtractions
possible, it is necessary to assume some uniform bound
on f(s) as IsI~~, and also to make some assumption
about the behavior of Imf(x) on the left-hand cut.
However, there is considerable freedom in the choice of
these assumptions.
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