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A model-independent angular-momentum decomposition of the #N — nxN reaction amplitudes is ex-
ploited to relate angular distributions of each final-state particle with the absorption parameters ;.7 used
in wN-scattering phase-shift analyses. This relation provides constraints in the form of lower bounds on
(1—n14?) for specific sets of angular momentum and parity scattering states. Available data on production
reactions from threshold to 600 MeV are examined and the consistency of various phase-shift solutions with
these constraints is discussed. The Cence solution does not appear to agree with the energy dependence of
the inelastic cross section, as deduced from available data on total, elastic, and charge-exchange =N cross
sections. None of the existing phase-shift solutions at 290 MeV provides for absorption in partial waves with
J>3%, while our analysis shows that production data require such absorption.

I. INTRODUCTION

HE inelasticity of =V scattering in the low-energy
region is dominated by single-pion production
even above the threshold for two-pion production, up
to T'1ap () ~650 MeV. As a consequence, the inelasticity
parameters n;,! appearing in phase-shift analyses of
wNN elastic scattering are completely determined in the
region up to 650 MeV by the amplitudes for the
processes wN — wwN. These amplitudes cannot be
determined uniquely by a knowledge of production cross
sections and final-state angular distributions. Never-
theless, such information, obtained from data on the
production reactions, can serve to place consistency
restrictions on allowed sets of inelasticity parameters.
Such restrictions are much stronger than simple total-
cross-section consistency requirements. In this paper
we formulate this idea in precise terms and apply it to
the comparison of published phase-shift sets with avail-
able data on the production reactions below 650 MeV.
The practical analyses of production reactions (with
3-body final states) previously published have been
concerned, in the main, with specific models such as
final-state resonance production and one-meson ex-
change mechanisms. Although considerable success for
such models (e.g., the isobar model of Olsson and Yodh!
and one-pion exchange? for m+p— wtztn) has been
noted in restricted energy regions and for certain charge
states, we do not consider such models in our analysis.
Our objective is the determination of experimentally
correct phase shifts and inelasticities with no built-in
prejudices concerning angular-momentum states or
energy dependences.

The analysis is based on an exact formalism for pro-
duction reactions proposed by Branson, Landshoff,
and Taylor (BLT)? that does not involve a decomposi-

* This work was performed under the auspices of the U. S.
Atomic Energy Commission.

1 M. Olsson and G. B. Yodh, Phys. Rev. 145, 1309 (1966); 145,
1327 (1966).

(I;gz.)Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 126, 763

3D. Branson, P. V. Landshoff, and J. C. Taylor, Phys. Rev.
132, 902 (1963). We shall refer to this reference as BLT.
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tion in terms of relative angular momenta of two-body
subsystems in the final state. Similar 3-body formalisms
have been used by Omnes for 3-body scattering* and
bound-state problems, and by Berman and Jacob® in
their discussion of 3-body decays of resonant states with
definite angular momentum and parity.

II. FORMALISM

The reaction amplitude for 7N — memsN’ in a
definite charge state with conservation of momentum is
determined by 5 independent continuous momentum
variables and two independent discrete variables de-
scribing the spins of the initial and final nucleons.
Following BLT, we first analyze the matrix element
connecting a state with a definite initial nucleon helicity
1 to a state of definite nucleon spin projection A along
the normal to the “decay’ plane; from these, amplitudes
will be constructed that represent transitions between
states of definite parity and total angular momentum.

The angle and energy variables are chosen in a
rigid-body final state coordinate system?®; we define the
normal system as follows: Let the outgoing nucleon (or
any one of the desired final-state particles) define the
x axis, and the normal to the decay plane the z axis, of
a coordinate system whose origin moves with the center
of mass. The configuration of the other two final-state
particles in the production plane is determined by
specifying any two final-state particle energies, say w;
and ws, plus the over-all center-of-mass energy w=s''2
The orientation of such a rigid-body coordinate system
with respect to the initial-state momenta can be
specified by three Euler angles (®,4,%). The polar and
azimuthal coordinates of the incident pion (beam) in
the rigid-body coordinate system are 6, and ®, respec-
tively; the angle ¥, representing a rotation around the
beam axis, must disappear from final expressions for
squares of matrix elements (observables) since rota-
tional invariance is assumed for the matrix element. In

4R. Omnes, Phys. Rev. 134, B1358 (1964).
§S. M. Berman and M. Jacob, Phys. Rev. 139, B1023 (1965).
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terms of these variables such a production matrix
element may be written® as A*(s,wiwz; $OF).

Initial states of definite parity may be obtained by
forming symmetric and antisymmetric linear combina-
tions of helicity states. The phase conventions are
important here; following BLT, we use the phase con-
vention of Wick® instead of that of Jacob and Wick.”
Utilizing parity conservation for the production reaction
and the angular-momentum decomposition of BLT, we
obtain for the matrix element between an initial state
of definite parity (and a final state with the same parity)
the following representation:

A\ (s,w1wq; POT)

w  +7 f2J+1\1/2
Z( . ) Dan? (26T)B o™ (s,w0102; \)
T
X[kqa(— 14127, (1)

In the representation, J is the total angular momentum,
A is its projection along the normal to the production
plane, and m is the spin projection of the initial nucleon
(target) along the beam direction; 7. is the intrinsic
parity of the final nucleon, here positive; the (&) refers
to the parity of the initial state. As before, A is the final
spin projection on the “body-fixed” z axis.

The Byy™ are complex partial-wave production ampli-
tudes providing a complete description of the produc-
tion process in a manner analogous to the description
of two-body scattering by partial-wave scattering ampli-
tudes. The contribution to the inelasticity parameters
(1—n?) for each J and parity state of =V scattering can
be obtained by integration of a sum of squares of the
partial-wave production amplitudes for the same J*
over allowed values of w; and ws (i.e., over the Dalitz
plot). If only a few scattering states have <1, only

J=0 A=—J
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the corresponding J? states will have | Bs|2540, thus
limiting the complexity of the angular distributions of
the production process. Note that the (&) parity of
the initial state has the effect of setting Bya=0 if
(A=3) is an odd integer.

With the normalization of BLT, the differential cross
section for production (with a definite initial spin
projection m, definite parity, and definite final spin
projection M) is

3% (m\) s
018020 (cos6)dD  16Wk

‘A)\mlza (2)

where the ¥ dependence cancels out.

Instead of a polar angle defined with respect to the
normal production plane, as in the normal system, it is
often more convenient (at least when examining
previously published data) to consider the distribution
of the angle between the incident beam direction and
one of the outgoing particles. The form of such dis-
tributions can be obtained by a rotation of coordinate
systems, and we will give this form after considering
special JZ cases relevant to the specific energy region
and production process under consideration. First, how-
ever, it is necessary to expand | 4|2 in terms of spherical
harmonics, and integrate the coefficients (formally) over
the Dalitz plot.

The index A will be suppressed in what follows, since
the dependence of | 42| on this index is purely dynamical
and has no relation in our formalism to the explicit
kinematic factors. Furthermore, since unpolarized
targets have been exclusively used in production
experiments, we will average |4|? over m==41. The
result after employing parity conservation in the
production matrix elements can be written

1
(A% =324\ 2=—8— Nj;w{[(2]+ 1) (2774 1) 2B 72 (@103) Basar* (01002)
i X et W=D 2[dy37 (0)dary”" (0)+ (— 1) 7+ A+ 7 (6)dar—7" (0) T}, (3)
D A“J (<I>0\I’) =¢—iA%] A“J (0)3—1'#‘1' ,

and suppressed the index m=2t% in the Bsa’s, and the variable s. The parity of each state in the sum is charac-
terized implicitly by the occurrence of either even or odd values of (A+43), (A’+3) [see Eq. (1)].
The products of d functions in (3) can be expanded® in spherical harmonics, and the result is

where we have used?®

1
ADpw=—> X

47!'1/2 JJ! AN

J
x T @ 1)1/2( )

|T=T| i T+IT!

’

—A

{[(21+ 127"+ 1)T2B 7 (01699) Burar* (wieos) (— 1N

4 !

A’iA) YjA“A'(e,‘I))*[<; '_I% g)— (- 1)J+J’+A+A’(;I% ‘; g ):I} @

The 3-j symbols'® have been used for conciseness of notation.

6 G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962).
7M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

8 A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957), Chap. 4.

? Reference 8, Sec. 4.3.
10 Reference 8, Sec. 3.7.



153

Integrating w;, ws over the Dalitz plot yields the
angular-distribution function for the normal system;

W(0,2)= / / dwidws(A%(0,8; w1,ws))av

which can be written in the form

2j+1

W(0,¢)=§l( )1/2YjM*(0,<I>)WM7'. )

g

In the normal system [appropriate to decomposition
(1)], the coefficients W7 can be expressed as

1
Wyi=— 3 (JAJ'N)Gui(JAJ'N), (6)

2 JJ' AN
where

(JA,]'A')E//dwldszJA(wlwg)BJ,A,*(wlwz).

The set of parameters (JA,J'A’Y= (J’A’,JA)* contains
the dynamics of the production process; they are
essentially density matrix elements. Each total energy
w and each alternative choice of rigid-body coordinate
system (here the normal system has been employed)
leads to a different set. The G factors are independent
of dynamics.

If the polar angle distribution for a given single
particle in the final state is desired, a different coordi-
nate system can be utilized. The simplest way to obtain
the required distributions, however, is to define the
matrix elements By, with respect to a normal system
with the desired particle momentum along the x axis of
the rigid-body system and, after obtaining the corre-
sponding distribution function (5), rotate the coordinate
system by m/2 around the y axis. Each term in the sum
over jin (5) transforms as an irreducible representation
of the rotation group, so the transformed angular dis-
tribution can be written

_ 2 ]'_I_l 1/2 _
W(G’,<I>’)=Z(”"*) Y@ YWal,  (7)
M\ Ar

where 6 is now the polar angle between outgoing
particle and incident beam, and

+i
Wui= Y, WuiDu#(0,7/2,0). ®)
=

J

The values of the required D functions are tabulated by
Edmonds for j<3. Integrating (7) over & we obtain
the distribution function for the angle 6 (dropping
primes here) between the desired outgoing particle and
the incident beam;

=W (0)=3 (2j+1)P;(cost) (2aW ). (9)
d(cosb) i \
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The expressions (6) and (9) form the basis of our dis-
cussion of the published data. The parameters (JA,J’A")
are determined by production data.

It can be seen from (6) that only even j values are
present when states of the same parity contribute to the
production process; odd j values are associated with
interference between odd and even parity amplitudes.
Also, if J 3 is the maximum value of angular momentum
for which B 7,540 [and hence (1—%)5£0], the maximum
complexity of (9) will be determined by jmax<2Jn.
Thus, if a §~ or §* state dominates (for example), the
distribution (9) can only have the form [1+4aPs(cosb)].

III. INELASTICITY PARAMETERS AND PRODUC-
TION PROPERTIES IN THE /=3 STATE

A. Total Inelasticity

The total reaction cross section for mV processes in
each isotopic spin state is related to the set of in-
elasticity parameters in that isospin state by

——— lé [O+D) I—nud)+(1—m?].  (10)

The simplest constraint relating production data and
n values is the equality of (o,/7*%) from (10) at each
energy with the empirically determined value. To obtain
oy, a subtraction of elastic and charge-exchange cross
sections from the total must be carried out at each
energy.

We have compiled I=1% reaction cross sections' and
compared the results with the predictions of five
published phase-shift analyses.!*~'6 The results are
shown in Fig. 1.

It is clear from the figure that the inelasticities of
Auvil et al.® are in best agreement with the data. Since
small changes in the inelasticity parameters will give
large percentage changes in the (small) reaction cross
section, it is probably not correct to discard all of the
other solutions on the basis of the poor agreement in
the 450-600 MeV solution. The Cence!® solution, how-
ever, shows an energy dependence (with a sharp
“break’ near 450 MeV) that is clearly inconsistent with
experiment. Consequently, on the basis of the I=%
total reaction cross section alone, (and subject to the
qualifications discussed in the Appendix) we find the
Cence solution unacceptable.

B. Angular Distributions

It will be convenient, in discussing angular distribu-
tions, to modify slightly the notation of Eq. (6) by

11 For discussion and references, see the Appendix.

27, D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965).

13 J, Cence, Phys. Letters 20, 306 (1966).

14 P. Auvil, C. Lovelace, A. Donnachie, and A. T. Lea, Phys.
Letters 12, 76 (1964).

15 P, Bareyre, Proc. Roy. Soc. (London) A289, 463 (1966).

16 B. H. Bransden, R. G. Moorhouse, and P. J. O’Donnell, Proc.
Roy. Soc. (London) A289, 538 (1966).
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——— - AUVIL

—————— CENCE
X=e———X BAREYRE

T

— Fic. 1. Experimental values of
T=1% reaction cross section (see
Appendix) compared with predi-
cations of 5 phase-shift solutions
(Refs. 12, 13, 14, 15 and 16).

Energy scale is laboratory pion

———-— ROPER - kinetic energy in MeV; ordinate is
BRANSDEN T'=1% reaction cross section divided

by the value corresponding to

complete absorption in the sy
state [see Eq. (10)].

300

writing

{a,b)=By*-B,, (11)

where @, b stand for the quantum numbers JA, J'A’.
Here By*B, stands for the integrated (over wi, ws) and
summed (over final spins) product. It is easy to show
that such products satisfy the Schwartz inequality

| By*- Ba|*< | By|?| Bal®.

3/2
Ao=|By|*+|B-[*+ X |Cul?,
A—3

Let us now define the quantities

Aj=m(2j+ )W, (12a)
By=By 4, (12b)
C2A=Bg,A. (12C)

In the case where only the incident j=% and £ states
contribute to the absorption, the 4 ;s take the form

A1=—2 Re{B*B_+2"12(B,*C_1— B_*C1)+ (3)2(B_*C_3— By*Cy)+3[2C*C_1+32(Cs*C1rHC_s*C_1) ]} ,

As=1%5 Re{|C3|2+|C_s|2— | C1|2— | C_1| 24+4V2 (B_*C_1— B4*Cy)

(13)

+2X6'2(By*C_s— B_*C3)—2X32(Cs*C_1+C1*C_3)} ,
A 3= (3/7) Re{ Cg*c_3+ %[CI*C_l— 312 (Cs*C1+C_1*C_.3)]} .

The quantities By, C1, C_s are related to the incident
odd-parity (s and d) states, whereas the remaining
coefficients belong to the states of even parity. It is
easy to see, therefore, that the coefficients satisfy the
same ‘“maximum complexity” conditions that one has
in elastic scattering.

The corresponding coefficients in the normal system
[before rotation (8) is performed] are listed in Table I;
we did not make use of that system in the following
discussion.

We now make use of the expressions in Eq. (13) to
examine some phase-shift solutions near 300-MeV
incident-pion kinetic energy (laboratory). For this
purpose we shall use the experiment by Batusov

et all” on

m+p—>rttr+n (14)
with 290-MeV incident pions. At this energy, the
process (14) provides about 809, of the inelasticity in
the T'=3 state.! It will be convenient, therefore, when
discussing phase-shift analyses at this energy to assume
that the inelasticity parameters relate only to the
process (14).

In the Batusov experiment it was found that the
neutron angular distribution was strongly peaked in the
backward direction. We have made a least-mean-square
Legendre polynomial fit to the angular distribution with

7 Yu. A. Batusov, N. Bagachev, S. Bunyatov, V. Sidorov, and
Y. Yarba, Dokl. Akad. Nauk SSSR 133, 52 (1960) [English
transl.: Soviet Phys.—Doklady 5, 731 (1961)7]; Zh. Eksperim. i

Teor. Fiz. 40, 460 (1961) [English transl.: Soviet Phys.—JETP
13, 320 (1961)].
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the following results (arbitrary units):

ag= 10.1:&14 , 3= 55:}:32 ,
01=14.0+£3.0, a;=—0.40.2. (15)
2:=10.8+3.5,

Here a, is the coefficient of P;(cosf) in the expansion.
The X? for the best fit is 11.5 for 5 deg. of freedom. Taken
at face value, the results suggest that absorption is
taking place in states with j at least as high as §, which
is itself a surprising result at this energy.!® However, we
shall proceed by tentatively ignoring the a; and a4
coefficients on the grounds that they are statistically
poorly determined.

Turning now to the phase shift analyses, we have the
values in Table II predicted for the n parameters at
310 MeV. Values of (j+3)(1—7?) are in parentheses.

On the other hand, from the expressions in Eq. (13)
we can derive the following inequalities for 4; and A4..

| 4| <ELpsi2+ ps24 (14)2(prips—+p1-psy)],  (162)

| 41| <3Lp1p1—+4ps1ps-+V2(pr4psr+p1ps_)]. (16b)
Here we have defined

(p2jy1,4)= (G+3) 1 —nis?),
where the & refers to j=14-3.

Using the values in Table IT we find that the maxi-
mum possible values of 41/4, and A2/A4, are as shown
in Table ITL. As a matter of fact, the maximum possible
value of |41]/]Ao|, if only j=% and % participate is
about 0.5. Thus, it is apparent that higher partial
waves (at least j=%) are playing an appreciable role in
the absorption process at an energy as low as 290 MeV.

It is of some interest to note that at increased energies
there is also evidence for the importance of high partial
waves to two-pion production. For example, in the
604-MeV experiment of Vittitoe et al.'® we find that

1

TasLe 1. Coefficients of [4r/(2j+1)12V;M* in W (6,9) with
normal coordinate system. The B and C notation is described in
the text; M values not explicit here may be obtained by complex
conjugation.

iM
0 0 |Bif>+|B-I>+|Cs2+ G2+ | Cal?+]Cs]?
1 1 1@EM2LCCr+2CCr*4-CCs¥]

—3[3'2C3B*+CiB_*—V2ZB,B_*—3'2B,C_s*— B, C_1¥]

2 0 FLlGP+H|ICalP—|Cl2—[Cul?

V2 (B, Cr¥+CiB.¥) —VZ (B_Ci*+C1B_%)]
2 2 —IV2[CsC*+CiC_3*—V2(C3B_*—B,C_s*)]
3 1 —(6/35)[CsCr*+C1C_3*—312C,C_1¥]
3 3 —(6/35)[52C3C_3*]
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TaBLE II. Inelasticities for T=% as given by published phase-
shift sets. Numbers in parentheses are values of (j+%)(1—n?.
Lower number of each pair is value of # at 310 MeV.

51 b2 b3 ds ds fs
Roper® 0.006)  (0.120) (0.044)  (0.020)
0.997 0.938 0.989 0.995 1 1
Cenceb (0) ©0)  (0.190) (0.079)
1 1 ~0.95 0.98 1 1
Auvile ©0)  (0.154) (0) (0.195)
1 0.92 1 0.95 1 1
Bransdend  [(0.006) (0.084) (0.067)  (0.004)
0.997 0.952 0.983 0.999 1 1
a See Ref. 12.
b See Ref. 13.
¢ See Ref. 14,
d See Ref. 15.

Legendre polynomials through Py are required to fit the
neutron angular distribution in the process (14). Thus,
it appears that at this energy both j=4 states are con-
tributing to the production amplitude. Although we
have not attempted a quantitive study comparable to
that performed at 290 MeV, it would appear that only
the Roper phase shifts have inelasticity in high enough
angular-momentum states to be in reasonable accord
with experiment.

IV. CONCLUSIONS

It is probably not correct to draw excessively firm
conclusions concerning the nonvalidity of existing
phase-shift solutions on the basis of the work presented
here. Rather, it has been our intention to show how
one can use production angular distributions to test
phase-shift analyses of elastic-scattering experiments.
For this purpose we have focused our attention upon
one experiment performed at an energy where the
situation is extremely simple in that one channel
dominates the inelasticity. Clearly, more sophisticated
application of the techniques presented here would
require considerably more work than we have done. In
addition, there is a clear need for more measurements of
inelastic angular distributions in the 300-550 MeV
(incident-pion laboratory kinetic energy) range in
order to provide a firm basis for the conclusions tenta-
tively offered here.

These conclusions are twofold. First, we believe that
the Cence!® phase shifts may be rejected solely on the
basis of their inconsistency with the measured energy

TasBLE III. Production-reaction complexity at 290 MeV
from published phase-shift analyses.

18 However, we find that this sort of behavior was predicted by
G. F. Chew in his remarks at the Berkeley Conference on Strong
Interactions reported in Rev. Mod. Phys. 33, 361 (1961).

19 C. N. Vittitoe, B. R. Riley, W. J. Fickinger, V. P. Kenney,
J. G. Mowat, and W. D. Shephard, Phys. Rev. 135, B232 (1964).

[41]/140] [42/140]
Roper 0.50 0.40
Cence 0.24 0.20
Auvil 0.44 0.10
Bransden 0.36 0.45
Experimental 14+04 1.1+04
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dependence of the isospin-% reaction cross section in the
500-MeV region. We suspect that the “no resonance”
feature of the Cence solutions may disappear if the re-
action cross sections of Fig. 1 are used as a constraint.
Our second conclusion is that none of the existing
phase shift solutions provides for absorption in suffi-
ciently high partial waves. In the vicinity of 300 MeV,
for example, we believe that there is an appreciable
contribution from one or both of the j=4% states to the
reaction cross section that is not accounted for in the
existing solutions. It is our conjecture that a correct
description of the high partial-wave absorption will
require a reduction (in existing phase-shift solutions) of
the 1—»? parameter belonging to the p1; state. Changing
the n parameters will in turn require modification of the
real part of the phase shift. We believe, therefore, that
our present considerations reopen the question of the
existence and position of the Roper p1; resonance.
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APPENDIX: EXPERIMENTAL DETER-
MINATION OF o,'?

The experimental points plotted in Fig. 1 were ob-
tained from the data obtained from Refs. 20-29 and
listed in Table IV. We have invoked the theoretician’s
license to select the data according to our own preju-

TaBLE IV. Cross
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dices which, generally speaking, were in favor of the
measurements with the smallest quoted errors. This
selection may have led us astray in the case of the 550-
MeV charge-exchange cross section where we used the
measurement of Bulos ef al.2® Their cross-section was
about 2 mb lower than values quoted by several other
authors, so that the reaction cross section plotted in
Fig. 1 may be about 109, too high at this energy.
Clearly, however, a more sophisticated analysis of the
experimental data is indicated and we hope that some
experimentalist will soon undertake this task.

Table IV gives, for the total, elastic, and charge-
exchange cross sections the quoted value in mb and, in
parentheses, the references from which they are taken.
Where more than one reference is given we have used the
unweighted average. The quoted reaction cross sections
are derived from the other cross sections in the usual
manner. The notation is

ort=7%+p total cross section;
o=r%+p elastic scattering cross section;
0ex= cross section for 7==+p — w%4-n;
o3 =total reaction cross section in the =%, § state.

Note that, as a matter of taste, we have chosen the
subtraction method for obtaining reaction cross sections
and our values for o, are not in good agreement with
determinations based on direct measurements of all
single pion production cross sections. Our preference
was based upon the (perhaps naive) belief that con-
tributions to o, can be missed in production experi-
ments. Discrepancies between the two methods, there-
fore, indicate that our conclusions regarding the total in-
elasticity constraint must not be taken as final; we only
wish to point out the relevance of such constraints.

Some of the phase-shift fits!® have, in fact, included
inelastic cross sections as obtained by the second method
above as constraints. In those cases the disagreements
indicated in Fig. 1 may then reflect experimental in-
consistencies rather than theoretical difficulties.

-section data.

T‘r
(MeV) art ot A ar~ g Gee ot

370 40.394-1.62(20) 38.74+0.73(24) 1.65:1.78 27.9 41.2(20,21) 10.6 £0.1(24,25) 12.03+-0.51(22,23) 7.0 0.9
420 32.7 +=1.1(20)2  29.02+0.66(24)* 3.7 +=1.3  29.4 +1.4(20) 11.624+0.16(24)=  11.30£0.71(23) 79 +£2.7
450 29.444-1.63(26) 24.394+0.49(24) 5.1 41.7  33.032-0.69(26) 12.194-0.26(24) 10.8 40.8(23) 124 £18
500 21 +1(27) 18.6940.46(24) 2 1 36.014-0.61(26) 14.084-0.35(24) 10.3 4-0.9(23)» 164 +1.7
550 17.884-0.82(20)> 14.384-0.19(24) 3.50+0.85 41.863-0.81(26) 16.984-0.37 (24) 7.614+0.62(28)2 24.154+1.68
600 16.064-0.85(20)* 11.06+0.18(24)* 5.00-£0.87 46.20+0.84(26) 19.874-0.34(24) 8.8840.34(23,29) 24.96+1.56

a Interpolated value.

20 J, C. Brisson, J. F. Detoeuf, P. Falk-Vairant, L. van Rossum, and G. Valladas, Nuovo Cimento 19, 210 (1961).

21 ], C. Caris, L. K. Goodwin, R. W. Kenney, V. Perez-Mendez, and W. A. Perkins, III, Phys. Rev. 122, 262 (1961).
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