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Even in the presence of external Gelds, space-time symmetry implies nontrivial relations between observ-
ables at one time, i.e., kinematical relations. Symmetry operations at one time —translations, rotations, and
(for Galilei symmetry) velocity shifts —can be performed on observation-producing and on state-producing
instruments, regardless of the existence of an external Geld. Furthermore, it is possible to give an operational
definition of every initial state intrinsically, i.e., regardless of the external Geld. The precise statement of this
empirical fact explains, for example, why a particle in an external Geld has integral or half-integral eigen-
values of the spin, vrhy a Hamiltonian exists even in the presence of a time-dependent external Geld, and
why (for Gaiiiei symmetry) the canonical commutation relations are stiii valid, although the full space-time
symmetry from which these results can be derived has been destroyed. It is pointed out that the rigorous
validity of kinematical relations, in spite of strong breaking of the underlying space-time symmetry, is
analogous to the rigorous validity of equal-time current commutation rules, in spite of the breaking of the
underlying U(3) symmetry.

I. INTRODUCTION

~ 'HE exploration of the constraints imposed. on
quantum mechanics by space-time symmetry has

been very successful, both in predicting power and in the
elimination of redundant assumptions. The prime
example for the first kind of capability is the prediction
that spins can be only integral or half-integral. Perhaps
the most spectacular, but not highly advertised, success
of symmetry theory in decreasing the number of
independent assumptions is the derivation of the
canonical commutation relations from the theory of
the Galilei group. '2

The presence of an external fmld destroys space-time
symmetry, and at 6rst one sees no reason why any of
the results of symmetry theory should remain valid.
Yet there are strong indications that some of them do.

Consider a single nonrelativistic particle in an
external field. Why is it generally assumed that here,
too, the spin can have only integral and half-integral
eigenvalues, although there is no rotational symmetry'
If one believes that Galilei symmetry is the origin of
the canonical commutation relations, one asks why these
should remain valid in absence of symmetry. The
existence of a Hamiltonian in the time-dependent
Schrodinger equation is usually derived from time-
translation symmetry. But why is there a Hamiltonian
also for time-dependent external fields' Comparison
with experiment has favored these assumptions from
the beginnings of quantum mechanics, but theory has
yet to meet the challenge of showing their relation to
prime principles.

Assumptions of the kind discussed may be called
kist,'matic because they are supposed to hold regardless
of the dynamical specification of the external forces by
the Hamiltonian. In most applications, kinematic and
dynamical assumptions combine to produce an observ-
able result, and one can ask whether kinematic relations

+Work performed under the auspices of the U. S. Atomic
Energy Commission.

I V. Sargmann, Ann. Math. 59, 1 (1954).
~ M. Hamermesh, Ann. Phys. (N. Y.) 9, 518 (1960).

by themselves lead to observable results. The most
striking example for the afhrmative answer is the
historical fact that the canonical commutation relations
were originally suggested to Heisenberg by the Thornas-
Kuhn sum rules and that, conversely, the canonical
commutation relations imply these sum rules regardless
of the Hamiltonian. 3

I'asymmetry —the survival of some results of space-
time symmetry even when this is broken by an external
6eld—should be deducible from prime principles. It
will be shown that the accepted principles are in fact
sufhcient if they are exp/iciily stated In d. iscussing
observations to test space-time symmetry, a number of
tacit assumptions are made habitually; and it is the
precise statement of some of these tacit assumptions
which explains prcsymmctry. To compare states and
observables connected by symmetry, the experimenter
performs an active transformation of observation-
producing and of state-producing instruments. Before
testing space-time symmetry, the experimenter must be
able to test the proper operation of the actively trans-
formed instruments. Another tacit assumption is the
possibility of characterizing an initial state intrinsically,
regardless of external forces. The feasibility of such a
testable active transformation of initial states, quite
independent of the existence of an external held, is
the statement which leads to presymmetry.

II. OBSERVABLES AND STATES

Common sense seems to provide a simple definition
of space transformations: For instance, one-particle
wave functions in configuration space f(x, t) may be
carried into "rotated wave functions" f(Rx,f) by a
rotation E: x —+Ex of the argument vector x. This
transformation defines a unitary operator U(R):
it —& U(R)P on Hilbert space, and one should expect
that this transformation induces a similar rotation of
all vector observables. For instance, if the rotation E.
is characterized by x~ y, y —+ —x, s —+ s, one should

' A. %.Sommerfeld, Wave Mechanics (Methuen and Company,
Ltd. , London, 1930), p. 173.
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expect that for every vector observable A„A„,A,

LU(R)0 A*U(R)il]=(A A 4),
or more generally

U(R)AU —'(R) =RA.

However, in presence of an external field, a vector
operator such as the acceleration a (being proportional
to the external force) will not undergo the desired
transformation under U(R). One may be able to define
a unitary operator V that carries u, a„, a, into a„, —u,
u„but it will not be the operator U. In the presence of
an external magnetic field, not even the velocity
vector will undergo the desired rotation through
transformation by U. It appears that common sense is
misleading in this case, and that there may be either
no or many reasonable definitions of a rotation operator.
Clearly, one has to return to prime principles.

As an introduction to presymmetry, it is convenient
to reconsider the statement of full space-time symmetry
in quantum mechanics in a more explicit manner. The
physical statement and the mathematical implications
of symmetry under the connected subgroups of the
Poincare and Galilei groups are well understood, but
some of the implicit assumptions of the physical
statement need further clarification. It has been
mentioned occasionally4 that the definition of an active
transformation (e.g., a rotation A —+ RA) of an observ-
able A already presupposes a certain amount of
symmetry. The following discussion will make these
implicit assumptions explicit.

Observables are images of procedures by which a
system is made to interact with a macroscopic appara-
tus. Similarly, states are images of procedures by
which sample systems are ejected from a macroscopic
generator. A large number of samples produced succes-
sively by a given state-producing procedure are
subjected to observation. The mean value of many
observations by a given procedure is the expectation
value co, (A) of the observation procedure A with
respect to the state-producing procedure s.

The instructions for the procedure consist of two
parts: (a) specifications for the construction of the
"black box" and (b) specifications for the spatial
position, spatial orientation, state of uniform motion,
and time of operation of the instrument. An active
transformation consists in changing the latter specifica-
tions in the same way for all observables or all states
or both. Space time symmetry r-equires that such an active
transformation o& both observables and states leave the
expectation values invariant. This definition implicitly
assumes that the same instrument operates in the
same way under different circumstances, e.g., in
differerit regions of space —but this assumption may
not be valid. For instance, if the active transformation
is accomplished by a bodily rotation of an instrument,

'R. M. F. Houtappel, H. Van Dam, and E. P. signer, Rev.
Mod. Phys. 3?, 595 (1965).

the angular acceleration during the act of rotation may
have ruined the instrument. Clocks may be ruined by
being accelerated. Instruments must be properly
shielded from external influences: their operation must
be independent of an external field. Instead of bodily
moving an observation instrument, an active trans-
formation may be accomplished by manufacturing an
instrument according to the same instructions in
different locations or on different uniformly moving
vehicles. It is also more realistic to use different instru-
ments for measuring the same observable in huge fields
and in field-free regions. In either case, the instructions
for the construction cannot be relied upon for producing
the correct results: A given manufacturing procedure,
performed in a huge field, may produce a different
instrument, and the proper overlapping of measure-
ments by different types of instruments must be
verified by tests. A number of requirements, implic-
itly understood by all experimenters, need explicit
formulation.

In quantum mechanics, the set 8 of observation
procedures is mapped into the algebra 5 of linear
operators on Hilbert space. The comparison of different
mappings C „:8~5„corresponding to different external
forces makes it desirable to single out those features of
the mapping that are common to all systems and
therefore characterize the observation instruments
rather than the diverse dynamical systems. According
to the previous definition of observation procedures,
two observations performed with the same instrument
at different times are represented by distinct points in
5.In accordance with conventional quantum mechanics,
it will be assumed that every self-adjoint operator in
the algebra generated by 4 8 is the image of an
observation procedure in 8. This assumption is at least
dubious for relativistic quantum mechanics. ' With this
reservation in mind, both the Poincare and the Galilei
groups will be considered as possible groups of active
transformations.

Observation procedures fall into equivalence classes
(x,) such that their images in every mapping 4&„

coincide, i.e., such that C„x,=C„x;for all m. There are
procedures that yield expectation values in the form of
real linear combinations of expectation values of other
procedures for all systems characterized by 8, i.e.,

aC'„xi+PC'„xs=C'„xs, for all n; n, P real. (2.1)

Finally, there are observation procedures whose images
are always squares of images of other procedures [in
the sense of Eq. (2.4)], i.e.,

4„xi——(C „xs)s for all n. (2.2)

In general, there are universal polynomial relations of
the type

E(C„xi,C'„xs, , C„x„)=0 for all n, (2.3)

where P is a polynomial in r elements of 5„.
~ W. C. Davidon and H. Ekstein, J. Math. Phys. 5, 1588 (1964).
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1 N 1 N—z (j-)'=—zg i=i g i=i
(2 &)

for all states and for all e. The observation procedure
wi11 be acceptable only if j„and b„, the corresponding
procedures rotated by 90', have the same relation

1 N 1—Z (j.')'= —Z b.' (2.S)
E

More generally, if Vx is the rotated procedure x, then
the statement that

implies that
(C„x)'=4 y for all e (2.6a)

(4 „Vx)'=4 „Vy for all e. (2.6b)

Generally, one of the tests for the acceptability of
measurement procedures is that an active transforma-
tion preserves squares of images of elements x;P 8„ in
all 8 . This requirement is previous to any symmetry
statement, and should hold also in the presence of
external fields. Next, consider a linear combination of
two Cartesian components of the position vector, e.g.,

4'~xi cos8+C„xs sinO=C„xg, for all e. (2.7)

They define subsets of observation procedures whose
results are universally related to each other. Procedures
that measure the x and y coordinates of particle posi-
tions and all polynomials in these form such a class,
but a calorimeter (measuring the energy) and an
x-measuring procedure do not belong to the same
universal subset, because the energy is independent of
the coordinates in some external fields, but not in all
6elds.

A subset 8„of 8 is universal, if (a) the subalgebras
(4„8„}"generated by their images 4 8 for all map-
pings C „are isomorphic under all interchanges of indices
I -+ n, and (b) if it is closed universally, i.e., if

C„x&4„8„ for all m, implies x+ 8„.
The simplest example of a universal subset is gen-

erated by one observation procedure x. Its members
are all observation procedures whose images are real
functions of C„x for all e. Generally, a subset 8&~ is
said to be generated by elements (x;}P 8&& if it includes
all those and only those elements x whose images C x
are self-adjoint members of the algebra generated by
(C„x;}for all e.

Tests for the acceptability of observation procedures
for the purpose of symmetry studies will be discussed.
Consider the x component j, of an electric current
density and b„ its square (i.e., a quantity related to
power). The measurement of j, may be made with an
ammeter and that of 6, with a bolometer which measures
the heat generated by a wire. The statement that
C„b,= (4 „j,)' for all e signifies that the mean values of
large numbers of individual measurements j„,b„are
related through the expression

Again, the equal sign means that expectation values
with respect to all states are equal. A rotation by' 90'
will produce the observation procedures

x1 ~ x2) x2~ xl) xf}~ x~+x/2&

and unless

(2.8)

C„x2 cos8—C x~ sin8=C„xg+ ~~,

the instruments will be discarded as improper. More
generally, an active transformation preserves linear
combinations of images of elements of 8 in all 5 .
These statements can be extended to all universal
algebraic relations between images of observation
procedures, i.e., the statement that

P(C„xi,C„x2 C„x„)=0 for all e, xi x„&8„(2.9a)

implies

I'[4„V(L)xi C„V(L)xg C„V(L)x,]=0
for all n, (2.9b)

and all permutations V (L) of 8 induced by elements I.
of the space-time group.

The requirements on active transformations sum-
marized in Eqs. (2.9) imply then that such a permuta-
tion restricted to a universal subset 8„ induces an
automorphism of the subalgebra 4„8„"in 5„, if 8„ is
invariant under the permutation.

Does a permutation V (L) of 8 induce an automorph-
ism Q of SP If L is not a symmetry of the system, the
answer is negative. For instance, if Cx=Cy but CVx
&4&Vy, there is no operator Q on 5 such that 4Vx= QC'x

for all xE-8.
Another test of the proper operation of instruments

refers to the sequence of active transformations. If two
space translations are performed consecutively, the
order should not a6ect the operation of the instrument.
More generally, if multiplication is identified with
successive application of two active transformations,
then the group of these transformations must be
isomorphic to the Poincare or Galilei groups.

It is now possible to answer the question raised al; the
beginning of this section: %'hat is the formal expression
of an active transformation (e.g. , a rotation. ) in
presence of external fields? For instance, what does
tensor observable or tensor-observation procedure
mean? If, as usual, the term "observable" is associated
in a unique way to an operator, the term "tensor
observable" is meaningless, because an operator may
be the image of a rotational invariant in 8 and also the
image of a tensor component in 5. For instance, the
energy-observation procedure E may be performed by a
calorimeter, and a rotation E~ V(R)E of 8 leaves the
image invariant by construction of the instrument;

4 „E=4„V(R)E

for all n and all R. However, the Hamiltonian may be
(for a special field I):

4' E=H=C„(P'/2m+x')
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and the observation procedure (p'/2m+x') is not a
rotational invariant, but transforms like the sum of
tensor components:

V(-,'~) (p'/2m+x') =p'/2m+y'

and, of course,
C' y'WC' x'

Therefore, it is imperative to consider the space 8 of
the hardware explicitly. In this language, the term
"tensor-observation procedure" can be given a precise
meaning: the subset {V(R)x}obtained by letting all
active rotations V(R) act on an observation procedure
x&8 is a universal subset 8„.It generates a subalgebra
{C„V(E)x}"in @.This subalgebra may be considered
as a linear space on which a representation of the group
V(R) is given. This representation may be finite-dimen-
sional and it may contain a tensor representation of the
rotation group. The elements xg 8 whose images are
in this subspace are then properly called tensor-observa-
tion procedures.

III. PRESYMMETRY

It is essential for the conceptual framework of
classical mechanics that initial conditions can be
either set or measured independently of (external)
forces. If it were otherwise, one couM. not use test
particles to study force fields. For this intrinsic defini-
tion of the initial condition, one can use positions and
velocities, but not arbitrary complete sets of variables
because their definition may involve the external field.
For instance, if the energy is used as one of the variables
to characterize the initial state, then it may happen
that a negative initial value of this variable cannot
exist in one external field, while it exists in another field.
If one wishes to compare world lines with the same initial
condition in diferent fields, only a restricted subset
of all observables can be used for the operational
definition of the initial state. More precisely, there exists
a unique algebra of basic observables {A (t)} for every
time such that the expectation values of these observ-
ables determine every state intrinsically, i.e., regardless
of external forces. In this form, the statement is
implicitly assumed to be valid in quantum mechanics
by those who either perform or analyze observations on
symmetry, at least for nonrelativistic phenomena.

What basic sets of observation procedures at one time
are usable for the purpose of defining the initial state
intrinsically? Clearly, one must postulate that the
algebraic relations between their images in the space of
observables should be independent of the external field.
Hence, the subsets in question are precisely universal
subsets 8„as defined in Sec. II.

Those elements LQG, of the space-time group that
leave the hypersurface t=const invariant, will trans-
form a subset 8~b of the basic observation procedures at
a time t into another such subset 8~~' for the same time.
Since the subset is unique, it must be invariant under

the group of active transformations {V(L),LQGt} so
so that 8~b'=8~p. The basic subset must define each
state completely, i.e., the positive linear form be(4 „8,b)"
must have a unique extension to the whole algebra 5 .
Hence, C„8~b must be a generating set of the whole
algebra of observables (4„8)"=5 .
' According to Sec. II, an active transformation
V(L)8,b(LQG, ) induces an automorphism Q(L, t) of the
subalgebra (4„8,b)"; but since this is in, fact the whole
algebra 5, the automorphism is defined everywhere in
8 . 'It may be well to consider its physical meaning.
The mere existence of a group of automorphisms of 8„
which is isomorphic to a given group is an empty
statement, because one can select a suitable subgroup
from the immense group of all automorphisms of 5 to
realize virtually any group, and that in many different
ways. The only relevant automorphisms of 5 are those
induced by an operation on the hardware, or, more
formally, by a permutation of the set of 8 of observation
procedures or of a subset of 8. The automorphisms
Q(L, t) have a restricted physical meaning. For instance,
Q(L,O), being an automorphism of 5, will perform a
definite operation on the acceleration Ca of a particle
in an external field, but this operation will have no
physical meaning. The reason is that Ca, is not trans-
formed as the image in 5 of a,g 8, but as the operator
that is assigned by the map 4 8&&. For example, if the
x component a, of the external force is proportional to
x, and its y component vanishes,

(4tbe =k4x, Cae =0),
then a 90' rotation V induces the transformation
Q(V)k4x=kCy, rather than Ca, —+ Ce„=0.

The group of automorphisms Q(L, t) for a fixed time
and for LQGt is a homomorphic image of Gt. To see
this, consider the two equations

CV x=QCx
«»ii xE 8~b, Vr, sE V(Gt) (3 ~)

4 Vsx=gsCx

Since 8~~ is stable with respect to V~, one can insert
x= Vsy into Eq. (3.1) and obtain

4'Vl(Vsy) =QtC'Vsy= QtgsC'y «r yC 8th (3 2)~

The simplest case occurs if the Galilei group is chosen
as the space-time group and a single particle is put in an
external field. What does the term "single particle"
mean? Without external field, it is of course described
by an irreducible ray representation of the Galilei
group. By extension, we can define a single particle as a
system on whose basic algebra C 8&&" the subgroup G&

induces a group of automorphisms Q(L, t)(LQG, ) such
that these automorphisms are implementable by an
irreducible ray representation of Gt.' In the case of the

6 According to an important theorem, there exists for every
automorphism Q of @a unitary operator U such that QA = UA U ~

for every bounded operator A in 5.J.Dixmier, I.es Algebres d'OP-
eratersrs dams PEspaee Hibertiea (Gauthier-Villars, Paris, 1957),
p. 253.
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J=QX& (3.4)

is neither conserved in time nor proportional to the
direct product of velocity and position. It is necessary
to devise operational definitions of these observables
to give a physical interpretation to the theoretical
results. This will be discussed in a subsequent paper.

It is remarkable that, contrary to classical mechanics,
the velocities cannot be used as elements of basic
universal sets. In the presence of a magnetic field, the
commutation relations between the three velocity
operators depend on the magnetic field and are therefore
not universal. Therefore, a state defined by sharp
numerical values of the velocities exists (improperly)
without a magnetic field, but "the same" state does not
exist in the presence of a magnetic field, since the
velocity components fail to commute.

It is questionable whether the basic assumptions, in
particular the existence of observation procedures for
measurements at a sharply defined instant, are tenable
for the Poincare group. ' Even if one assumes that they
are, application to the Poincare group gives only
meager results. For the Poincare group, the subgroup
G» is only the Euclidean group. Its irreducible represen-
tations cannot be extended to representations of the

' J.-M. Leby-Leblond, J.Math. Phys. 4, 776 (1963).

Galilei group, G» is the 9-dimensional derivative group~
whose irreducible ray representations are "the same"
as those of the full group (i.e., every irreducible ray
representation of G is an extension of an irreducible
ray representation of G,). The well-known results of the
ray-representation theory of G can be applied. For the
representation of the Lie group of the central extension~
of G, one has the canonical commutation relations

I Q Ii)=''i~ (3 3)

where mQ, are the generators of velocity shifts. ' For an
irreducible representation, the operators Q;, P; and the
spin operators s; generate the entire algebra 5. Hence,
the inverse images of these operators in 8»b generate
this subset in the sense of Sec. II. In this case, the
kinematics, i.e., the algebraic relations between the
images C„8»b of the elements of a basic subset is
completely determined by the representation of G».

These relations are universal, i.e., equally valid for all
external fields. For reducible representations of G», the
canonical commutation relations and the algebra of
orbital and spin angular momenta at one time follow
from this consideration.

Truly observable consequences of these results are
obtained only if specific operational meaning is assigned
to the generators. As for the free particles, one interprets

Q as a position and I' as the momentum. Unfortunately,
the operational meaning of the momentum (the
canonical momentum) is not as clear as in the case of
the free particle, since momentum is neither identical
with mass)&velocity nor conserved in time. Similarly,
the canonical angular momentum

whole group, and its Lie algebra does not generate the
algebra 5 for any physical system. One can still conclude
that momenta and angular momenta are well defined
for each time and that their algebra is a representation
of the Lie algebra of the Euclidean group. But not
even for a single particle can the inverse images in
8»b of these operators generate a basic universal
subset 8»b.

Let us summarize the results of this section. The
empirical statement that it is possible to give an
operational definition of any initial state intrinsically
(regardless of the external field) has the following formal
implication: There exists, for every instant t, a basic
universal subset 8»b of the set of observation procedures
8 such that

(a) The basic subset ebb is invariant under the
group G» of those active transformations L that leave
the hyperplane t= const invariant, i.e.,

V(L)«t= «t (LE@)

(b) Each image 4„8~q&S„generates the whole
algebra 5„.

It follows that there exists a homomorphism G» —+

Q(L, t) of G, into a group of automorphisms of 8 .
These automorphisms have a physical meaning only
for the images of 8»b, i.e., the equation

C„V(L)@=Q(L, t)C „x (LQGg, all e)

holds only for x&6&&.

IV. THE HAMILTONIAN FOR A TIME-
DEPENDENT EXTERNAL FORCE

The permutation V(r) of 8 induced by a time
translation v is the formal expression of a time delay
of the instant at which measurements are performed—
this delay being understood as relative to a clock that
starts a state-producing procedure. This permutation
V(r) induces an automorphism Q of 5 only in the
absence of external fields, but its restriction V(r) B,b to
a universal subset of basic observation procedures will
be shown to induce an automorphism Q(r, i) of 5 always.
Indeed, the subset 8»b is transformed into another
subset Oi+„|„and since O' V(r) is in the class of the
mappings (C„}, the universal nature of the subset
requires that there exist an isomorphism Q(r, t) from
C 8»b to C 8»+„b such that

eV(r)x, =Q(t, r)Ix), (x,g e,g). (4.1)

And since the algebra generated by C 8»b constitutes all
of I.„, the isomorphism is in fact an automorphism of
K..

However, the group of automorphisms Q(t, r) is not
necessarily a realization of the one-parameter Abelian
time-translation group. The argument in Sec. III that
proved the corresponding statement for members L of
G& does not apply because the range of V(r) «& is not
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Q(, t+ )Q(,t) =Q( +, t) (4.3)
on Pf.

These automorphisms can be implemented by unitary
operators. ' With a slight change of notation, we choose
the association Q(x,y) —& U(x+y, y), with U(y, y)=1,
so that the multiplication table of the unitary operators
1eads

U(t„t,)U(t, ,t,)= U(tg, t,).
The Schrodinger equation is obtained by

(4 4)

i(8/Bt3) U (t3, tg) lim(1/e) [U(t3+ e, t2)

—U(t„t,)]U(t„t,). (4.5)

On the right-hand side, one can set t2=ta= t, so that

i(8/Bt) U(t, tg) =i lim(1/e)[U(t+c, t) 1jU(t, tg) . —(4.6)

The operator

V(t) = i lim(1/e) [U(t+ e, t) 1)—
e—4

(4.7)

will be shown to be Hermitian. Differentiating the
equation

(4.8)U(t) Ut(t) =1

and inserting Eq. (4.6) gives

i V UUt —iUUtVt=o, (4.9)

which shows that V=Vt. The usual form of the
Schrodinger equation is obtained by defining

e(t) = U(t, t,)C, (4.1O)

where C is a Heisenberg state. With this substitution,
Eq. (4.6) becomes

i(ae/at) = V(t)e(t) . (4.11)

This deduction is purely formal. To make it rigorous,
one would have to show (1) that the phases of the ray
representation of the group (Q) can be set equal to zero
without loss of generality, (2) that the limit V(t) exists,
and (3) that it is self-adjoint.

V. RELATION TO CURRENT ALGEBRAS

Gell-Mann' and others have introduced an apparently
new concept of symmetry into physics. A set of equal-
time commutation rules define a Lie algebra of operators
on Hilbert space, but they do not imply the existence of
symmetry operators which commute with either the

g M. Gell-Mann, Physics 1, 63 (1964).

6t,~, but 8~+„q. Nevertheless, a residue of time-transla-
tion symmetry remains. The relation

V(rm) V(rg) e(p= V(rg+r2) 8(t, (4.2)

induces the relation

Hamiltonian, the S operator, the Lagrangian, or even
with the restriction of any of these operators to a
subspace. Nevertheless, rigorous sum rules can be
deduced from the assumption that their commutation
rules are rigorously satisfied. Actually, this situation is
not as novel as it seems to be at first. Quantum mechan-
ics has, from its beginning, assumed a set of equal-time
commutation rules quite independently of the dynamics.
The canonical commutation relations by themselves do
not induce any dynamical symmetry, but they lead to
rigorous sum rules. The Thomas-Kuhn sum rules for
spectral intensities depend only on the kinematics, i.e.,
the canonical commutation rules. As pointed out in
the Introduction, the canonical commutation relations
were suggested to Heisenberg hrst by the empirical
sum rule, while the recent discoveries were motivated
more indirectly by approximate symmetries and led
to sum rules by mathematical deduction.

This analogy may seem rather far-fetched and
superficial, because one does not usually think of the
nonrelativistic kinematics as rejecting a symmetry,
while the current-commutation rules originate in a
(badly broken) symmetry. However, the study of the
ray representations of the Galilei group has shown that
the canonical commutation relations have their origin
in the Galilei symmetry of nonrelativistic physics: The
Inomentum is the generator of unitary translation
operators, and the product mass &( position is the
generator of unitary "acceleration" operators. If the
Galilei symmetry is broken by an external held, it is
traditional to maintain the canonical equal-time
relations. Similarly, for a particle with spin, the Pauli
commutation relations between the spin components are
traditionally maintained as kinematic equations, even
when an external held is present, although they originate
in the representation of the rotation group. A systematic
investigation of space-time symmetry broken by an
external field has shown that a residue of the original
symmetry, a presymmetry, remains and necessari1y
requires the rigorous persistence of the kinematics of
the fully symmetric system. Thereby, the analogy
becomes strong. On the one hand, Galilei symmetry
broken by an external held still leads to equal-time
canonical commutation rules, and thereby to the
Thomas-Kuhn rigorous sum rules. On the other hand,
U(3) symmetry broken by an unknown agent still
leaves a residue of presymmetry, reQected in rigorous
kinematic commutation relations and consequent
rigorous sum rules.
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