
P 8 YSI CAL REVI EW VOLUME |53, NUMBER 5 25 J ANUARY 1967

Gravitational Collapse and Causality
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The relativistic dynamics of a thin spherical shell of dust collapsing under its own weight is developed on
the hypothesis that the shell rebounds elastically after imploding to a point. The resulting description in-
volves certain causal anomalies. The question of whether these anomalies can lead to actual logical contradic-
tions is investigated. Possible similarities between the results obtained for the special case considered here
and the characteristics of general asymmetric collapse are discussed. Reasons are given for believing (i) that
singularities do not arise in the course of an asymmetric collapse except in special cases; (ii) that collapse
of a mass M does not proceed irreversibly to zero volume, but is an oscillatory phenomenon in which the
object never becomes smaller than a critical linear size of order G3f/c2; (iii) that when the object is near this
critical size, a region develops in its interior where past and future cannot be globally distinguished; and
(iv) that since the law of baryon conservation cannot be globally valid in such a pathological region, large-
scale annihilation of baryons is possible.

1. INTRODUCTION

'HE fate of a spherical body collapsing under its
own weight has recently been a subject of re-

newed astrophysical interest. '
According to the conventional relativistic interpreta-

tion, ' the body shrinks asymptotically to its Schwarz-
schild radius, reaching it at infinite coordinate time.

A diferent interpretation of the relativistic formulas
has recently been suggested by the author. ' In its
superficial aspects, it closely resembles the Newtonian
picture of an elastic pulsation with finite period, but
actually it involves causal anomalies of an unexpected
nature.

All such anomalies occur within a radius comparable
to the Schwarzschild radius, and are thus beyond the
reach of practical observation.

Nonetheless, the new picture obviously cannot be cor-
rect if these causal anomalies lead to demonstrable
logical contradictions. The object of the present paper is
to test for logical contradictions in the special case where
the collapsing body is a thin spherical shell of dust.

Sections 2—6 develop the dynamical equation of the
shell and deal with the general characteristics of the
motion as seen by interior and exterior observers. In
Secs. 7 and 8 the question of possible causal violations
is considered. The paper concludes with some comments
on the possible relevance of the results obtained here
to the characteristics of general asymmetric collapse.

(dss) s dr'+r'dQ ——dT'— (3)

Both (2) and (3) must induce the same intrinsic
metric, namely (1), on the imbedded hypersurface Z.
Because of the tangential character of the parametric
lines of 8, p at each point of Z, we may compare coef-
ficients of dQ in (1), (2), (3).This shows that the equa-
tion of Z is

The spherical symmetry of Z means that its intrinsic
metric is expressible in the form

(ds')z= [R(r)]'dQ —dr'. (1)

Here, r is proper time along the world-line (8, P= const)
of a dust particle, dQ—=d8'+sins8d&s and R is the shell's
radius. It should be noted that (1) defines the radius
purely intrinsically by the statement that the area of
the shell at instant r is 4rr(R(r) $'.

Birkho6's theorem4 asserts that every spherically
symmetric vacuum field can be represented by a metric
of Schwarzschild's form with a suitable constant m.
The line element in the region exterior to the shell may
accordingly be written

(ds'), zt, (1 2m——/r) —'dr'+r'dQ (1—2—m/r)dt', (2)

where m is the gravitational mass (total energy) of
the shell. For the interior region, Birkhoff's theorem
together with the requirement of regularity at r=0
leads to the Rat line element

2. INTERIOR AND EXTERIOR LINE ELEMENTS
r=R(r) (4)

Let the time-like 3-space Z be the history of a thin
spherical shell of dust.

~ On leave of absence from the Department of Mathematics,
University of Alberta, Edmonton, Canada.' Quusistellar Sources und Gravitational ColluPse, edited by I.
Robinson, A. Schild, and E. L. Schucking (University of Chicago
Press, Chicago, Illinois, 1964); Ya. B. Zel'dovich and I. D.
Novikov, Usp. Fiz. Nauk 84, 377 (1964) LEnglish transl. : Soviet
Phys. —Usp. 7, 763 (1965)g; Usp. Fiz. Nauk 86, 447 (1965)
LEnglish transl. : Soviet Phys. —Usp. 8, 522 (1966)j.

~ J.R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
SW. Israel, Nature 209, 66 (1966); Phys. Rev. 143, 1016

(1966); Phys. Letters 21, 4/ (1966);Nature 211, 466 (1966).
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with respect to both interior and exterior radial co-
ordinates r. Comparison of the induced, metrics along
the streamlines 8, P= const yields

dr'= d T' dR'= (1 2m/R)—dts (1 —2m/R) —'dR—' (5)

If m)0, the applicability of the exterior r, 8, P, t

chart is restricted to the domain r&2m: the coordinate
t becomes singular on the Schwarzschild sphere r= 2m.
To pursue the history of a collapsing shell through this

4 See, e.g., J. L. Synge, Relativity: The General Theory (North-
Holland Publishing Company, Amsterdam, 1960), p. 276.
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TAsLE I. Collapse of thin spherical shell of dust.

|389

Positive binding energy: a=cosa. (1.
LShell falls from rest at finite radius R, =m/2o(t —o).7

R (0+) =—,'m secor csc'a (coso.—cosO~)

r (0~) = 2m scca csc'a (0+ cosa, —sinO)+const
T(O~) =-,'m seen csc'a(0. —cosa sin0~)+const
t (0~) = ——,'m csc'a (sin0~+BO+ scca)

+2m InLsinxs(3a —0)/sinsr(3a+0)7+const
u (O~) =2m csc2a sin-', (0~+3n) expG(O~)
s(0~) =4m caen sin-,'(0. —3n) expL —G(0)7

G(0~) = ~~ seco cscaaLBO~+sin(0' —n)7+const
B=cos22a —2 cos a

Zero binding energy: a = 1
LShell falls from rest at infinity. 7

R(Z) =my 2 ——,')
r (P )=m (&0—~g)+const
T (X)=m (-',) '+-', X)+const

e (X) =m (-',X'+-', X)+2m 1nL (X—-', )/(X+-', )7+const
u(X) =2&2m(X+-', ) expG() )
s(X) =@2m(X——',) exp/ —G(X)7
G(X) = ——,'X'+-,'A' —P +const
Self-collision for X (X)= 1.6050, R (X)=2.3260m

Negative binding energy: a=coshn&1.
LShell impelled from infinity. 7

R (O~) =-,'m sech+ csch'0, (cschO~ —cosha)
v (0~) = ~2m secha csch'a (O~ cosho. —sinhO~)+const
T (0~) =~m secha csch'n (cosha sinhO~ —0~)+const
t (0~) =~~m csch'n (sinhO~+BO~ secha)

+2m 1nL(ee —er~)/(ee —e '~)7+const
re(O') =2m csch2a sinh-', (0+3+) exp/ —G(0')7
z(O) =4m cscha sing(0+ —3a) expG(O~)

G(0~) = x' secho, csch'o, LBO~+sinh (0~ —er)7+const
8=cosh'2a —2 cosh'a

Shell of photons: a ~co, b —+ 0, ah=m

R= i?'i+const
R+2m In(R —2m) = ~f )+const
~=0

uz = —8m' lnz+const (for collapse)
u= const (for expansion)

Self-collision for R (X)=2.5568m

sphere, one requires a coordinate system which covers
the complete exterior manifold down to the geometrical
singularity at r=0. In terms of one such maximal
coordinate system, ' the Schwarzschild metric (2) takes
the form

is the ratio of total mass (including contributions from
the kinetic and potential energies) to nucleonic mass.
Thus, (1—a)b measures the biredhng ereergy of the shell.

It will be assumed throughout that b and m are
positive. ' Then the inequality

with

(ds') = 2duds+ (s'/2mr) du'+r'dQ

r= 2m+ us/4m.

(6) a+m/(2uR) & 1,

(7) implied by (10), places an upper bound

The relation between the coordinates (u, s) and (r,t) is

t = r 2m ln(u/2s—),
u= LSm(r —2m)]'f' expL(r —t)/4m],
s= L2m(r —2m)]'f' expL(f —r)/4m],

in the domain (r) 2m) where f is defined.

3. GENERAL CHARACTERISTICS OF
THE MOTION

In a previous paper' it was shown that the equation of
motion of the shell has the first integral

1+ (dR/dr)s = (a+b/2R)s (10)

The constant b was there interpreted as the eecteoeic
muss of the shell, i.e., the total mass of the constituents
when infinitely dispersed and at rest. The constant

a= m/b

'W. Israel, Phys. Rev. 143, 1016 (1966). Equivalent comple-
tions have been given by M. D. Kruskal, Phys. Rev. 119, 1743
(1960); G. Szekeres, Publ. Math. Debrecen 7, 285 (1960); C.
Fronsdal, Phys. Rev. 116, 778 (1959).

6 W. Israel, Nuovo Cimento 44$, 1 (1966).

R,„=m/2a(1 —a)

on the radius of the shell if u &1; for u& 1 it is trivially
satisfied. Thus, as expected, expanding shells with posi-
tive binding energy fall back after reaching a finite
maximal radius; shells with negative binding energy can
expand to infinity.

From (11),
&2m,

a result to be expected, since a particle on the outer
boundary with a stationary r 2m would have a space-
like world line. We conclude that No shell of dust cars

remaiN permamerefly submerged roithire its $chwarsschild
sphere. In Sec. 6 this statement will be considerably
strengthened.

4. INTEGRATION OF THE EQUATIONS

The results of integrating (10) are conveniently
expressed in parametric form. We distinguish two cases.

For shells with positive binding energy (0(a(1),we

' Since the causal peculiarities associated with the Schwarzschild
"singularity" r =2m, t =~ oo arise only for m&0, the case m& 0
(even if physically meaningful) is not relevant to the main pur-
pose of this paper.
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Fro. 1. The Ns plane, showing
(not to scale) the history ABCDEF
~ ~ ~ of a particle in the wall of a
spherical shell which has been held
at rest {section AB), then released
and allowed to pulsate elastically
under its own weight. According to
the elliptic interpretation, the
events (N, s,8,p) and (—m, —s, 8, p)
are physically identical, so that one
half of the us plane is superBuous.
We take advantage of this circum-
stance to represent the two dia-
metrically opposite 2-spaces O=c&,
@=c2 and 8=~—c1, @=m+c~ on
the same Qgure. Thus, points in,
quadrants I and III represent
events with r&2m in the spaces
0=c1)qb = c2 and 0 =m —c1) @=x'+ c2)
respectively. Points in quadrants
II and IV represent events with
r (2m in either of these spaces. The
two spaces are hinged together at
the singular curve r =0, so that the
particle crosses over to the dia-
metrically opposite space at each
passage through r =0.

define a variable O~ by

m a—cosO
E(O) =

2a(1—a) a+1
(12)

and an acute angle n by

8= cosQ. (13)

Integration of (10) yields r(0). Then T(0~), t(0') are
found from (5), and u(0~), s(0~) from (9).

For shells with negative binding energy (a) 1) a new
O~ and a new n are in, troduced by replacing cosO~, coso.
in (12) and (13) by their hyperbolic equivalents. The
integration proceeds as before.

Table I summarizes the results.

S. REBOUND FROM THE SINGULARITY

The formulas of Table I enable us to follow the career
of a collapsing shell, from both internal an, d external
points of view, until its implosion to zero radius. At
this point a singularity develops in the geometry, and
the subsequent history is a matter of conjecture.

The remainder of this paper will be devoted to explor-
ing the consequences of what seems (in view of the time-
symmetry of the Geld equations) the simplest hypothe-
sis: n, amely, that the shell rebounds elastically and
reversibly from 8=0 with conservation of the number
of particles. Then (10)—with unchanged values of a and
b—continues to hold for the subsequent re-explosion.

'BasicaQy, our assumption is that at the instant of in6nite
compression R=0, and at all "self-collisions, " the particles of the
shell interpenetrate freely without nuclear interactions or random
scattering. While physically absurd, this attempt to isolate the

To see in detail how the continuation through E.=0 is
made, let us consider for definiteness the exterior descrip-
tion of the case a(1 (first column of Table I). We ob-
serve that there is an arbitrary additive constant in the
function G(0~). For R) 2m, changes in this constant cor-
respond to time-translations t(0~) —+ t(0~)+const. Let
us set the constant equal to some definite value (say
zero) for the phase of collapse, —m &0~ &—n. At total
collapse, the value of u is u( —a) =m seen expG( —n).
Re-expansion begins at 0'=+a. Its analytical descrip-
tion is the same as that of the preceding collapse, but
may involve different additive constants in t(0) and
G(0'), say G,„(0~)=G(0~)+C. The value of u at the
initial moment of re-expansion is

and this Axes

N —n=mn,

C= —
8 secu csc'n(28n+sin2n)+in(-, ' seen),

where 8 is defined in Table I.

purely kinematical aspects is perhaps excusable in a erst survey.
Inspection of Fig. 1 shows that for self-collisions inside r=2m,
each particle of the shell meets itself (or its diametrically opposite
partner) traveling backwards in time. If this has any counterpart
in reality, it implies that the conservation of baryon number
(considered as a global law) is subject to breakdown inside the
Schwarzschild sphere, and that matter-antimatter annihilation
plays a signi6cant role in realistic examples of gravitational
collapse. Compare Secs. 8 and 9.

u(n) = 2m expLG(n)+C].

Assuming that maximum implosion, R= 0 is represented
by a single point in the exterior coordinate map, w' e
must have
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Fzo. 2. The history of a spherical shell of dust, as imbedded (a) in the interior Rat space and (b) in the exterior Schwarzschild space
Quadrants I and III of (b) represent two radially opposite 2-spaces with r&2m (see caption of Fig. 1) corresponding to the right and
left halves of Fig. 2(a). The light-like probe B, shot radially inwards from BI, penetrates the contracting left wall at B2 and traverses
the interior of the shell (segment B~B8).Its world line emerges into the exterior domain through the shell's future cone at B3 and enters
the expanding right wall through the shell s future cone at B4. It now traverses the interior of the shell moving backwards in T time.
It continues to zigzag inde6nitely and ever more closely toward the singularity at R=O. The exterior manifold of Fig. 2(b) is non-
orientable, and it is the mapping of this region onto a plane that causes the apparent discontinuous iiip oi the exterior normal vector
on passage through X or X .

6. NATURE OF THE PULSATION

Our hypothesis of elastic rebound leads to a pulsating
model for a shell with positive binding energy. The
exterior coordinate time for a complete pulsation (pro-
portional to the period actually measured by an external
stationary clock) is, by (8),

t (v.)—t (—x )= 2m inLu (—v-) s(v-)/u(v. )s(—n)]
= —xmB seco. csc'o.—4mC.

If R,„&)2m, this reduces to nm/ns v-(R s/m)'Is, in
agreement with the Newtonian prediction.

Figure 1 illustrates a segment of the history Z of a
pulsating shell with R, =4m.

Figure 2 illustrates, from both internal and external
points of view, the history Z of a shell which executes
a single pulsation with R, &2m. The Ggure shows
vividly how the difference in the local geometry of the
imbeddings of Z in the interior and exterior domains
entails remarkable differences of a topological nature.
On Z as imbedded in the interior fiat space, there are
two 2-spheres r=R(X) with trace X, X' in the r, T
plane. They are associated with opposite values of T
and they are distinct. In the space with metric (2), on
the other hand, an external self-adhesion of Z makes
these 2-spheres coincide. In plain physical terms, ue
external observer sees the shell collide withitself at radius
R(X); an internal observer does not notice this.

If the shell is permitted to execute more than one
pulsation, the number of self-collisions increases rapidly.
All occur within a radius comparable to the Schwarz-
schild radius. In general, the radius of the outermost
self-collision is subject to

2m& R(X)& 2.5568m,

the upper bound being attained for a shell of photons.

To an external observer with r &R(X), only the outer-
most V-shaped segments A2X'C~ and A3XC3 ~ ~ of
Z are optically observable. Light from other sections
(e.g., from Bs) cannot reach him directly. He therefore
describes the sequence of events as follows: the shell
collapse from R,„to a minimal radius R(X)& 2m, then
rebounds elastically. It is never observed to enter the
Schwarzschild sphere.

7. TRANSMISSION OF PROBES
THROUGH THE SHELL

At the root of our hypothesis of elastic rebound at
R= 0 is the so-called "elliptic interpretation'" ' " of
the extended Schwarzschild manifold. In this interpreta-
tion, the points (u, s,8,$) and (—u, —s, 0, P) are con-
sidered to represent the same physical event.

For the behavior of probes and light-signals in the
Schwarzschild vacuum Geld, the elliptic interpretation
leads to quite bizarre predictions. ' ' A radially falling
probe reaches r= 2m at coordinate time t=+ eo,

although the proper time of descent to r= 2m and, in-
deed, to r=0 is Gnite. It is in conformity with the
elliptic interpretation to assume that the probe's
momentum carries it through the singularity r=0 onto
the opposite radius. The probe then re-emerges from
r = 2m at t= —~. Now, the coordinate t is proportional
to the time actually registered by stationary clocks
with r&2m. It follows that observers hovering just
outside the Schwarzschild sphere may see the probe
re-emerge from this sphere before it enteredl

F. J. Belinfante, Phys. Letters 20, 25 (1966); g. M. Souriau,
Bull. Soc. Math. France 93, 193 (1965); W. Rindler, Phys. Rev.
Letters 15, 1001 (1965);W. Israel, Nature 211, 466 (1966).

"J.L. Anderson and R. Gautreau, Phys. Letters 20, 24 (1966).



f392 Vv. isRAEL

It should be kept in mind that we are concerned here
with nothing more than a mathematical oddity —a
curious property of time-like curves in a manifold which
represents pure empty space apart from a singular
curve r=0 T.he siegglarity r=0 is momphysica/: It is
space-like, so it cannot be the history of a particle.
There is no such thing as a point-mass in general rela-
tivity. In fact, it is not hard to see that the property we
obtained in Sec. 6 for the shell holds for any spherical
body: to an external observer the body never appears
smaller than its Schwarzschild sphere. "

Thus, physically significant paradoxes arise only if
it can be shown that the anomalous behavior described
above is reproducible in the presence of the mass dis-
tribution which creates the exterior vacuum field. This
question will now be investigated for the case where the
central mass is a free-falling spherical shell.

We consider the radial motion of a probe which
encounters no resistance in passing through the shell.
Is it possible for the probe to re-emerge at an earlier
Schwarzschild time t than its moment of entry? The
prospect of such behavior seems particularly auspicious
for a thin shell, since here the Schwarzschild "singu-
larity" r= 2m, t= & 00 is real: sections of the u and s
axes are actually exposed as part of the domain with
metric (2). Conceivably a probe crossing either of these
sections might re-emerge "before" it enters.

To follow the motion in detail, one requires junction
conditions to connect the paths in the exterior and in-
terior regions when the probe's world line cuts through
Z, the history of the shell wall. In order to formulate
these conditions, we observe that there is a well-defined
past-future arrow on the world line of the probe and
also at each event on Z. (But these cannot be extended
to a globally consistent past-future distinction in the
domain r (2m of the exterior space. ') We postulate that,
on passage through Z, the scalar product" of the
(normalized) future-pointing tangent vectors is pre-
served. Physically this implies continuity of the 3-
velocity of the probe relative to the shell wall: only the
acceleration is discontinuous.

Figure 3 shows the null paths of three massless probes
A, 8, C which are fired radially into the left wall of the
shell. (For probes of 6nite mass, which have time-like
paths, the conclusions are qualitatively the same. ) A
probe reaching the left wall at any moment later than
the self-collision at X' (such as C&) or sufEciently earlier
than X' (such as A~) passes uneventfully through the
expanding or collapsing shell, and emerges from the
right wall at a later t time.

On the other hand, a probe (such as 8) which enters
the lef t wall just before X' will emerge from the opposite
wall with a radial coordinate less than 2m, i.e., within

'~We may expect this result to remain qualitatively valid for
asymmetric situations which do not deviate too far from spherical
symmetry. Thus, any freely collapsing object of mass M will
appear to an external observer to pulsate with a minimal linear
size of order GM/c2.

"Or simply its sign, if one of the tangent vectors is null.

the Schwarzschild "singularity" of the exterior space.
It continues on an endless waning zig-zag course in time
and space, passing repeatedly through the shell and
rapidly sinking towards the singularity R(0)=0. It
never re-enters the region r&2m.

Thus, there are no causal anomalies in the region
r)R(X) outside the shell.

8. OTHER POSSIBILITIES FOR
CAUSAL VIOLATIONS

Causal difhculties might be anticipated from the
clash of the arrow on the segment 8485 of probe 8's
world line with the arrows of bodies that have evolved
in the expanding interior of the shell.

Actually it is easy to see that the segment B&q will

be nonexistent for a macroscopic probe in a realistic
physical situation. For simplicity, " let us idealize the
probe as a coherent stream of identical baryons with
4-velocity u&. The assembly is characterized by an
energy tensor T&"=pu&u" and a numerical Aux vector
Mi"= pu&, both of which are divergenceless, expressing
the conservation of 4-momentum and of baryon number,
respectively. An observer having 4-velocity v& measures
T""s„m„asthe energy density and —M&e„as proportional
to the baryon density. If we consider the case where ~&

and u& point into opposing halves of the null cone, we
see that a probe "traveling backwards in time" is
characterized by positive energy density and negative
baryon number, and thus has all the properties con-
ventionally attributed to antimatter. It follows that
the probe and the shell wall will interact as matter and
anti-matter at 84, with annihilation of the probe.

The single remaining possibility is the formation of a
closed causal chain by two organisms in the rhomboidal
sector r &R(X) of the exterior space LFig. 2(b)]. Two
bodies, one of which has evolved in the exterior domain

r)R(X), the other in the expanding interior during
the period 0(T T(X), and which have been launched
into the rhomboidal sector, will meet there with their
arrows in opposition. If the bodies are intelligent, it is
dificult to see how they could be prevented from con-

spiring together so that each can change his own past.
While this paradox cannot be categorically precluded,

its realizability is nevertheless rendered unlikely by the
following considerations:

(i) It requires the evolution of intelligence in the
interior from a state of chaos at T=O within a time of
the order of the characteristic Schwarzschild . time
2GM/o' (where M is the mass of the shell in grams).
The single instance of terrestrial life is of course not a
valid basis for generalization, but it suggests that the
time actually required may be of the same order as the
present age of the universe.

(ii) To form a closed causal chain, organisms suf-

6ciently sensitive and complex to make observations
.and simple decisions would have to survive in the

"See, e.g., %.Israel LJ. Math. Phys. 4, 1163 (1963)j for a more
general discussion.
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rhomboidal sector for a time interval of the order c 'm,
where the length m—=GM/c2. Causality is basically a
statistical phenomenon. In any situation which has a
significant probability of actually occurring, the bounce
and self-collision of the shell will cause an appreciable
fraction of its mass to be scattered into the rhomboidal
sector (3 volume m') in the form of high-speed par-
ticles and antiparticles with density not much less
than 3fm ' and intensity c3fm ', A minimal condition
for survival is clearly that the total mass of antiparticles
encountered should not exceed the organism's mass p, .
This leads to the requirement

a2(cM m- )3(c 'm) &u,

where a is a characteristic linear dimension of the
organism. In terms of the organism's density p, this can
be written

~(c4/G2) 1/3 2/3

8)(1056" i/3p 2/3 (g)

with p, p in conventional cgs units. For the survival of
organisms not inconceivably more dense and massive
than those familiar from terrestrial experience this
demands that the shell's mass be tremendously large.
(The mass of the observable universe is of the order of
10" g.) Massive shielding of the organism which in-
creases p by a factor of j.0' will reduce the required M
by a factor of 10, but also reduces the sensitivity by a
much larger factor.

Both (i) and (ii) point to the conclusion that causal
violations in the rhomboidal region are physically
realizable only if the mass of the shell is very large,
perhaps comparable with that of the observable uni-
verse. It might be argued that this constraint is suf-
6ciently overwhelming to be considered a limitation of
principle.

Q. GENERAL (NONSYMMETRIC) COLLAPSE AND
THE OCCURRENCE OF SINGULARITIES

As already emphasized, ' the artihciality of the model
discussed in this paper precludes its direct applicability
to realistic examples of gravitational collapse. The
results are of physical interest only insofar as they can
provide clues to the characteristics of more general
situation, s.

General nonsymmetric collapse has recently been the
subject of two independent lines of attack. "" In
particular, the question of whether physical singulari-
ties inevitably develop in the course of the collapse
has been studied by both groups, with results which
appear at erst sight to conQict.

On the one hand, it has been strongly contended'4
that the occurrence of singularities in the known
"See the review by E.M. Lifshitz and I.M. Khalatnikov, Usp.

Fiz. Nauk 80, 391 (1963) /English transl. : Soviet Phys. —Usp.
6, 495 (1964)j."R.Penrose, Phys. Rev. Letters 14, 57 (1965). See also S. W.
Hawking, ibid. 15, 689 (1965);S. W. Hawking and G. F. R. Ellis,
Phys. Letters 17, 247 (1965).

mathematical solutions representing collapse is entirely
due to the symmetry or homogeneity of these solutions.
For instance, in spherically symmetric collapse, the
singularity develops because all particles are focused
toward a single point, and would be smoothed out by a
small perturbation. In support of their contention, it
has been shown by these authors that, whereas a general
solution of Einstein's field equations for an ultrarela-
tivistic fiuid involves 8 physically arbitrary functions of
three variables (spatial coordinates), a solution with
singularity contains at most 7 arbitrary functions. The
initial conditions leading to a singular collapse thus
form a subset of measure zero in the manifold of all
possible initial conditions.

On the other hand, Penrose" has established that a
singularity is necessarily present (or space-time is
incomplete) if the following conditions are met: (a) The
energy density is non-negative definite; (b) space-time
contains a "trapped surface" (defined as a closed, space-
like 2-space Swith the property that, of the four systems
of null geodesic rays emanating normally from S, two-
drawn into the same half of the null con- converge
locally); (c) there exists a noncompact space-like hyper-
surface which intersects every time-like and null line
exactly once; (d) the null cones form two separate
systems, past and future.

There is no known internal reason to doubt the
mathematical correctness of either of these analyses,
but the apparent incompatibility of the results has led
to the suspicion that one or other must be in error. I
wish to suggest here that actually both are correct.
Indeed, suppose it is accepted that in general no singu-
larity develops. According to Penrose's theorem, in a
nonsingular collapse which satisfies (a) and (b), there
must be a violation of (c) or (d). Thus, in a general non
symmetrtc collapse satisfying conditions (a) and (b), a
portion of the collapsing matter will pass into an abnormal
region of space time in -which past and future cannot be

globally Chstingmished. This shows that the two analyses
are not necessarily incompatible and is also perfectly
consonant with what we have found in this paper for a
special highly symmetric model.

If such abnormal regions really exist, baryon conserva-
tion would be reduced in them to a law of merely local
validity. It would, for instance, be possible for two time
lines whose arrows point into the future null cone in a
normal region of space-t™e,to intersect in an abnormal
region with their arrows in opposition. Thus, two equal
masses, both originating as ordinary matter in a norma1
region could nevertheless interact as matter and anti-
matter if they arrive, by paths which di6'er suitably, at
the same event of an abnormal region. The fraction of
the total number of baryons annihilated in this way
presumably increases with the degree of sy™~~yof
the collapse. Conceivably, it is this mechanism which is
basically responsible for the prodigious outputs of high-

energy quanta and relativistic particles observed in
quasistellar sources and supernovae.


