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Counting the Bound States for Central Potentials

PETER SwAN

Departement de Physique, Unieersite Laval, Quebec, Canada

(Received 1 August 1966)

An interaction potential is fitted by a multiple-step function, step width bR ~ 0, to yield a first-order
differential equation for phase function qE(k,r), and also an integral for the wave-function amplitude A &(k,r).
Both neutral- and charged-particle scattering is treated. The number of bound states follows by integration
of the p'(0 r) equation and Levinson's theorem g&(0, w) =a&~, also, for U'(r) R) &0, one has! Pp(r &Z)!& 1.
An approximate method of evaluating all the eigenenergies via scattering phase shifts is discussed.

I. INTRODUCTION bound states is

'HE number of bound states in a potential may be
directly counted via numerical integration of the

wave equation to find the corresponding eigenenergies.
As one boundary condition is at r= tx) and involves the
unknown binding energy parameter, the latter must be
guessed. The radial wave equation is integrated out
from r=0 to a large r value, where the solution is
checked for consistency with the asymptotic (parame-
trized) form. If inconsistent, the trial eigenvalue param-
eter must be changed, and the whole process repeated
until consistent.

The process is very laborious, a large number of
integrations being required. Moreover, it must be re-

peated for each bound state, with no assurance that
some may have been missed, particularly loosely bound
ones. However, extensive calculations of this type have
been reported for the Debye —Hiickel (Yukawa)
potential. ' '

An alternative procedure4 makes use of the properties
of the zero-energy scattering length for neutral partic

(3)r~ U(r) ~dr~&1.

Ba,rgmann' extended this result to a necessary condi-

tion for m~ bound states:

(21+1)nt& r~ U(r) ~!dr,

which was later proved for tensor forces also by
Schwinger. 7

The condition (3) for a bound state of zero energy
has been extended' to give a necessary condition for a
bound 5 state of energy —W. Writing s'=(2p, ~A')

~ W~,
this is

r
~
U(r)

~
[1—e s""j/(2~r)dr&1.

at= [(2l+1)!!j' lim [—tang((k)/k "+'].
k-+0

Calogero' "has derived both upper and lower limits

to the number of bound states in a central potential.
(1) His upper limit for S states gives

U(r) = (2l /&') ~(r), (2)

Jost and Pais' showed that a necessary condition for

' G. M. Harris, Phys. Rev. 125, 1131 (1962).
2 D. Kelley and H. Margenau (unpublished), as reviewed by

H. Margenau and M. Lewis, Rev. Mod. Phys. 31, 569 (1959).
3 G. Kcker and W. Weizel, Ann. Physik 17, 126 (1956).' H. M. Schey and J.L. Schwartz, Phys. Rev. 139,B1428 (1965).
5 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

If the strength parameter ~ of the potential is steadily
increased from zero, u~ changes sign each time a new
bound state is formed, and the number of bound states
for a given strength co, is given by the number of zeros
of a'(a&), 0«u&co, . The problem thus reduces to numeri-
cal integration of the radial wave equation at zero energy
for a number of values of co.

This is safer, more straightforward, and less work
than the first method, although still somewhat laborious.
The eigenenergy values, however, are not found at all.

A third method is to And conditions for the potential
to have bound states. Writing

nt~&np~&(2/m)
~
U(r)

~

' dr, U'(r) &~0. (6)

Equation (6) is a better estimate for np than (4),
giving much smaller allowed values for mo) 2. The
example of a square well of depth Uo and range b leads

to 2np& Upb' from (4) (m'/4)np'& Upb' from (6), and

(n'/4)(2np —1)'& Upb' in the exact calculation. Thus
the true upper limit for S states is a good deal smaller

than given even by the estimate (6), at least for np&&2.
In the fourth method following, we show how to

count exactly the number of bound states in a very
simple manner. The S-wave neutral scattering particle
case is particularly straightforward and has special
characteristics, so will be tackled first.

6 V. Bargmann, Proc. Natl. Acad. Sci. (U. S.) 38, 961 (1952).
7 J. Schwinger, Proc. Natl. Acad. Sci. (U. S.) 47, 122, (1961).

A. Ronveaux, Ph.D. thesis, Rensselaer Polytechnic Institute,
1966 (unpublished).' F. Calogero, J. Math. Phys. 6, 161 (1965)~

"F.Calogero, Nuovo Cimento 6, 1105 (1965)."F.Calogero, Nuovo Cimento 36, 199 (1965)."F.Calogero, Commun. Math. Phys. (Germany) 1, 80 (1965).
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ment of Eq. (14) is

$'(r) = [U'(r)/4~'(r)] sin2$(r)
=K(r) = [k'—U(r)]'t' .(15)
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Next, one considers the continuity relation
Ug

~~rs% „'(R.)+{+.'(R.))'
=~~P+~rs(R„)+ {%„+r'(R.)j', (16)

which, with Eqs. (11) and (12), leads to

AA /A =(AU /2~„') cos'(z„R„+g„),

Ug

(17)

so that for ~~ 0 and e —&, we obtain

A'(r) = {A(k,r)/2z'(r)) U'(r) cos'[~(r)r+g(k, r)]. (18)

This has the boundary condition A(k, pp)=1 (unit
normalization), and solution

1
A (k,r) = exp —— [U'(r)/a'(r)]

2

Fro. i. Multiple-step approximation to a central potential.

II. AMPLITUDE AND PHASE-SHIFT EQUATIONS
FOR NEUTRAL-PARTICLE

SCATTERING, &=0
Xcos'[a(r)r+rt(k, r)]dr . (19)

III. PROPERTIES OF THE PHASE-AMPLITUDE
FUNCTIONS, 1=0

In Fig. 1, an attractive interaction potential between
two particles is approximated by a multiple step func-
tion, dedned in the region E by First we investigate the behavior of the solutions

stp(k, r) of Eq. (14). The two main cases areU(r) = (2p/A') V(r) =U„(R„r&~ r &~ R„, e ~& 1) . (7)

(a) NorIsiegpplar potentials, U(0) = —Up. A series
expansion of qp(k, r) gives the leading term

We restrict attention here to S-wave scattering of
neutral particles, the wave function in region S being

(8) rtp(k, r —& 0)= (1/12)~(0)U'(0)r', x'(0) =k'+ Up. (20)e„(r)=A „sin(~„r+st„),
where (b) Sirsgptlar potentials, U(r~0)= —Upr" ', 0&p&1.

One finds here, that(9)~ '= —U +k', U„&~0.

2(1—p)
gp(k, r~0)=

I
IUpslsrP'.

3 &1+2p)

Continuity of 0'(r)/4(r) at r=R„ leads to

(K~r/K ) tan(«„R„+q )= tan(K +pR +st++I) . (10)

Upon writing

(21)

For both (a) and (b), there is therefore no difhculty in
numerically integrating Eq. (14) outwards to obtain
qp(k). Note that gp'(r) changes sign when U'(r) changes
sign, with one unlikely exception.

The amplitude function (19) for A(k, r) is finite
everywhere in case (a) above; in. (b) we find A (k, r —+ 0)
=r' ', with the wave function (8) giving f(r —+ 0) pp r
as usual.

If U'(r&R)&0, Eq. (18) shows A'(r)R) &0, so that
from Eq. (19), A (k, r &R) &1, and

~
%p(k, r) R)

~
& 1.

Thus ~%'p(k, r)
~
&1 for a monotonically decreasing

attractive potential (l=0 only). If U'(r&R) &0, a re-
Qection effect in the region r&R may be sufhcient to
make ~ep(k, r&~R) ~».

hU„= U~g —U„,
hA„=A„+i—A„.

Equation (9) gives

g„„rs=g„'—AU„, g„+,=~„—AU„/(2~„) . (12)

Equations (10), (11), and (12) may be combined, lead-
ing to the result

Art„= —(AU„/2z„)[(1/2~. ) sin2(~A +rt.)—R~]. (13)

In the limit as hR=E~~ —E„~0, AU„~ 0,
Art„-+ 0, and we take n-+pp. Equation (13) may then
be put in the 6rst-order differential equation form:

IV. COUNTING THE COMPOSITE
BOUND STATES

1
sin2[«(r)r+g(k, r)]—r U'(r), (14)~'(r) =-

2~ r 2a r() ()
At zero energy, one numerically integrates Eq. (14)

with boundary conditions p(k, 0) =0, st(k, pp)=gp(k). for qp(O, r) out to r=R, where U(r&R)=0, obtaining,
Writing P(k,r) =«(r)r+st(k, r), an alternative state- for example gp(0 R) = stp(0, ~)= stp(0).
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Levinson's theorem for gl(k) is"'4

gl(o) g—t(~)= gt~,

subject to the condition

Finally, one obtains

K„r„

(22) r„(2l+1)
Agt(K») = tl't (Knrn) pt(K»rn)tt)t+1(K»r»)

2K~

r'! U(r)!dr( ~ (j= 1, 2), (23)
and then

+y~,2(K„r„) AU„, (33)

which also results in

gt(~)=o
r (2l+1)

(24) gl'(r) = A'(r) — A(r)4 1+I(r)
2K(r) K(r) r

The number of bound states follows from gl(G) = gttr,
unless an /=0 resonant state occurs at zero energy,
changing the result to

V. NEUTRAL-PARTICLE PHASE-AMPLITUDE
EQUATIONS FOR ARBITRARY l VALUES

We again employ the step function (7) for the po-
tential U(r), but the wave function (8) in region S is
replaced by

%»(r) =At»C.At(K»rn) COS'gl(Kn)

—Kl(K„r„)singt(K„)], (25)

+4 '(r) U'(r) (34)

where gt'(r) =dgt(r)/dr, K=K(r), and

lPt(r) = lit(Kr) cosgl(r) —Kt(Kr) singt(r), (35)

t)!)tt.t(r) =t!t+1(Kr) cosgl(r) —Kt+l(Kr) singt(r). (36)

Equation (34) is a !Irst-order differential equation,
which may be integrated outwards from r=0 to And
the phase shift, via gl(k, r)&R)= gl(k, co) = gl(k), where
U(r) R)=0. It is 6rst necessary to know the behavior
of )Pt(r ~ 0), the two main cases being

(a) lt'lortsitsgglar Poterttials, U(0) =—Uo. A series
expansion of gt(k, r) leads to

where in terms of the spherical Bessel and Neumann
functions of SchiG "

gt(x) =xjl(x), Kt(x) =xnt(x) .

K21+1(p)U) (p) r2l+4

gl(k, r~0)=
(2l+1)!!(2l+3)!!(2l+4)

(37)

Continuity of %1„'(r)/+t„(r) at r=r„ leads to

n!l (Knr))) tangl(K)))Kl (Knrn)

gt(K r ) tangl(K )Kl(K»rn)

2(1—e) U l+3/2~(2l+3) e

gl(k, r ~0)= (38)
(2l+ 1+2e) (2l+ 1)!!(2l+3)!!

(b) Sirtgllar Poteltials, U(r1 0)=—Ut)r" ', 0(e(1.
One 6nds here that

n!I (Kn+lrn) 'tRI1'gl(K»+1)Kl (Kn+lr, )=Kn+1 (27)
»1 l (K»+1m) tang I(K»+I)—Kl (K»+ 1m)

The number of bound states gi follows as in Sec. IV,
gl(p, r) being integrated out via Eq. (34) to give
gt(0, »t))=gt(0), say. Levinson's theorem $Eqs. (22)-
(24)j then gives gl via gl(0) = gttr.

An amplitude equation may be obtained using the
continuity of 4'I (r) at r=r . Thus

where the prime stands for d/dp= d/d(Kr).
From Eqs. (11) and (12), we have

gt(K»+Ir„) =gt(K„r„) (r„/2K„)(AU„)nft'(K„—r„), (28)

n!I (Kn+Ir )= nit (K r ) (r /2K„)(A—U»)ntt" (K r„), (29)
A tn[gt(K»rn) COSgl(K») Kl(K»rn) Slngl(K»)$

=At, n+I Lnl!( Knyl rn) COSgt(K»+I)

Kl(Kn+l—rn) Singl(K»+I) j) (39)with analogous relations holding for Kl(K„+lr„) and
Kt'(K„+tr„). We substitute these into Eq. (27) and
employ the identities

leading via Eq. (11) for AA to

AAt /Al = A)pt(K, r )/)pt(K, r—). (40)
Ott'(K„r„)= ((i+1)/K rn] lit(K„r„)—lit+I(K„r„), (30)

g I"(K„r„)= —(1—Pl(t+1)/K 'r 2)}gt(K»rn),

tall'gt(K~I) = tangt(K )+Agt(K») sec 'gl(K ) . (32) r„(l+1) t)t)t+I(K, r )
&A ln = A ln X t(K»)rn) Pl(K»)rn)

2Kn — Knrn )Pt(K»)rn)"N. Levinson, Kgl. Danske Pidenskab. Selskab, Mat. Fys.
Medd. 25, 9 (1949}."P. Swan, Nucl. Phys. 46, 669 (1963}."L. I. SchiG, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949}.

(2l+1) plat'(K„, r„)—
6+1(K.)rn)+

K„r„ )Pt(K„,r„)
(41)

On evaluating AIPt from Eqs. (35) and (33), Eq. (40)
(31) leads to
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Thus one obtains

r (l+1)
A i'(r) = A i(r)

2)~(r) x(r)r

(2l+1)
4 i+i+4 i+i'/A U'(r),

z(r)r

where

Xi(r) = —g)(rr) sing~(r) —Ki(&r) cosgi(r)

and x= x(r) = [O'—U(r)]'"
Equation (42) is easily integrated to give

1 " r (l+1)
A i(r) = exp —— U'(r)2, x(r) ~(r)r

VI. CHARGED-PARTICLE PHASE-AMPLITUDE
EQUATIONS AND BOUND STATES

In the region E of the step function of Fig. 1, we
write the charged particle wave function as

(42) 4tn(r) =&)e[F)(&»rn) cosgi(Kn)

+G)()~„,r„) sing)(~„)], (45)

where Fi(a»r„) and Gi(~„,r„) are the regular and

(43) irregular Coulomb wave functions.
We again employ the continuity of 4') '(r)/4'&„(r)

at r= r„, with relations corresponding to Eqs. (27)—(29)
obtained via the substitutions

pi(~r) ~ Fi(~,r), Oti(~r) ~ G, (x,r). —

However, Eq. (30) is replaced by the new form"

—Xt( )(i[— $~+ dF (44) ()+&)P (~ ) )()'+))='l~ + )~ ( P.).,

(2l+1)

err —{(1+1)'+n ')"'FH- (n p ) (46)

where we have used the boundary condition A & (~ ) = 1.
Comparison of Eq. (44) with its l=0 form [Eq.

(18)] shows that the property ~$0(k, r&R)
~

&1 for
U'(r&R)&0 does not extend to Pi&i(k, r) The . reason
is the existence of the centrifugal barrier, the true po-
tential seen by the particles being U(r)+l(l+1)/r'.
This is not a monotonically decreasing attractive po-
tential obeying condition (23), so that

~
P&&i(k,r)

~
may

exceed 1.
An example is that of zero potential, where gi& i(x)& 1

for some x values in an intermediate range.

where )i(r) is defined in Eq. (15), and

p(r) =)~(r)r, n(r) =P/2~(r), P= (2p/A')ZZ'e'. (47)

An identical relation holds for Gi'(p), but Eq. (31) is
replaced by

F& (p )=(1 2n Ip l(l+1)lp '}Fi(p ) (48)

the same form holding for G&"(p~), and Eq. (32) is
unaltered.

The procedure of Sec. V leads to the result

r~ n~( 1
Agi()i„) = 1——

~
2+ +n '/(l+1)' PP(~»r„)2)i„p~~ (l+1)

and hence

—[(2l+1)/p +2n /(1+1)]ili(«»r„)pi(«»r„)+[1+n'/(1+1)']Pii. i2(s„,r„) AU„, (49)

r p 1 p2
gi'(r) = 1— 2+ + |l i'(r)

2z(r) 2m~(r)r (l+ 1) 4(l+ 1)2«2(r)

1 (2l+1) P p2
+ ~()~.()+ 1+ „~"() U(), (50)

«(r) r (l+1) 4(l+ 1)'«'(r)
where

fi(r) =Fi()ir) cosgi(r)+G&()ir) singi(r),

Pi+i(r) =F«) i(«r) cosgi(r)+ G«) i(&r) sing ~(r) .
(»)
(52)

As for neutral particles, Eq. (50) may be integrated outwards from r=O to give gi(k, R) =gi(k, ao) = gi(k) say,
where U(r&R)=0. In particular, gi(0,r) yields g&(O,R)=g&(0, ~)=g&(0)=gpr via Levinson's theorem [Eqs.
(22)—(24)], thus fixing the number of states bound in the short-range potential field U(r) (with Coulomb
modifications).

6 EIandbook of Mathematical Functions, edited by M. Abamowitz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math. Ser. 55, p. 539.
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The integration requires knowledge of it&(k, r —& 0), obtained via series expansions. The two main cases are

(a) Norisimgllar potential U(0) = —Uo. We find that

U'(0) U'(0) CP(ii(P)) icosi+'(0)
gati(k r ~ 0) =—P Cim(ii(0))i~" '(0)r"+'+

4(l+1) 2(2l+4)

Ci+,(ii(0)) P t'21+1) Ci(i~(0)) U'(0) (21+3 P'
X 1—(2l+1) + +

C,(g(0)) 4(l+1)as(0) i21+3j (,i+i(ir(0)) ii'(0) k l+1 4(l+1)'&'(0)

where [cf. Eq. (47)]
l

C&(&(r))= [(2l+1)I] 2 (2&n) &s[exp(27m) —1] t D(p +n ) t

v=1

.2i+4, (53)

(54)

2U' i+3/s(1 e)
rti(k, r-+0)= y(2l+3) e

(2l+ 1)!!(2l+3)!!(2l+ 1+2e)

For ~ &e(1, the leading terms are

2U ~(2~+3).Uo&+i &2(1—e)
— (2l+3)

~ (k r ~ P) P r(a&+i)~+i+

(2l+1)!! 2(l+1)' (21+3)!!(21+1+2e)

For zero Coulomb fleld (f=0), Eq. (53) reduces to the neutral particle value (37).
(b) Singsslar Poteltial, U(r -+ 0)~ —Uor" ' For. 0(e(-'„one obtains

(55)

(56)

VII. EVALUATION OF BOUND-STATE ENERGIES

The eigenenergies may be evaluated approximately via the scattering phase shifts, avoiding the cumbersome
consistency procedure outlined at the lead of Sec. I. The two cases involved are

(a) g&(0) =~, rti(k) 0)(vr Note tha.t rii ——1 implies gati(0) =m. and vice versa, but not rti(k&0)(n. Examples of
rti(0) =~, it&(k&0) &or may be seen for l= 0 square well scattering in Fig. 2.

The scattering phases gati(k) obey the shape-dependent formula for neutral particles":

[(2l+1)!!]'k"+'cot„(k)= P (—1) +'C k2™, (57)

or for charged particles"

Ci2k2i+i cotiti(k)+[(2l+1)!(2l+1)] i p [(—1)"p"/~!][1—ss/(2i —ps+1)]+i&2i "+ii(0)
n=o

+(2l+1) '(k"+'Pi(n)[Qi(n) +1/s]—+[(2l)!(2l+1)!]'P"+' P 1/s+k"+'ri(n)) = P (—1)™+1C&~k'~ (58)
s=l m=o

Here Ci„(sos= 0, ,N) are scattering coeflicients, and
the quantities Ci(k), %&(r), pi(n), Qi(n) and ri(n) are well
known in Coulomb scattering. " '

The C& coeKcients are found via the least-square
fitting of calculated gi(k) curves (57) or (58) with an
orthogonal series in powers of k' (Legendre or Tcheby-
cheff polynomials are suitable). The coefficients
Cio=1/ai and Cii ——ri/2 are constants, but for m)2,
C& =Ci (E ) for an energy range E=O E,„(ex-—
cept for very low energies, where the series for E~~
is convergent), "

The wave function for large x~ ——kr —~br has the

' P. Swan and W. A. Pearce, Nucl. Phys. 79, 77 (1966)."P.Swan, Xucl. Phys. (to be published).

k= in, cotrt&(k) = —i—
Equations (57) and (60) become

[(2l+1) i i]—2( 1)i+ln2i+i —P C n2m

m=o

(60)

(61)

which may be solved numerically to find 0., only real,
positive solutions corresponding to bound states.

asymptotic form

Pi(k, r —+~)= exp( —ixi) —S(k) exp(i@i), (59)

so that a bound state requires k= in (n real, positiv—e)
and 5(k) =exp[2irt&(k)]=0; equivalent to
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p (K)

The charged-particle expression (58) has the same
rnodification on the right as Eq. (62), but q& is here the
number of zeros from the left of Eq. (58).

Equations (60) and (62) give

[(2l+»!!]'( 1—)'+'u"+'=A) '( i—n)

X [II(1+» '&')/II(1+)« '&')] Z D~ a'" (64)
v=1

0 05 I.O 1.5 2.0 2,5 5.0 5.5 4.0
K~

Fro. 2. Phase shifts p0(k) for a square well of width
2.0 F and depth U0= (2p/k ) Vp F 2.

The binding energy —8' in each case is related to 0!,

by n'=(2p/k')8' (W&0). The charged particle case
(58) follows similarly to (61).

(b) t1~(0)=ger(r1&&1). Relations (57) and (58) are
invalid if rjt(k&0))~. However, any empirical func-
tion with the right properties, and Aexible enough to
fit typical g&(k) curves, may be used instead. Figure 2

shows a number of r1e(k) curves for a square well of
width 2.0 F and variable depth Ue ——(2p/k') Ve F'.

A suitable empirical modification of Eq. (57) for
neutral particles is

[(21+1)!!]'k"+' cotr)~(k)

where

II(1—) ),'k')
v=1

Q (—1)~+'D(~k' (62)

A ~(k) = {1+[II(X&„/»„)']-rks)(1+k&)-r p, =+,
v=1

e~ &l

v=1

Xk""' "') ', p(&q). (63)

Equation (62) allows explicitly for P& values of t1&(k)

=s~w (s~=positive integer &1) at k'=X~, '(v=1 p&)

and q& values of r1&(k) = (s&+r~)s) at 0'=y&„'(v=1 q&).

which may be solved numerically in the same way as
Eq. (61), only real, positive rr values giving bound-state
energies.

The phase shifts q~(k) can be calculated via the
method used in this paper, but it is simpler to solve the
Schrodinger wave equation directly, as no spherical
Bessel, Neumann, or Coulomb wave functions are then
involved.

The best method is to solve an alternative phase
equation due to Drukarev and others, " obtained by
writing

f~'(r)/f~(r) =u~(r) =k cot[kr+8t(r)]. (65)

This leads to the equation

8~'(r)+k '[U(r)+l(l+1)/r'] sin'[kr+b~(r)]=0, (66)

where 8~(k,r) is unrelated to t)~(k,r) above, but

8)(k, ~ )= 8)(k) = q)(k) ——,'l~.

The modiication to Coulomb fields gives

h~'(r) +k '[U(r)+P/r+ l(l+ 1)/r']
Xsin'[kr —n In2kr+o ~+8~(r)]=0, (67)

where o ~
=argl'(in+i+ 1).

For a given potential U(r), a series solution for

q&(r v 0) is employed to start the numerical integration
off for small r, g~(k) being found for r&R(U(r&R) =0).

It should be noted that Eqs. (66), (67), and their vari-
ants" (which also involve spherical Bessel, Neumann,
and Coulomb wave functions) are quite unrelated to
Eqs. (34) and (50) of this paper. In particular, as they
involve k rather than K(r)=[k'—U(r)]'~', they de-
termine only the scattering length [via an equation
for a&(r)] at zero energy, ' and not the number of
bound states e~.
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