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Synchrotron Radiation of Neutrinos and Its Astrophysical Signi6cance*f
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The neutrino radiation from a completely relativistic electron gas in the presence of a large magnetic
field (the neutrino analog of electromagnetic synchrotron radiation) is computed approximately, under the
assumption of a direct electron-neutrino interaction. The radiation is also estimated in the case of a non-
relativistic electron gas. It is shown that the radiation increases strongly with electron energy and mag-
netic-field strength, and is therefore most likely to have astrophysical significance in the evolution of stars
with large electron energies and potentially large magnetic fields, such as white dwarfs. However, compu-
tation of the total neutrino luminosity of several model white dwarfs shows that the neutrino luminosity is
limited by electron degeneracy to values much less than the photon luminosity. The process is also found
to be relatively unimportant in the evolution of neutron stars.

I. INTRODUCTION

' 'T has been shown by a number of authors that radia-
~ ~ tion of neutrinos can be of great importance during
certain stages of stellar evolution. This situation arises
because of the extremely large mean free path of a neu-
trino in matter. The probability of creating a neutrino
is minute, but once created, it is almost certain to escape
directly from the star, carrying o6 whatever energy was
used in its creation. This is in contrast to electromag-
netic radiation, for example, which is copiously created
inside a star but must diffuse slowly out through the
star and be radiated from the surface. Under some cir-
cumstances late in the life of a star, neutrino radiation
can be the principal means of energy loss. ' Calculations
or estimates have been made of the neutrino radiation
due to plasma oscillations, pair annihilation, brems-
strahlung, photon collisions, and the so-called photo-
neutrino, photonuclear, and URCA processes. ' In this
paper we consider neutrino pair radiation from electrons
accelerated by a large magnetic field, e —+ e+ v,+v„
under the hypothesis that there exists a direct e-v,
coupling. This radiation is analogous to the radiation of
electromagnetic energy by a magnetically accelerated
electron (electromagnetic synchrotron radiation, ESR);
hence we call it neutrino synchrotron radiation (NSR).

II. AVAILABLE ELECTRON ENERGIES
AND MAGNETIC FIELDS

NSR from relativistic electrons, like ESR, increases
strongly with increasing electron energy and magnetic-
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Geld strength (see Sec. III 3). Large electron energies
are found in stars of very high central temperatures, and
in stars in which electron degeneracy is present, such as
white dwarfs and neutron stars. For orientation, a tem-
perature of 8X10' 'K (about that at which helium
burning commences in a red giant) corresponds to elec-
tron thermal energies of roughly 30 keV, while electrons
in a white dwarf have degeneracy energies of about
0.5 to 5 MeV, ' and the electron Fermi energy in a
neutron star is of the order of 100 MeV.4

Rather little is known about the magnetic fields in-
side stars, but it seems possible that some degenerate
stars may have very large internal fields. A number of
stars on or near the main sequence, particularly A-type
stars, have been observed to have surface magnetic
fields of the order of 10' to 104 G.' This suggests that
there are fields Bp of the same order of magnitude in
the interiors of these stars. Let us assume that IIp is
approximately uniform throughout the star, and con-
sider the contradiction of such a star to a white dwarf
of mean density p from its initial mean density pp
without substantial loss of mass. The magnetic 6eld
lines are nearly "frozen" in the highly ionized material
of the star, which is an excellent electrical conductor,
and would be squeezed closer together. In the equatorial
plane, the number of lines per unit area, and hence the
field strength H, would increase as E ', where E. is the
stellar radius, or as p'~'. At the end of the contraction,
H Ho(p/po)2". Now, the most massive whit, e dwarfs
cannot have central densities above about 10" g/cm'
without the star's being unstable owing to inverse P
decay, and the "average" white dwarf, with a mass of
about 0.6 solar masses' (one solar mass=A o—2X10"
g), has a central density of a few times 10' g/cm'.
The mean densities in these two cases are of the order of
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10' and 10' g/cm', respectively. s If we suppose an initial
Geld Ho 10' G, and an initial density of the order of
1 g/cm', typical of main sequence stars, then we might
expect Gelds in a few of the most massive white dwarfs
of as much as 10" G, while 6elds of order 10' G might
occur in some average white dwarfs. Note that since
the masses of most of the stars which are observed to
have large magnetic fields (A-type stars of 2 to 3 M o)
are more than the maximum possible mass for a white
dwarf (the "Chandrasekhar limit, " between 1.1 and
1.4 M o, depending on composition'), substantial mass
loss would probably occur in the formation of a magnetic
white dwarf, and the estimate above for the expected
field is quite. crude. It should also be noted that at
present there is no secure knowledge of which stars
actually become white dwarfs and which do not, and
it is quite conceivable that the bulk of the magnetic
stars actually evolve to some other Gnal state, such as
the neutron star state. All we have established is the
possibility that some white dwarfs may have internal
magnetic fields in the range 10' to 10" G.

In view of the uncertainty in the above estimate of
the field which one might expect in white dwarfs, it is
worthwhile to examine the limit imposed on the 6eld
by the requirement that the total energy of the star,
including gravitational, electromagnetic, and thermal
or degeneracy components, must be less than zero, so
that the star is a bound system. This clearly implies
that the total (positive) electromagnetic field energy,

sss.R'(Hs/Ss. ), is less than the magnitude of the
(negative) gravitational binding energy, M'G/R,
where M is the star's mass and g is the gravitational
constant. The inequality reduces to

H &6M'~'g'~'p'~'~1X10'(M/M o)'I'p'Is 6, (1)

where p=3M/(4s. Rs) is the mean density. Since all
white dwarfs have masses of the order of Mo, this
condition reduces approximately to H&1&(10 p t G.
for a normal white dwarf of mean density p 5&10'
g/cm', we find an upper limit on H of about 5X10"6;
for a very dense white dwarf with P 5X10s g/cm', we
have H&5&&10" G. Thus the maximum field which
might conceivably be present over a large region of a
white dwarf is some three orders of magnitude larger
than that which we might expect on the basis of the
contraction-without-Qux-loss model.

The possibility of such enormous 6elds raises the
question of whether ordinary Maxwell theory is appli-
cable to Gelds in stellar interiors under all circumstances
(so that, for example, the magnetic field energy density
is actually given by Hs/Ss-). The possibility of virtual
pair creation leads to photon-photon scattering and
hence to nonlinearity in the Geld equations for high
enough 6eld intensities. The modi6cations to electro-

'S. Chandrasekhar, An Introduction to the Study of Stel/ar
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magnetic theory due to this have been investigated by
Euler, Heisenberg, and Weisskopf, "among others. From
their work it is easily found that, ie euclo, ordinary
Maxwell theory applies for fields less than about 10"
G. The presence of matter will undoubtedly change this
value somewhat, but we shall take 10"G as the danger
line for the application of classical electrodynamics.

Referring to Eq. (1), we see that only for stars of
mean density exceeding about 10"g/cm' is it possible
for 6elds to arise which exceed the limit of 10"G. Such
densities cannot occur in white dwarfs, because of the
occurrence of inverse P decay (already mentioned),
but neutron stars, if any exist, have densities in the
range 10'4 to 10" g/cm' and hence might have fields
exceeding the limit 10" G. In this paper, we shall only
consider neutron stars briefiy and shall not assume
fields larger than about 10" G, so that no questions of
the applicability of Maxwell's equations arise.

From the above considerations, it appears that the
combination of large electron energies and large mag-
netic fields needed for large amounts of NSR are most
likely to be present in dense white dwarfs and neutron
stars. The calculations of the NSR rate presented below
are therefore carried out for the regimes of electron
energy (E&1 MeV; i.e., fully relativistic electrons) and
field strengths (H&10" 6) appropriate to these stars.
The calculation of the NSR rate is described in Sec. III
and applied to various astrophysical situations in Secs.
IV—VI. The results obtained are summarized in Sec.
VII.

III. NEUTRINO EMISSION FROM A
MAGNETICALLY ACCELERATED

ELECTRON

Calculation of the emission rate of energy in the form
of neutrinos from electrons moving in a large magnetic
field is quite analogous to the quantum electrodynamic
calculation of the ESR rate."One computes the proba-
bility per second for transition of an electron from one
Dirac equation eigenstate to another, with the emission
of two neutrinos of speci6ed momentum, by first-order
perturbation theory, using the weak-interaction Hamil-
tonian. This probability per second is then integrated
over all possible neutrino momenta to Gnd the total
probability per second of transition by any neutrino
emission between two specified electron eigenstates.
The total probability per second is multiplied by the
energy carried off by the neutrinos and summed over all
the initial electron states available per unit volume and
all the 6nal states which can be reached from those
initial states, each initial state being weighted by the
probability that it is occupied and each 6nal state being

I H. Euler, Ann. Physik 26, 398 (1936); %. Heisenberg and
H. Euler, Z. Physik 98, 214 (1936); V. Weisskopf, KgL Dsnske
Videnskab. Selskab, Mat. I"ys. Medd. 14, No. 6 (1936).
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siderable detail by A. A. Sokolov, U. S. Atomic Energy Com-
mission Report No. AEC-tr-4322, Sec. 28 ('unpublished),
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weighted by the probability that it is empty. This gives
the energy loss per cm' per sec, which may be integrated
over the star's volume to find the total neutrino lumi-
nosity (assuming negligible reabsortpion of neutrinos).
This calculation is summarized below'. Details may be
found in the author's thesis. "

The probability per second that an electron will make
a transition between two specified magnetic Geld eigen-
states with emission of a v, r pair of speci6ed momenta is

quantum numbers m=0, 1, 2, and s=0, 1, 2,
both of which refer to the electrons motion normal to
the field. Their interpretation is discussed by Sokolov. "
The quantum number n is analogous to the principal
quantum number of atomic electron states; s has no
simple interpretation.

If we set kp ——mc/k, and y=eH/2ck, the relativistic
total energy of an electron having quantum numbers
(/p, k,s) is

prob/sec=
(2'/k)JIHAD;I'p(Er).

(2)
E=cd =ck(k p'+k'+4yu)'/P.

Here p(Er) is the density of final states per unit energy
at Er. P I Hr, I' is the square of the matrix element of
the weak-interaction Hamiltonian between the initial
and final states, summed over final electron spins and
averaged over initial spins. The expression for Hy; is

C
d'x&6"

I ~47, (1+») I 0,")
W2

X Q f I r4r„(1+ rp)p; ), (3)

where C=1.00)&10 "erg cm'."It is necessary to actu-
ally compute the electron matrix elements one by one,
as in nuclear beta decay, rather than to use the operator
methods developed for problems in which all initial and
final states may be approximated by plane waves.

It is found that it is possible to write P I Hr, I' in the
form

P IH, ,I'= pC' Z(Z„+Z„)(N„+N„),
where

N„= V '[uty4y„(1+yp)u],

the x s are the neutrino wave numbers and the N's are
spinors which are independent of r. It is convenient to
compute and discuss the quantities E„„=E„*E„and
E„„=E„*E„separately.

The calculation of the X„„'sfrom the explicit forms
for N given by Sokolov' is entirely straightforward. If
we write the spherical polar coordinates of x; as
( 8x, , p;) with i=1, 2, we get N„„'s which depend only
on 0; and y, , of which a typical example is

Nii= (2/V')[1+sin8i sin8p cos(q i+ &pp)

—cos8i cos8p] . (6)

The evaluation of the E„„'sis somewhat more compli-
cated but no less straightforward. The electron eigen-
states in a magnetic field are found to be characterized
by the wave-number k of the electron parallel to the
magnetic field (which we take to be the s axis) and two

» J, D. Landstreet, thesis, Columbia University, 1965, Chaps.
4-11 (unpublished).

"See, for example, M. A. Preston, Physics of The Xmclems
(Addison-Wesley Publishing Company, Inc. , Reading, Massachu-
setts, 1962), Chap. 15.

&& g.eferepgg 3.1, Sec. 20.

(Energies, momenta, and masses are converted to wave
numbers by multiplication by appropriate powers of k
and t, , and denoted by various E's, k's, and ~'s; E and
k refer to the initial electron state and E' and k' to the
6nal electron state. )

A typical expression for an E„„is

+11=Isa p b(k, k +Kl cos81+Kp cos82)

X(2[1+(ko/E)][1+ (ko/E')]} '

X[u 'u+I„,„. iP(x)+u+'uM„ i „.'(x)
—2r/tu/'I„„. i(x)I„ i,„.(x)], (8)

where

I„„(x)= (/p!p!)—i/P& —*/Px(n —p) /PQ m—n(x)

with
u!p!x

Q." "(x)=Z(—1)~'.
i'(p —i) ( —i)'

[Q~" "(x)is the generalized Laguerre polynomial. ]The
argument x of the I„,„'s is x=/~' sin'(8/4); and other
abbreviations are

up= 1+(kp&k)/E&kpk/E',
uy'= 1+(kp&k')/E &kpk /E p,

r//= [1+ (kp/E)] (4/s)'/'/E,
and

u'= [1+(kp/E')](4'')'/'/E'.

The Kronecker delta indicates that along the magnetic
field, particle momentum is conserved.

We note in passing that these results apply equally
to relativistic and nonrelativistic electrons. Only below
do we assume the electrons to be fully relativistic.

We now proceed to compute approximately the total
probability per second for the transition of a single elec-
tron between an initial electron state having quantum
numbers (u, k,s) (and energy ckE), and all the final
electron states characterized by a particular value e',
by integrating Eq. (2) over all allowed neutrino mo-
menta and summing over s'. For any particular one of
these transitions, k' is determined from k, x~, and x2

by conservation of s momentum.
It turns out that an enormous degree of simplification

is achieved if it is assumed that the radiation from an
electron of energy E is roughly independent of k. In
the extreme case of an electron moving parallel to the
6eld, and hence unaccelerated, this is clearly wrong,
but in an isotropic distribution of electrons in mo-
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mentum space, most of the electrons of energy E will
have a component of momentum transverse to the field
only slightly less than that of an electron moving normal
to the 6eM, and will thus produce nearly the same
radiation. We shall therefore compute, throughout
this paper, power radiated as if all the electrons had
k=o. It is estimated that this leads leads to a value of
the neutrino radiation which is too large by a factor of
two, which is not a serious error in the light of other
approximations which are made below.

The integral we are interested in is

prob/sec (e, k=0, s —+ ts', all allowed k', all allowed s')

P (N, ri')d v

o exp[(Eo—E')/ksT]+1
(13)

where P(ts,e') is given by Eq. (11).
It is found in evaluating the integral that two

physically distinct cases arise, depending on whether

p, (E) is the density of electron states in energy, which

we may approximate to a sufhcient degree of accuracy
by the free-electron distribution, we have

p. (E)dE

exp[(E—Eo)/k oT]+1

= (2~/k) dn, Z14

X—X'

dots Q E„,X„, Hs (Eo/mc')'(5 X10'Tr (14)
8'=0

C2V2K 2K 2

X . (9)
2 (2~) 'ck(1+ BK'/Bsi)

In Eq. (9), K& is determined by conservation of energy
for the decay,

Z =E + Kt+Ks. (10)

It is possible to approximate the behavior of the
E„„'s by step functions and to otherwise simplify the
integral of Eq. (9) enough to obtain a closed expression
which is accurate to within perhaps a factor of 5. One
finds that (v = n, ts')—
prob/sec (I, k=0, s ~ ts', all allowed k', all allowed s')

=P(is,e')=1&&10 sCsv sisc 'k s(2yv/E)s (11).
It is also found that the behavior of the matrix elements
is such that for almost all transitions

v = n m'& 1—.5 (E'/ko)s = 1 5(E/mc')'. = v, (1—2)

a limit which physically means that the energy spectrum
of the NSR has an upper limit above which radiation is
strongly damped. "

It is next necessary to determine l„, the total energy
emitted per cubic centimeter per second. This involves
multiplying the expression of Eq. (11) by the energy
lost in the transition and the probability

1—{exp[(E'—Eo)/ko T]+1}—'
= {exp[(Eo—E')/koT]+1} ',

(where ks is Boltzman's constant, Eo is the Fermi en-

ergy of the distribution, and T is temperature) that the
lower state (of energy E') is empty, and summing over
e or v. Since Eq. (11) is a strongly increasing f'unction

of v up to v ))1 [see Eq. (12)],we may replace the sum

by an integral. We then multiply the resulting expres-
sion by the probability {exp[(E—Eo)/ksT]+1} ' that
the upper state (of energy E) is occupied, and integrate
over all the electron states in the cubic centimeter. If

i' Compare with the ESR spectrum as shown in J. D. Jackson,
Clussicu/ Ji/ectrodynumics (John Wiley 8z Sons, Inc. , New York,
1962), Fig. 14.11.

holds or not. (Here we set Hs H/10s ——and Tr= T/1 Or)
When Eq. (14) holds, the energy spectrum of the NSR
is cut off at the high-energy end by the matrix elements
of the transition, as ESR is. In this case, the value of 1„,
l,„, is given (in cgs Gaussian units) by

J„'=6X10 "H 'Tr(Eo/mc')" erg crn ' sec '. (15)

If Eq. (14) does not hold, the NSR energy spectrum is
cut oQ at the upper end not by the matrix elements but
by the fact that it is only possible for electrons to make
transitions involving energy changes of the order of
k&T or less. This is because only in an energy band of
about this width near Eo are there both empty states
for electrons to drop into and occupied states above for
the electrons to drop from. In this case, the value of l„.
which we call /„", is given by

f "=2&(10 4Hs'"T ""(Eo/mc')"s erg cm ' sec ' (16)

We may convert Eqs. (14), (15), and (16) to a form
more appropriate for application to white dwarfs of
neutron stars by using the relation'

Eo/mc' po/mc = (k/mc—) (3is /Sn)' '

where po is the Fermi momentum and is, is the electron
number density in the gas. This relation holds for a
relativistic gas. We further note that for a completely
pressure-ionized gas of atomic number Z and atomic
weight 2 we have

p = mrrm, (A/Z) =2mrris„

where A/Z —2 in any white dwarf (hydrogen is almost
entirely absent because its presence in more than trace
amounts would lead to higher luminosities than are
observed').

IV. APPLICATION TO WHITE DWARFS

Putting together Eqs. (14)—(17), we 6nd that for
relativistic white dwarfs

7, '= 3 X10 44Hs'Tr p' erg cm ' sec ' (18)

/„"=4X10 rT "~ '~s'p'Hseirsg cm ' sec ' (19)
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where one uses Eq. (18) as long as

H8'~'&8X10'Ty (20)

holds, and Eq. (19) otherwise.
It will be noted that /„' increases very strongly with

increasing H and p, while l„"is quite insensitive to these
parameters. This causes the total NSR Aux from a white
dwarf to increase very rapidly with increased mass and
magnetic fLeld until Eq. (20) becomes an equality,
after which further increase in H or p has little effect.
LThe temperature dependence of Eqs. (18) and (19)
is here ignored because the interior of a white dwarf is
nearly isothermal and is believed to have a temperature
within perhaps a factor of two of 1.5X10~ 'K for all
observed white dwarfs, so that the temperature cannot
be considered a freely variable parameter. ]

Equations (18) and (19) have been used to determine
the NSR luminosity of a number of model white dwarfs,
assuming negligible reabsorption of the emitted neu-
trinos. Calculations have been made for stars of central
densities between 1.6X10~ g cm ' and 1X10"g cm—'
(nearly the maximum possible central density of a white
dwarfs), central temperatures between 1X10r 'K and
5.5X 10r 'K, and magnetic-field strengths (assumed
uniform throughout the st.ar) of up to 10"G. It is found
that for any white dwarf with T&5.5X10~'K and
H&10" 6, the NSR luminosity is smaller than the
photon luminosity from the surface by a factor of 10'
or more (even allowing for the uncertainty inherent in
this calculation of /„), while the NSR luminosity is
smaller than the photon luminosity by a factor of more
than 107 if H &10' G. It may therefore be concluded that
this process is of essentially no signi6cance in the thermal
evolution (i.e., cooling) of a white dwarf, although it
might play some role in the more violent stages of evolu-
tion which presumably immediately precede the white-
dwarf state in stellar evolution.

"See L Landau and E.M. Lifshitz, Statis&'cal Physics (Addison-
Wesley Publishing Company, Inc. , Reading, Massachusetts, 195$),
Sec. 108 for a brief summary of the properties of these objects,
and S. Tsuruta, thesis, Columbia University, 1964 (unpublished)
for detailed calculations of model stars.

V. APPLICATION TO NEUTRON STARS

The results embodied in Eqs. (14), (15), and (16)
may be applied to neutron stars. " A neutron star
typically has densities of the order of 10"g cm ' and an
electron Fermi energy of the order of 100 MeV, and
hence by the discussion of the Introduction may very
well have 6elds of the order of 10"G. It turns out that
even at these energies and 6elds the treatment of the
neutrino luminosity given above can be applied. It is
easily seen that one must use the luminosity function
l„ri given by Eq. (16) for magnetic 6elds greater than
10"G. Estimates have been made of the NSR luminosity
of neutron stars of masses between 0.2M @ and 2M o
having central temperatures between 10' and 10" 'K

for a magnetic field H 10'4 G. Since Eq. (16) depends
so weakly on H, the results apply within an order of
magnitude to stars having Qelds anywhere in the range
10" to 10" G. It has been assumed that negligible re-
absorption occurs, since the mean free path of a neu-
trino in a neutron star is of the order of ten times as
large as the radius of the star, "as long as the tempera-
ture of the star (which limits the energy which can be
carried off by a single neutrino to about ksT) is below
about 10" 'K. It is found that the NSR luminosity is
always less than the dominant radiation process (photon
radiation from the surface up to 3 or 4X10' 'K, URCA
or plasmon" radiation at higher temperatures) by a
factor of 100 or more. However, these estimates are
suKciently crude that the NSR process might actually
be comparable in importance to other radiation processes
under some circumstances.

VI. EXTENSION TO NONRELATIVISTIC
ELECTRONS

For some situations in stellar interiors in which neu-
trino radiation is important, the electrons are nonde-
generate and their energy is not mainly degeneracy
energy but thermal energy. In this case, as long as the
temperature is well below 6X10' 'K, the electrons are
nonrelativistic. Such a situation occurs in stars burning
C" 0" and Ne" a state of a6airs which may occur
near the end of the active life of a massive star. ' To
estimate the NSR rate which is applicable to such cases,
it is necessary to redo the calculations of Sec. III in the
limit of nonrelativistic electron velocities.

In the theory of ESR is is found that for nonrelativistic
electrons, almost all of the radiation comes from transi-
tions having v=1: that is, from transitions between
adjacent energy states. We expect this result to be true
in NSR as well. This is supported by an estimate made
from the theory of Sec. III of the maximum change in
principal quantum number v=e —e' which would con-
tribute strongly to the neutrino radiation. We therefore
estimate only the radiation from the transition e—e'= 1
and assume that the total radiation is about the same.
We again take k=0 and ignore the error that this leads
to.

The calculations are very much like those of Sec. III.
Using similar approxiations, one 6nds that the energy
emitted per second as NSR by a nonrelativistic electron
1s

P (rs) ~2C't (27r)'15Aj—'(2y/ks) '
~2X10 "H8' erg sec '.

It is remarkable that P(N) is independent of energy
(or rs) to first approximation. This occurs because the
largest of the E„,'s, namely, E» and E», are independ-

"J.N. Bahcall, Phys. Rev. 136, B1164 (1964).
~' J. B. Adams, M. A. Ruderman, and C.-H. Woo, Phys. Rev.

129, 1383 {1963).
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ent of energy in the nonrelativistic limit, and since the
energy levels are essentially evenly spaced, the phase
space accesible to the neutrino pair is also independent
of energy.

For a nondegenerate, nonrelativistic gas, then, we find

l„~2)&10 "Hs'e, erg cm—' sec—'. (21)

1X10 "rs '~'T7II8' erg cm ' sec ' (22)

This result assumes that the neutrino energy spectrum

If the gas is degenerate, only about a fraction
kqT/(Ee —mc') of the electrons will participate in the
radiation, and the l„given by Eq. (21) is multiplied by
this factor. Since Ee—mc'=pe'/2m, using Eq. (17) we
find

is not cut off by degeneracy, which is true as long as

Z'7&3X 10-'as.

For temperatures of interest, say T&&1, Eq. (22)
holds as long as H &3X10' G. If larger 6elds are antici-
pated, the result may be modifmd as Eq. (15) is modified
to give Eq. (16).

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the support and en-
couragement of Professor L. Woltjer, with whom the
author held many valuable discussions, and to thank
Professor G. Feinberg, who originally suggested the
possible importance of the NSR process and kindly
checked the calculations.

PH YSI CAL REVIEW VOLUM E 153, NUM B ER 5 25 JANUARY 1967

Percy Effect and the Analytic Properties of the Wave Function*
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The Percy eBect is shown to be related to the analytic properties of the wave function, which are dif-
ferent for local and nonlocal potentials.

'F a phase shift is fitted by a local or nonlocal poten-
t ~ tial, the wave functions calculated from the
Schrodinger equation using the two potentials differ in
a predictable way. If the potential is attractive, the
wave function for the local potential is larger in the
potential region than the wave function for the non-
local potential, assuming a normalization for which
both have the same asymptotic behavior. If the
potential is repulsive, the opposite is true. It is the
purpose of this article to point out that this phenom-
enon, which is called the Percy effect, ' has a simple
explanation in the analytic structure of the two wave
functions. The position of the left-hand cut is different
in the two cases, being nearer the origin for the non-
local potential. The Percy effect is a consequence of
this.

We restrict ourselves to nonlocal Hermitian potentials

which are diagonalizable with eigenvectors u, (r).'

V (r,r')u, (r')dr'= X,u, (r),

V(r, r') =P X;u, (r)u;*(r') .

The Schrodinger equation for each partial wave is
now immediately soluble for this sum of separable
potentials. To understand the proof for the Percy
effect, we shall assume that only one of the eigenvalues
dominates the sum, and we shall consider for de6nite-
ness the S-wave bound-state problem:

1 d dE. 00

r' +Au(r) —r"R(r')ue(r')dr'= —nmR(r) .
k& 0

This may be solved by converting to momentum
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This is a restriction. For example, for a local potential one
would need a continuous set of X's. However, the class of potentials
that are considered is much larger than that for which the Percy
ef'feet has been demonstrated up to now. It is not restricted to a
short-range nonlocality, the nonlocality can be "infinite, " and
furthermore it happens to be the natural form which arises from
a few resonances in nucleon-nucleon scattering and from Hartree-
Fock calculations. The Hermiticity property can be relaxed in
favor of symmetry to include optical potentials.


