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Bethe-Salpeter Equation and Goldstone Bosons in Quantum
Electrodynamics
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University of Pittsburgh, Pittsburgh, Pennsylveniu

(Received 17 August 1966)

The relevance of the Goldstone theorem to quantum electrodynamics with zero bare mass for the electron
is studied. Subject to the necessary approximations, it is concluded that the Goldstone theorem has no
physical consequences for this theory.

I. INTRODUCTION
' T has been proposed' in the context of a particular
~ - nonperturbative approach to quantum electro-
dynamics that the electron should have zero bare mass.
Then, under certain conditions discussed in Ref. 1,
the usually divergent self-energy integrals become
conditionally convergent integrals, and the Dyson-
Schwinger equation for the electron propagator has
finite solutions to any order in a perturbation expansion
of the Bethe-Salpeter kernel which appears in the
equation for the vertex function. With no bare mass,
there is no mass scale in the theory; and the self-
energy equation has a solution for any value of the
physical electron mass. The solution with the actual
electron mass is picked out by imposing the boundary
condition that the inverse propagator be zero at the
physical electron mass.

With no bare mass the field theory underlying the
Dyson-Schwinger Green's-function equations is
invariant; the existence of solutions with nonzero
mass implies the "spontaneous" breakdown of this
symmetry. In the held-theoretic context this can only
occur through a p5 degeneracy of the vacuum. Also
in the field-theoretic context, there exist general proofs'
that spontaneous breakdown of invariance under a
continuous group of transformations implies the exist-
ence of zero-mass states of appropriate quantum
numbers. The theorem customarily goes by the name
of the Goldstone theorem, and the corresponding zero-
mass particles by the name of Goldstone particles.
None of these proofs provide any information about
the coupling of the Goldstone particles to other par-
ticles in the theory. Thus, the Goldstone theorem,
by itself, has no observable consequences, Such conse-
quences can only follow when the coupling of the
Goldstone particles to the other particles in the theory
is determined. '

The original suggestion that spontaneous symmetry
breakdown might play a role in 6eld theory was by
Nambu and Iona-Lasinio4 in a paper specifically de-

II. THE BETHE-SALPETER EQUATION

The Bethe-Salpeter equation for the oB-mass-shell
electron-positron scattering amplitude is
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voted to the question of spontaneous breakdown of
p5 invariance in a diferent theory. In that paper the
observability of the ensuing massless particles was
demonstrated by displaying the corresponding pole in
the solution of the Bethe-Salpeter equation for the
scattering amplitude. The residue of this pole is identi-
fied as the square of the coupling constant. The primary
purpose of the present paper is to carry out the ana-
logous calculation' for the version of quantum electro-
dynamics presented in Ref. 1. The result is that there
is no pole in the electron-positron scattering amplitude
corresponding to a massless pseudoscalar Goldstone
particle.

In recent years there has also been considerable
interest in the Bethe-Salpeter equation in its own right
as a nonperturbative source of information on the
analytic properties and high-energy behavior of the
relativistic scattering amplitude. With very little
additional work we are able to hnd the contribution of a
certain infinite set of diagrams to the high-energy
behavior of one of the scalar amplitudes for electron-
positron forward scattering.

' K. Johnson, M. Baker, and R. Willey, Phys. Rev. 136, 81111
(1964).

' J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone,
A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).

'N. G. Deshpande and S. Bludman, Phys. Rev. 146, 1186
(1966).

Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
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FIG. 1. Bethe-Salpeter equation for electron-position scattering.

' In Appendix A, we review brieQy that part of the Nambu-
Jona-Lasinio model which is of interest in the present context.
Since the mathematics involved is much less complicated than in
the analogous quantum electrodynamic calculations, it may be
useful to read this Appendix before the main body of the paper.
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BETHE —SALPETER EQUATION

+terms regular at k'=0. (2.2)

This is illustrated in Fig. 2. The matrix indices of T
imply a lengthy expansion in terms of invariant func-
tions and Dirac matrices. We concentrate on a single
invariant function defined by the y5 projection

v'a, ,»', ~(p, p', k)vs', = 12t'e'f(p, p', k) . (2.3)

A sufhcient condition for no zero-mass pseudoscalar
pole to appear in T is that no such pole appear in f.

The off-mass-shell scalar amplitude f is a function
of six scalar variables:

f(P P' k) = f(k' P O' O' P" P k P' k) (2 4)

The, mass-shell scalar amplitude is obtained by setting

(p+ ,'k)'= (-p'ak)'= -m', (2.5)

which requires
p.k=p' k=0,

~2—~~2 — ~2 L$2

We write the mass-shell invariant amplitude as

(2.6a)

(2.6b)

f(k2 p. p& m2 lk2 m2 ik2 0 0)
= f(k' p p') . (2.7)

Since —k2 is the square of the total center-of-mass
energy, the physical region for 4' is —4~'& 4 . Thus, a
massless pseudoscalar particle, if coupled to the elec-
tron, appears as a pole at the unphysical value 42=0.
We demonstrate the nonexistence of this pole by
showing that f(0,p p') exists. In. the Bethe-Salpeter
equation we cannot restrict the scattering amplitude
to the mass shell, but we can obtain the function
f(0,p p') by solving the Bethe-Salpeter equation for

f(o P P'O'P" 00)=f(P P') (2 g)

and at the end setting p'= p" —=m'. Thus, to compute
the mass-shell amplitude f(k', p p') at the unphysical
value, 42=0; we solve the Bethe-Salpeter equation for
k=0 and at the end set p'= p"= —m'. In terms of the

'If one takes Eq. (2.2) as an anzatz, it follows that the function
g(p+,p ) must satisfy a homogeneous vertex equation. M. Baker,
K. Johnson, and B.%'. Lee I Phys. Rev. 133, 8209 (1964)j have
shown that this equation necessarily has a solution when the
p5-invariant Dyson-Schwinger propagator equation has a ys-
nonvariant solution. They further point out that this does not
imply a pole in the corresponding inhomogeneous equation
because of the non-Fredholm nature of the equations.

The choice of momentum variables is illustrated in
Fig. 1, where the equation is given in diagrammatic
form. The spin-matrix indices are written out explicitly.
(dt) means d4//(2') 4 and t+ l—~—k/2

If there is a massless pseudoscalar particle which
couples to the electron, a pole will occur in T in the
form'

, g(p+, P )g(p -',P+'-).».e(p,p' k) =v'.dv', ~

k2

FrG. 2. Pole contribution if
pseudoscalar particle is coupled to
e8.

I
I + e ~ ~

I

usual Mandelstam variables,

s= —k' t= —(p—p')' (2.9a)

—+0,
S(p)

3cxp
c= +

4x
(2.1o)

Because of the zero mass of the photon, the point
vp= —m is an infinite branch point rather than a
simple pole. The combination of the approximation
scheme for the far-off-mass-shell behavior with re-
normalized perturbation theory for the near-mass-shell
behavior can be achieved as follows. The first non-
trivial approximation to the Dyson-Schwinger equation
used in the asymptotic approximation scheme with
mp=0 is

'(P)=vP+' o' ( P') -e(p p')v (p')v' —( )

This is illustrated in Fig. 3. In this approximation we

may write
S '(P) =vp+~(P') (2.12)

with A(p') the solution of the integral equation

~(p")
~(p') =t'«' (dp')D-e(p p')v v'—(2 13)

p&2+ g 2 (pI2)

FIG. 3. Approximate Dyson-
Schwinger equation for the elec- = yP +
tron propagator.

I (s,t)= f(k' p p') (2.9b)

we look at the amplitude for physical values of t,
t(0; and unphysical value of s, s=0.

Now we must determine the kernel to be used in
the Bethe-Salpeter equation. Since the exact kernel
includes an infinite sum of terms, clearly we must use
an approximate kernel. The approximation should be
one which, when applied to the self-energy problem,
leads to a symmetry-breaking solution. In Ref. 1, a
systematic approximation scheme is presented for the
calculation of the electron propagator for large off-
mass-shell momenta. This scheme includes the boundary
condition S '(p)=0 when vp= —m. The behavior of

S(p) near the mass shell is to be determined by ordinary
renormalized perturbation theory. Thus, according to
Ref. 1, the electron propagator equation has approxi-
mate solutions with the properties

1 m(m') '
S(p)-—+—

I

—I+
vp p'kp')
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Now following the discussion of Zq. (2.8) we set
k=o and then carry out the projection indicated in
in Eq. (2.3). In Appendix 8 we show that for k=0, the
amplitude f decouples from all other invariant ampli-
tudes. Thus, we obtain an integral equation for f(p, p'):

FIG. 4. The ladder-approximation Bethe-Salpeter equation.

Since the approximation (2.11) is only intended for the
asymptotic region, (2.13) is used only to determine the
asymptotic behavior of A(p'). Thus, in Ref. 1, the As

term in the denominator is dropped and the solution
of the resulting linear integral equation yields the
asymptotic behavior of (2.10). To get an equation
which also has the correct properties near the mass
shell, we can replace A(ps) As the deeominator by its
perturbation expansion

&(ps)=m+npAg(p')+np'As(p')+ . (psfinite). (2.14)

Thus, to order eo~ in the combined perturbative and
asymptotic non-perturbative approximation scheme,
we have the equation7

f(p,p') =
p —p''

—3ies (dt)

X f(p, t) (2. .»)
(p' —t)s 2+m'

III. SOLUTION OF THE APPROXIMATE
BETHE-SALPETER EQUATION

Although we eventually desire the solution of (2.»)
for p'= p"= —m', we will proceeds by solving the
equation for p', p"&0 (space-like), and then obtain the
desired solution by analytic continuation. For p', p's

space-like, we can rotate the lo integration contour and
work 1n a four-dlmens1onal Euclidean metric. The
only angle in the problem is the angle between p and
p', so we write

~(p")
~(p') =se" (dp') D.e(p p'h", —v' (2 13)

p"+m'

This equation has as solution a hypergeometric function
which has a branch cut from p'= —m' to —oo and
asymptotic behavtol (m'/p') ~ ~ith the boundary
condition 3 (—m') =m, this provides an explicit solution
with the properties (2.10). Now we may determine the
corresponding approximation to the Bethe-Salpeter
equation for the electron-positron scattering amplitude.
From Fig. 3 it is evident that the corresponding kernel
is just the one-photon-exchange diagram. '

.s&"(p p', I)= s"D-e(p p')—V .py'"—

where

coso=
(pspis)t/s

sin (m+1)8
U (cos8)=

sino

(3 2)

(3 3)

is a Tchebyche6 polynomial of the second kind. "
Substituting (3.1) into (2.17), we can carry out the

angular integrations and obtain a one-dimensional

integral equation for the "partial-wave" amplitude

f„(x,x') =m'f. (p', p"),

gaP
(p —p')-(p —p')e

(p—p')'

2' 1 x
f-(~,~') =

I+1x& x&i

, v .pv'. e (2 16)
(p p')'—

Furthermore, we are to make the approximation of
replacing S(p) by (pp+m) ' everywhere that the
modi6ed behavior of the second term in the large p
expansion of 5(p) is not required for convergence of an
integral. Ke arrive at the ladder-approximation Bethe-
Salpeter equation illustrated in Fig. 4.

'This equation was erst proposed by Th. A. J. Maris, V. E.
Herscovitz, and G. Jacob, Phys. Rev. Letters 12, 313 (1964).
The extension of this combined approximation scheme to higher
orders has been considered by M. Baker and F. H. Lewis
(unpublished).' Formally, this follows from Eq. (11) and the definition
E=—BZ/bS. Furthermore, we neglect vacuum polarization so
we may replace &02 by p2.

+
s+1

1 s
+ dy — f-(~y), (34)

I+1 y+1 y

X=3n/4', x= p'/m', x'= p"/m'.

9 In obtaining the solution of Eq. (2.17), we make use of tech-
niques developed by a number of people for the Bethe-Salpeter
equation for scalar particles, e.g. , J. D. Bjorken, J. Math. Phys.
5, 192 (1964) and M. Baker and I. Muzinich, Phys. Rev. 132
2291 (1963). I am also indebted to Professor Muzinich for a
copy of an unpublished manuscript by M. K. Banerjee, L. S.
Kisslinger, C. A. Levinson, and I. J. Muzinich dealing with the
Bethe-Salpeter equation for the @4 theory.

+ We nse the de6nition and proiwrties of U„(cope) given in
the Baremel Mawlscri pt I'roj est, edited by A. Erdelyi (McGraw-
Hill Book Company, Inc. , New York, 1953), Vol. II.
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d' 2 d n(n+2+-——
-dx x dx

+ — f.(x,x')
4x' x(x+1)

By differentiation we may convert Eq. (3.4) into a
differential equation

FiG. 5. The Sommerfe]. d-
Katson contour C.

0 plane

G

8(x—g')
=-2'', (3.5)

xx'

with the boundary conditions implied by the integral
equation

x")'+2f„(xx') -+ 0 (x —& 0) (3.6a)

j.
f (x,x') —+0

xn/2
(x~ ~). (3.6b)

y&( &(x) =x""F(a,a—v; n+2; —x), (3.8a)

y2(S) (g)

where

l"(a)1'(a+ 1)

1'(n+ 2)1'(v+1)

Xg")' 'F(()'—1—n, u; v+1; —1/x), (3.8b)

The details of the reduction of (2.17) to (3.4) and to
(3.5) are given in Appendix C. Here we only note that
in obtaining (3.5) from (3.4) we have interchanged x
and x' at the end for typographical convenience. The
solution is symmetric in these variables.

The particular solution of the inhomogeneous
equation (3.5) is

f„(x)x')= —2g'y)(")(x&)y2(~&(x)), (3.7)

where y&("), y2("' are two independent solutions of the
homogeneous equation normalized such that the
Wronskian y&y,

'—y&'y2 ——1/x'.
The homogeneous differential equation is simply

transformed into the hypergeometric equation; two
appropriate independent solutions are

t»n~nity and back just above it including the poles
(&f (singn)-' at integer values of n (Fig. 5). The ampli-
tude exists if the sum (integral) converges. From the
properties of the hypergeometric functions, we have

P'= P"= —&n' for k'=0,
i= —(p—p')'= 2m'(1 —cos8) (0,

cosa&1.

We start by deforming the integration contour. Since
F(n,P;p;s)/I'(y) is an entire function of n, P, and y,
the product y)(")(x&)y2("&(x)) is an entire function of
the parameters a, e, and v. But v involves a square root
(3.9), which implies branch points in the n plane at
n= —1&2+X. For X=3o./4g( ,', we m-ay restrict the
branch cut to the left half-plane. Then we can open the
contour to enclose the entire right half-plane (Fig. 6).
I et

n= )+i». (3.11)

2Z 1 x( 1f (g g~) — ~ ~ e n)n(x&/s)) —.
"""n+1x) x) n

so the integral converges for x&x'. This demonstrates
the existence of f(p,p') in the Euclidean region p', p'~&0
and

~
cos8~ &1.This already indicates the noncoupling

of the Goldstone boson since, if coupled, it should
produce a pole in the off-mass-shell amplitude as well.
However, it is still worthwhile to check that our
solution can be analytically continued to give the
mass-she11 amplitude.

According to Eqs. (1.6) and (1.9) the desired con-
tinuation is to

a= (n+ 1+v)/2, v= L(n+1) 4)(3 ~ (3 ) Then, asymptotically

Some useful properties of these functions are collected
in Appendix D.

To construct the complete amplitude f(p, p'),
we have to do the sum (3.1) which we can rewrite
as a contour integral by a Sommerfeld-%atson
transformation

+ill U (cos()) —8))~e(m 1))tel

sin&I

f (x,x') e& '"(*«') . (0&—8(g) (3.12)

n&'f(p, p') = Q (n+1)f„(x,x') U„(cos8)
2z' ~

For x~x', the integral converges everywhere on C' and

4m'~z q sr''e

)& (n+1)f„(x,x') U„(cos(g—8)) . (3.10)

The contour C runs just below the real e axis from zero

FzG. 6. The contour
c' ( '=2').

G
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FIG. 7. The contour I..

(Fig. 7). At this point we may set x=x'= —1 and the
integral still converges. Evaluating the hypergeometric
functions gives

where

f.(x,x') I.-..—,=—[e-'2-2—1],

b = (n+1—v)/2.

(3.14)

in fact, there is no contribution from the infinite
semicircle. So we may write

l ds
n22f(p, p') =

4' z I, Sln7IS

X (n+1)f (x,x') U (cos(z —8)) . (3.13)

The contour I. runs parallel to the imaginary e axis
and is displaced by an infinitesimal amount into the
left half-plane to avoid the pole of (sin2rn) ' at n=0

It remains to continue to cos8) 1 (fixed negative t)
To this end we first give 8 an imaginary part and then
let the real part of 8 go to zero. In this limit the
integral diverges. However, this just refiects a singu-
larity at I,=O which is associated with the exchange of
massless photons. To determine the finite amplitude
for fixed negative I, it is necessary to separate and sum
explicitly that part of (3.1) which contributes to the
singularity at t=0 Exp. anding (3.14) for large n we
find

imA 1 ) 1
(n+1)—[e ' ~~—1]=—2m' 1— +(x—-222-9 ')+ +OI

iX n+1 (n+1)' k(n+1) 2

zm.X 1 1)
y(Z—'~9,2) +0 —

In+1 (n+1)(n+2) n')

We define a new function p„(x,x') by writing

ivy 1 " 1 (x()"
(n+1)f (xx')=2 ' 1—— +(l —-' '&') —

I

—
I

+y„(x,x').
(n+1)(n+2) x&kx&l

(3.15)

(3.16)

The function p„(x,x') has the property

From (3.3), we see that for 8=0

Thus,

y„(x,x')I. .. ~-1/n2 for n~~.
U.(1)=n+1.

Q y„(—1 —1)U„(cos8)

(3.17)

converges for 8=0(&=0). The entire t= 0 singularity comes from the terms separated explicitly in (3.16).The sum
over n for these terms can be done using the generating function for the Tchebycheff polynomials. The sums are
evaluated in Appendix E. The sum over P„may be replaced by the Sommerfeld-Watson integral and the contour
deformed as described above. The result is

1 1 i2rh [cos8—1]'~2—[cos8+ 1J~'- ( 22.2 1 cos8—1- '»
ln +I~-—n22 2(1—cos8) 2[cos'8—1]'~ [cos8—1]"'+[cos8+1]'~' 5 3 2 cos8+1

[cos8—1]'~'+[cos8+1]'~'
Xln

1 de—2ln2(1 —cos8) + — g„(—1, —1)U„(cos(s —8)). (3.18)
[cos8—1]"' [cos8+1 4''m' L, sin~e

All terms exist for Re8=0, Im800 (cos) 1).Thus, there
is no pole in F(s,t) for s=0 and fixed negative t.

There is one other point which should be considered.
The general solution of the differential equation (3.5)
includes an arbitrary linear combination of the inde-
pendent solutions of the homogeneous equation, subject
to the boundary conditions. Thus, we might add to the

particular solution (3.7) terms of the form

[., -y. - (*)+".». - (*)]
X [&1 pl (x )+&2 y2 (x )]

where ci&") and c2&"' are arbitrary functions of e. Each
of these four extra terms satisfies the boundary con-
ditions (3.6). However, since f„(x,x) is a function of
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FIG. 8. Sum of
ladder diagrams for
e8 scattering.

+ t ~ ~

Fxo. 10. The contour
I-'+7

two variables, the integral equation is more restrictive
than the boundary conditions (3.6) which involve only
dependence on one variable while the other is fixed.
In particular, yn&"&(x)y&'"&(x') is not a solution of the
homogeneous integral equation since it behaves like
(x')—"I'—' for x' —+0, while the integral obtained by
substituting this proposed solution behaves like (x') "~'

in this same limit. Thus, c2'")=0. On the other hand,
we have not been able to find any restrictions on cj &").

Thus, the solution (3.18) obtained by summing the
"partial-wave" series with the particular solution (3.7)
is not proven to be unique. However, the important
point is the existence of a solution in which the Gold-
stone boson is not coupled to the physical particles.
We note that in the Nambu —Jona-Lasinio model in
which the Goldstone boson does appear in the scattering
amplitude, there is no solution to the Bethe-Salpeter
equation for 4=0 because the pole appears in the
particular solution (Appendix A).

F(s,t) =F(t,s). (4 1)

The approximate F(s,t) computed from just the ladder
diagrams does not have this property, but there is
another set of "crossed" diagrams (Fig. 9) whose
contribution to F(s,t) is obtained from the ladder
approximation F(s,t) by simply interchanging s and t.
The contribution of these diagrams to physical forward
electron-positron scattering may thus be determined
from the ladder approximation F(0,t) by making the
analytic continuation to t&4m' rather than 3&0.

We start with the integral representation (3.10) of
the off-mass-shell solution f(p, p') and deform the
contour as described in the previous section. The con-
tinuation to t&4m' means cos8& —1 which requires
8=7r+i7 The fact th. at the real part of 8 is to be s
rather than zero means that there will be no diTiculty
with the convergence of the 6nal integral and hence no
need for any subtraction. The t dependence (8 de-
pendence) of the integrand is all in the Techebycheff
polynomial U (cos(7r—8)). We write

e= $+ig,
8= n.+i r;

FIG. 9. "Crossed" diagrams.

IV. HIGH-ENERGY BEHAVIOR IÃ
THE i'CHANNEL

We have determined the contribution of all ladder
diagrams (Fig. 8) to F(s,t) for s=0. Crossing symmetry
for e+e —+ e+e implies

then
g ~i+~) ~/~« —g

—(i+5) ~g—s&
U (cos(s —8))= . (4 2)

The behavior for large r depends on the value of (. It
is minimized for $= —1. With this in mind, we start
with the integral representation (3.10) for x,x') 1 and
real 8, and deform the contour to C' (Fig. 6). We now
open the contour farther to the left so that it consists
of an in6nite semicircle closed by a straight line with
f= —1 except for an indentation around the cut on the
negative real axis (Fig. 10). Again there is no contri-
bution from the integral along the infinite semicircle
so we have

—1+2&X

m'f(p, p') — -(~+ I)—e-'"«+»'""4s'i g sinn. & iX

X (expL —2m[4& —(/+1) 2j~&~j

—exp/@ L4$—((+1)2j&inj)s~b (4 4)

The integral is dificult to do exactly, but the asymp-
totic behavior is determined by the upper limit

m2f(p p~) ~ s(—1+2&x)r~
t aboo ]1—2&A

(4.5)
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APPENDIX A: THE NAMBU —JONA-
LASINIO MODEL

We outline some of the results of the Nambu —Jona-
Lasinio (NJL) paper4 in a form which makes explicit

m'f(p, p') =
4x'i 1.+~ sining

X(v+1)f (x,x')U (cos(s —8)). (4.3)

We may now perform the analytic continuation by
setting x=x'= —1 and 8=m+i~ Accordi. ng to (4.2),
at each point along L' the integrand behaves like e '
as 7 —+~. Along the contour y encircling the right end
of the cut, the integrand behaves like e&', where $ ranges
from —1 to —1+2+X. Thus, this is the dominant
term for r ~~. The integral along the contour y is
equal to the line integral from —1 to —1+2/X of the
discontinuity of the integrand across the cut. Thus,
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S(p) Pro. 11. The approximate self-
energy and Bethe-Salpeter equa-
tions in the Nambu —Jona-Lasinio
model.

APPENDIX 3: DECOUPLING OF
THE AMPLITUDE f{p,p')

%e have to take the y5, p5 projection of

(dl) T(p, /, k)S(/+)E(/, p', k)5(L)

the parallel between their calculation and ours. NJL
consider fermions interacting through a direct four-
fermion interaction. The approximate self-energy equa-
tion corresponding to our (2.11) is

(A1)

NJL look for a solution of the form of Eq. (2.12) with
A =m= const. Then the self-energy equation reduces to

with k=0. Vhth the spinor indices explicit and substi-
tutlllg Eq. (2.16) fol K(/, p,k), tile lllteglalld ls

(l—P')-(l—P')s
se—' g /2

— y's. ..Tr~(p, /, k)
(l—P')'- (l—P')'

1
&&~.s(/+)V see's.V'.s~sf(/ )= -»e'—

(l—p')'

&&~" -T (P,/, k)~"(/+)v'. ~. (l-). (82)

A, p
dp/2 p/2

p"+m'

Using S(p) = (yp+m) ', the last three factors are

(A2) -m —~/, m —~/
— — m+~,/m ~/

~5 — ~5
l+'+m' L'+m' .r l+'+m'L'+m' .I

This equation has the trivial solution m=0. It also
has the desired nontrivial, nonperturbative solution,
m/0, provided the condition

/2

/2

p"+m'

=7'.&Lms+P —kks+myk+2(y/pk —p4/))sr. (83)

FGIk=0 'sllbstltlltloll of (83) ill'to (82) gives

, v".-~rd(p, /)v'. r
(l—p')' P+m'

is satis6ed. The integral is divergent and requires a
cuto6 to define the model. If this model is considered
as an approximation to a Lagrangian theory, the y5
invariance of the Lagrangian implies conservation of
the axial-vector current. NJL show that the existence
of the conserved current implies the existence of mass-
less pseudoscalar particles. "The Bethe-Salpeter equa-
tion in the approximation corresponding to (1) is the
analog of the ladder approximation in a Yukawa-
coupling theory,

f(pP')=, +
(p—p')' 42rs

f(,l)
Pdld0, . (C1)

(P'—l)'(l'+m')

In four-dimensional hyperspherical coordinates

APPENDIX O' SEPARATION OF
ANGULAR VAMABLES

After rotation of the lo integration contour, Kq.
(2.17) may be written

f(p, P') = 1+ f(P, /)
P+m'

(A4) dQ = sin'Hq sin02d8qd8qdg.

Since the kernel is a constant, the solution is trivial:
Ke introduce the expansions

f(PP')= 1-
4m'

p
dP +const. (A5)

P+m'

1 ~ 1
U, (cose,.I),

(p' —l)' ~=2/')2 /')

The extra constant is an arbitrary solution of the
homogeneous equation when (A3) is satisfied. However,
the particular solution is seen to be infinite, indicating
a pole in f(p, p', k) at k=O, precisely when (A3) is
satisfied, providing for a y5-noninvariant solution of
(A1).

"K.Johnson, Phys. Letters 5, 253 (1963) has pointed ont that
formal arguments based on conserved axial-vector currents are
unreliable.

1
f(p, /)= E (+1)f,(p', l')U, (- s. ), (c3b)

2Z' r=o

where /&'(/&') is the lesser (greater) of l,p'. Using the
orthogonality relation

~rs
deal U„(cosS,I) U, (cose,.l) =2~' U,(cosS„,), (C4)

r 1

LU, (cos4,)= U, (1)=r+ Ij,
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we compute

dfll U (cos8» )f(p,p') =f„(p',p")

2m 1 fp(" 3n 1

n+1P&'1P& 21m+1

r(n+2) r(1 )
yl(x) —+ &(v—s) //2

r(~) r(~+ 1)

—r(o) r(g+ I) 1
yo(x) ~ for x ~~

r(n+1) I'( +1) x&"+'»'

1 1
n

X d1 f.(p ,ot)o. (C5)
I'&'(Io+nl') I'&

yo(x) ~—
n+1 x"/'+'

for n~~. (D5)

In terms of the variables x and x', and )1=3n/41r,
APPENDIX E: EVALUATION OF SUMS

We evaluate the sums
2 1 *l "/2 I x /2

f (x,x') = ——
I

8(x-x')+—— 8(x'-x)
n+1 x xi S' X'

+ dy — f.(x,y) . (C6)n+1, y+1 y

I= Q U„(s),
n=o

Qo

U-(s),
n=o n+1

00 1
K= Q U„(s),

n=o (n+1)(n+2)

(—1(s=cosg(1) .

(E1a)

(E1b)

(Elc)

This equation may be written in abbreviated form as The generating function for the Tchebycheff poly-
nomials of the second kind is

f„(x')=I.(x')+ J (x')+x'""G.(x'),

where the dependence on x has been suppressed. Dif-
ferentiation of this equation twice with respect to x'
leads to the differential equation (3.5).

1 Qo

1((,s) = =2 U-(s) 5",
I & I

(1. (E2)
1—2$s+P

The left-hand side provides the analytic continuation
of the right-hand side for

I $I &1. Specializing to )=1
gives

I= 1/2(1 —s) . (E3)
APPENDIX D: PROPERTIES OF THE

HYPERGEOMETRIC FUNCTIONS

We collect some useful properties of the functions
(3.8). Using the integral representation

Next we write
(n+1

J(4s) = 2 U-(s) = . (E4)
n=o n+1 o 1 2g's+ f'—

The integral is

F(n,p; y; s) =
r(p)r(~ —p),

(1—/)' s '
dt, (D1)

(1—&s).

-
($—s—[so—1]1/o) (—s+ [so—1]1/1)-

ln
2 [s2 1]1/2 (( s [s2 1]l/2) ( s [s2 1]1/2)

—[S 1]1/2 [S+1]1/2-
ln

1/o s—1 1/2+[s/1]1/o
(E5)

yl(x) ~ x"/',
Finally,

&(4s)=2 U.(s)
(n+ n 2

@+2
dk' J(k', s) (E6)

1)( + )for x —+0 (D2)y2(x) -+-
n+ I xn/1+1

Setting =1, we have
or the formulas of the Bateman Manuscript Project
(Vol. I, Sec. 2.10) we obtain 1J

r(n+2)
( 1)—e inn/2—

r (a+1)I'(b+ 1)

r(&)
yo( 1 )—&/a(a —/2)n

r(1—b) r(n+2)

z=-
1/2 [s—I]1/2+ [z+1]1/2

2 z+I [s 1]l/2 [s+1]1/2

——,
' ln2(1 —s) . (E7)

Setting /=1 and carrying out the integral, we find
after some combination of terms


