
CA journal of experimental and theoretical physics established by E L. Nichols in 1S99

SKcoND SKRIKs, VOL. 153, No. 5 25 JANUARY 1967

Static, Axially Symmetric, Interior Solution in General Relativity*
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A static, axially symmetric, interior solution of the Einstein 6eld equations which matches on smoothly
to one of the Weyl exterior solutions is exhibited. It is obtained essentially by guessing an interior metric
and requiring that the calculated stress-energy tensor not be grossly unphysical. Boundary conditions at the
surface of the matter are employed which guarantee the existence of, but do not exhibit explicitly, coordi-
nates in which the metric components and their derivatives are continuous. Finally, it is shown that this
method can easily be generalized to obtain interior solutions for any Weyl metric which indicates that it
has a positive mass source.

I. INTRODUCTION
' "N a realistic analysis of many astrophysical problems
~ ~ the lack of spherical syIIimetry must eventually be
considered. For example, stationary rotating bodies and
gravitational collapse with angular momentum can, at
best, possess axial symmetry. In fact, systems which
might serve as sources of gravitational radiation must
robot be spherically sylrunetric as is evident from Hirkho6's
theorem. ' Of course the study of any of these problems
in the framework of general relativity would, in general,
be quite complicated. It is reasonable to expect that
their solution will involve many new techniques and an
improved understanding of many old ones. In the hope
of facing simultaneously the demands for only a few of
these many needed advances, I have chosen here to
study a very simple problem whose main value is that
it does lack spherical symmetry.

The problem under consideration here is that of
6tting a static, interior solution to one of the Acyl
axially symmetric, static, exterior solutions of the
Einstein equations. The solution I find serves to verify
the standard assumption that the Weyl metrics repre-
sent gravitational fields which could be produced by
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ciateship. Based largely on part of the doctoral thesis of the author.
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nonspherical solid bodies. In the course of this exercise I
found that the Lichnerowicz conditions on the di6er-
entiability of the metric (O', Cs by pieces) are too
stringent to be applied in practice. (Indeed, they are not
imposed in the usual discussiops of Schwarzschild s in-
terior solution. ) Instead we take advantage of a wider
choice of coordinate systems to simplify the computa-
tions, but impose boundary conditions which guarantee
the existence of some coordinates in which the Lichnero-
wicz conditions would be satisfmd.

As I shall discuss in Sec. II, Weyl and Levi-civita,
in 1919, discovered all the solutions of the axially sym-
metric Einstein Geld equations after imposing the
simplifying conditions that they describe the static,
vacuum states. I shall drop the vacuum requirement,
but retain the static condition. If I look at only finite-
mass distributions then I am actually searching for
imterior solutions which might serve as sources of the
Weyl exterior solutions. We must also expect these
sources to exhibit some properties of a solid, the usual
argument being that any static Quid would also bo
spherically syinmetric. I shall not concern myself with
the problem as to whether any nonQuid types of
materials can actually exist under very high gravi-
tational stresses. The method I shall use for looking for

A. Lichnerowicz, Theories Relativistes de lu Gravitation et de
L'electromagnetisme (Masson et Cie, Paris, 1955), pp. 5, 6.

3 H. Weyl, Ann. Physik 54, 117 (1918);59, 185 (1919);T. Levi-
Civita, Atti Accad. Naz. Lincei Rend. , Classe Sci. Fis., Mat. e Nat.
28, 101 (1919).
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interior solutions is essentially that suggested by Synge4
which is simply to guess the Geld g„„and see whether
this guess leads to a T„„which is grossly unphysical.

It should be emphasized that the main contribution
of this work lies not in the physical significance of the
interior solution obtained, but in the techniques em-

ployed for obtaining this nonspherically symmetric
interior metric. In fact, in concluding this paper we
show that the above method can immediately be used
for obtaining interior solutions for all the Acyl metrics
which indicate a source possessing positive mass.

4»+p V.+4**=0 (3)

v.=p(4.' 4*') v.=—2AA" (4)

with subscripts denoting partial derivatives. The solu-
tions of these equations are discussed in detail by
Synge. e To obtain solutions one chooses for f any three-
dimensional harmonic function which is independent of
p since Eq. (3) is simply Laplace s equation in cylin-
drical coordinates for a function which is independent of
p. It is also required that iJ vanish at infinity at least
like (p'+s') 't' so that the space will be flat at infinity.
The function y is obtained by the line integration of
Eq. (4) with the boundary condition that p =0 on the s
axis. I shall pick the most obvious and simple solution' '

II. AXIAL SYMMETRY AND
WEYL'S SOLUTIONS

Any static, axially syrnlnetric metric can be written
in the cylindrical-coordinate form as

ds2 = rr2 (dp2+ ds2) yP2+2 +2dt2— (1)

where the metric coefficients are functions of p and s.
Weyl and Levi-Civita showed that one could obtain all
the solutions of the Einstein field equations for the case
of static, axial symmetry in a vacuum by taking the
line element (1) in the form

ds' =e''r 't'(d p'+ds')+ p'e 't'dry' e't'dt' — (2)

where ll and y satisfy the field equations

III. INTERIOR METRIC REQUIREMENTS

The requirements we impose on the interior metric
are essentially those discussed by Synge except for the
additional demand that the solution yield a "good"
Newtonian weak-Geld limit. We shall be working in a
coordinate system where both the interior and the
exterior metrics have the form

ds'=g„dr'+geed8'+geedriP+g„dt'. (7)

The advantage of these coordinates over Weyl's cylin-
drical coordinates is that the boundary surface may be
assumed to have a simple form

Suppose the metric or Grst fundamental form of the
boundary surface s is the same in both interior and
exterior coordinates and is given by

I=g~ndx dx =geed8 +geedrtP+gttdt,

where the subscripts (A,B) refer to the coordinates

(8,&,t). In a sufficiently small neighborhood of s we can
construct geodesics normal to the surface s such that
each point of s uniquely determines a geodesic. Then any
point in the neighborhood can be named by a coordinate

E, which is just the proper spatial distance of the point
from the surface s along one of these geodesics and the
three coordinates (8,&,t) which is the point where this
geodesic intersects the surface. Thus the metric in these
"normal Gaussian coordinates" is simply

ds2 gABdxAdxB+dR2 (10)
I

The second fundamental form of any hypersurface s is
given by

II= [e„,gx&d—x"$,=E+ttdx"d—x (11)

where e„ is the unit normal to the surface and the
subscript s means that one of the coordinate differentials
is to be eliminated using the equation of the surface. For
the metric (10) the second fundamental form is simply

1 BgAB
+AB I AB

2 BE.

where R'= p'+s'. The integration for y yields

7= ——', 'p'rr/tR4.

The attempt now will be to find an interior solution of
the Einstein field equations which could serve as a
source of this field. Let us see what the requirements on
this interior metric will be.

' J. L. Synge, Relate'rnty, The General Theory iNorth-Holland
Publishing Company, Amsterdam, 1960), pp. 309—317.

5 J. Chazy, Bull. Soc. Math. France 52, 17 (1924); H. E. Y.
Curzon, Proc. London Math. Soc. 2B, 477 (1924).

'1 This form contains a hint of spherical symmetry, but it has
been veri6ed that Eqs. (5) and (6) do not produce the Schwarzs-
child metric in an unfamiliar coordinate system. For roof, see H.
Takeno, Progr. Theoret. Phys. (Kyoto) 8, 317 (1952 .

Thus if we insist that the first and second fundamental
forms be the same whether the boundary surface is
considered imbedded in the interior or the exterior
space, this will guarantee us that there is a coordinate
system (namely these normal Gaussian coordinates)
where all the g„„and all the normal derivatives of the
g„„(here simply the derivative with respect to R) are
continuous. It also obviously follows that partial
derivatives taken parallel to the surface are continuous
across the surface and hence that the Lichnerowicz
continuity conditions are satisfied in this coordinate
system. Hence the requirements we impose on the metric
are the following:

(A) The 6rst fundamental form of the boundary
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surface should be the same whether obtained from the
interior or exterior metric.

(8) The second fundamental form should be the
same whether the boundary surface is considered im-
bedded in interior or exterior space-time. Since the
Lichnerowicz condition is guaranteed to hold in some
coordinate system, the Synge condition, ' that the
normal component of the stress vanish at the surface, is
also satisfied. For the case of the metric (9) we find that
the E» are given by

new coordinates

with

tits sin'8)
1+ ~dr'+ (r' 2r—rtr+rrP sin'8)d8'

r' —2nsr)

+e '&(r' —2mr) sins8dg' e—'t'dts, (17)

1 m'(r' —2mr) sin'8

2 (r' —2mr+ms cos'8)s

(13)

So if we choose g„ to be continuous across the boundary
then this requirement simply states that the g»„must
be continuous across the boundary also (but allows a
jilmp in grr, r).

(C) The local energy density should be non-negative,
i.e., Tpp&0.

(D) All the physical components of the stress should
be small enough compared to the local energy density so
as to allow an interpretation where the velocity of sound
will not be greater than the velocity of light as is
demanded by causality. Though we shall not strictly
demand that T (not summed) be non-negative as
Synge does, since we know this does not hold even in
many Newtonian examples of stressed solids, neverthe-
less it shall turn out to be true for our particular
example. This would probably tend to make the solution
more stable.

(E) The weak-field (Newtonian) limit should give us
good values for the mass density and stresses, i.e., the
stress and mass density distributions should describe a
body composed of a material with a reasonable equation
of state. The idea here is that we know what reasonable
equations of state are in the Newtonian limit, but there
is little that we can say about what a reasonable equa-
tion of state would be for a solid body in the relativistic
limit. Actually it also makes the satisfaction of require-
ments (C) and (D) rather simple.

d$'= 1 dr' r' d0' sin'ed'
r r2

2'
1— dP 20

r

which is identical to the ordinary SchwarzschiM metric

8$ =
&r 2ns

-+r'(d8'+sin'8'') —1— dts (21)
1—2m/r r

expanded up to second order in m/r. So it should. be
possible to And an interior solution which, to second
order, looks spherically symmetric. The spherically
symmetric interior solution we shall look at is the
Schwarzschild interior solution' which describes an
incompressible Quid. This is given by

gr2 +.s(d8s+sins8dds)
1 r'/8'—

r2 1j2- 9

A —— 1—— dt' (22)
2 8'

where

(r —2mr+m cos 8)'i

A crucial step is to notice that if one expands the above
metric in powers of m/r and drops all terms in the third
order and higher, then one gets

so that

s= (r—m) cos8,

p= (rs —2mr)'t' sin8

&'= r' 2mr+rrt' cos'8—

(14)

(15)

(16)
for r) 2m.

The exterior metric (2), (5), and (6) becomes in these

7 See Ref. 4, p. 31/.
G. Erez and N. Rosen, Bull. g,es. Counci) Israel, Sec. F, 8, 47

(1959}.

IV. THE INTERIOR METMC

I found it much easier to work in the coordinates
(r,8,p, t) given by Eqs. (4), (5), and (7) of Erez and
Rosen, ' rather than the cylindrical coordinates (p, s,P, t)
discussed earlier. The Erez and Rosen coordinate
transformations can be written as

Bs=3/gs. ppp.

(23)

ppp is the local mass density and r =r j is the surface. All
the metric components and their derivatives are con-
tinuous across the boundary except for g„,„, which is
consistent with requirements A and B. One could say
that the interior metric (22) was obtained from the
exterior metric (21) by the substitutions

2~/r ~ rs/f3s (24)

in those metric components which need to be continu-
ous, but need not have a continuous derivative and by

9 R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Qarendon Press„Oxford, England, 1962},p, 245,
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the substitution

2y/4/'y ~ 1—[A —'2(1—y'/8')"']'

we get the ordinary Newtonian expressions for the mass
density and pressure of an incompressible sphere of

(25) fluid

in those metric components which need to be continuous
and have continuous first derivatives also. It is clear
that these substitutions do in fact accomplish this since
(24) does not have a continuous first derivative at the
surface, but (25) has.

If one uses this same method of substitution on the
exterior metric (17), i.e., uses (24) for the g„„metric
component and (25) for the gpp, g@4, and g44 metric
components, one obtains the "interior" metric

p =3m/4~y, ', (3o)

(31)

p= ~ go ) (32)

It is evident that if we substitute the metric (26) into
(29) that we will get the forms

r sin'0
d's2 —~28

484 1 y2/P2—
+e2a 2//y2[1+X(y)+1X2(y) sin28]d82

+e 'ey2 sin'8[1+X(y)]dg' epedt' —(26)

where

y4 ~2 y2 ~4 -2
8 = — 1—— 1——+ cos'8 sin'8

884 82 82 484

&2 P —1/2

+- 1——+ cos'8
282 82 484

(33)

where T is not summed, n refers to r, 0, and p, and

go, g are four functions of order unity. We see that if
y/4/y, is not too large then requirements (C) and (D) are
satisfied. Actually m/yi must be of order unity before
these conditions are not met. The exact limit on 2/2/yi

can only be obtained after the go, g are obtained
explicitly, which we shall not do. The requirement (E)
is obviously satisfied by the equations (32) and (33).

V. DISCUSSION OF SOLUTION

42 = —-'X'(1+ X)[1+X+-'X' cos'8] ' sin'8

P = -2'X[1+X+-4'X2 cos'8] '"
3 y 2 1/2 1 y2)1/2 2

X= — 1—— —— 1——
)

—1,
2 732 2 2i')

(27)

By looking closely at the exterior metric we can de-
termine some qualities of the interior metric which acts
as a source. If we expand the goo component of the
metric (17) in powers of y/2/y we obtain

1

m 1m3
gpp= 1 2 — P2(cos8)+ ' ' ' . (34)

r 3r3
2m (1, R2=

R
-= constant,

8mppo

[A 22 (1—y'/8')'/']'dt' (28)

which is the Schwarzschild interior solution up to second
order. Actually the gpp component of (28), as it stands,
contains higher order terms than second, but we left it
in this form for convenience.

Substituting the Schwarzschild interior solution up to
second order into the Einstein field equations (with
G=1, c=1)

8&T;=E„~—-', b;,

and r=rl is the boundary.
It is obvious that again all the metric components and

their first derivatives except for g„,„will be continuous
across the boundary, thus satisfying requirements A
and B.If we make an expansion of this interior metric in
powers of y2/R2 up to second order, we get

y2

ds = 1 ——dr2 r d8 sin ed
a2 a4i

Thus at large distance from the source (weak fields) it
appears that this metric describes a source of mass m
and quadrupole moment 2/22/3. 1P Next we notice that the
metric of the boundary surface r=rl and t= const up to
order y/22/yp is given by

2m8
ds =yi 1———P2(cos8) (d82+ sin 8d@ ) (35)

3 r13

This can be interpreted as a two-surface in a 3-dimen-
sional Euclidean space given by

1m8
y=yi 1———P, (cos8)

3 rl3

where r is the ordinary radial distance and again we
retained terms only up to third order. This tells us that
the approximate amount of mass which contributes to

'0 At first it might appear that the identification of the quad-
rupole moment as obtained from Eq. (34) was dependent on the
coordinate system; it is not, however, in the sense that it is
this particular coordinate system which gives a zero quadrupole
moment to the spherically symmetric Schwarzschild metric. Also,
see Ref. 8.
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the quadrupole moment is m(m%iP) (if the density is
approximately constant). The largest possible quad-
rupole potential term this leads to is of the order

(mm'/ri')ri' m' m)

r' r' ri)
(37)

which is too small by one order, i.e., a factor m/ri So .we
conclude that, in a Newtonian analysis, the deviation
from spherical symmetry of the source is not due to a
distortion of the surface, but must be a result of varia-
tion in the density. The sign of the quadrupole term
indicates the density is higher nearer the 0=~/2 plane.
Actually a variation from constant density which goes
like m'/riP would be sufhcient though not necessary.

From the forms of the expression (32) and (33) we can
say that in the case of weak fields the interior metric
(26) describes a material which is nearly incompressible,
and so represents a materia, l whose equation of state is
not very different from many common forms.

VL OTHER SOLUTIONS

After considering closely the techniques involved in
obtaining the above solution, it becomes apparent that
this method can immediately be generalized for ob-
taining sources of other Weyl metrics. Using a notation
similar to that of Erez and Rosen, ' we can write the
almost general solution of Eq. (3) as

0 =%p+q%i, (38)

where 0'0 refers to the spherically symmetric Schwarzs-
child solution [Eq. (13) of Erez and Rosen), but now 4'i
refers, in general, to that part of 0' which is non-
spherically symmetric. The q is simply a constant. The
form of Eq. (38) restricts 4' to describing the gravita-
tional field of a particle which possesses a positive mass
and higher mass multipoles (if q&0). By consideration
of Eq. (4) we can write a similar expression for y as

(1) Rewrite this exterior metric using the Erez and
Rosen coordinate transformation [their Eq. (7) or our
Eqs. (14) and (15)].See Eq. (1b) of Erez and Rosen.

(2) Use our method of substitution [Eqs. (24) and

(25)] on the terms of the metric which do not depend
on q (i.e., all terms in the metric except %i, vi, vp.

(3) Use any method of substitution on the p-de-

pendent terms which has the necessary continuity con-
ditions at the surface r = r& and also yields well-behaved
metric components. It is evident that the mass density
and stress will be given by equations of the form

u= c p(1+zap),

2'. =Pp(1+Vx-)

(40)

(41)

where again T is not summed, n refers to r, 8, and P,
and ga, g are four functions of order unity. Here p0 and

pp are the mass density and pressure, respectively, of the
Schwarzschild interior solution. Thus if we let q=0 our
exterior and interior solutions reduce to the Schwarzs-
child solutions. So by choosing q to be not too large,
conditions (C) and (D) are satisfied and the stresses are
positive also. Conditions (A) and (B) are satisfied by
virtue of our method of substituting. Our condition (E)
requires some comment. The original reason for re-
quiring a good weak-field limit was to ensure that the
equation of state of the material would not be too
unreasonable, especially in the Newtonian limit. In
these new solutions which we have just outlined, the
Newtonian limit might well possess very large mass
multipoles and thus would be dificult to investigate. We
do have some assurance, however, that the equation of
state is not always grossly unreasonable. If we take the
spherically symmetric limit of the above solutions

(q —+ 0) then the resulting Schwarzschild interior solu-
tion describes an incompressible material. Thus in
solutions which deviate only a little from spherical

symmetry the equation of state deviates only slightly
from that of an incompressible material.

V='Yp+gVi+g 7p ~ (39)

Assuming we have chosen a particular expression for 4
and have solved for y, we can obtain an interior solution
by use of the following prescription.
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