TABLE III. Summary of resonance parameters obtained for ${}^{208}\mathrm{Pb}+n$. The assignment $l_n=1$ was on the basis of their symmetric shape. Considerations of experimental resolution and the observed width of the resonance at 77 keV imply that an assignment $J^{\pi}=\frac{1}{2}^{-}$ is favored over $\frac{2}{3}^{-}$.

$\Gamma_n(J)$, eV				
E_0 (keV) l		$J = \frac{1}{2}$	$J=\frac{3}{2}$	Remarks
70 77	1 1	100± 15 900±100		$J = \frac{1}{2}$ favored strongly

The $^{208}\text{Pb}+n$ cross section at lower energies, well separated from resonances, was used to determine the effective nuclear radius R', where $\sigma_{\text{pot}} \equiv 4\pi R'^2$. The resulting value is $R' = 8.4 \pm 0.3$ F, in excellent agreement with the value predicted from $R' = 1.4(A+1)^{1/3}$ F. The results for ^{208}Pb are given in Fig. 3 and in Table III. This pair of resonances had previously been thought to be a single resonance.

Erratum

Muonic Molecules and Nucleon-Deuteron Capture, B. P. Carter [Phys. Rev. 141, 863 (1966)]. Dr. Daniel Zwanziger has kindly pointed out the following error in our calculation of the $p\mu d$ hyperfine structure. We evaluated the expressions

$$\gamma_1 = \frac{8}{3} \frac{\beta_{\mu} \beta_{N} g_{N1}}{a_{\mu'^3}}, \quad \gamma_2 = \frac{8}{3} \frac{\beta_{\mu} \beta_{N} g_{N2}}{a_{\mu''^3}},$$

given by Zel'dovich and Gershtein (Ya. B. Zel'dovich and S. S. Gershtein, Usp. Fiz. Nauk 71, 581 (1960) [English transl.: Soviet Phys.—Usp. 3, 593 (1961)], Appendix 3), using the magnetic moments of the proton and deuteron in nuclear magnetons: $g_{N1}=2.79$, $g_{N2}=0.857$. But with these values of g_{N1} and g_{N2} , the expression above for γ_1 should be multiplied by 2. We then obtain the corrected values $\epsilon_0=0.003$ eV, $\epsilon_1=-0.072$ eV, $\epsilon_1'=0.015$ eV, $\epsilon_2=0.033$ eV, $\alpha=0.81$, $\beta=0.19$. The effect of this correction can be seen from the dependence on α and β in Tables II and III. Using linear interpolation in either α or β , we find that (18) should be replaced by the following:

$$\eta = 0.18 \pm 0.022$$
; $Y_{\gamma} = 0.125^{+0}_{-0.004}$. (18')

Thus, the maximum value of Y_{γ} consistent with the assumption of no quartet capture is 12.5% (instead of 10%), and the interpolated value for λ_r is 0.276 (instead of 0.216). These corrections are not large enough to alter any of the conclusions which were drawn from the previous values.