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A model is proposed for odd-odd nuclei in which the independent excitations are quasiparticles defined by
a special Bogoliubov transformation and in which a finite-range two-body central force acts as the residual
interaction. The model is applied to La"', whose energy levels, wave functions, (d,p) spectroscopic factors,
and 3/11 transition rates are computed and compared with experiment.

I. INTRODUCTION
' 'N recent years many models of the nuclear many-
' - body problem have been described in terms of in-
dependent excitations called quasiparticles. Kisslinger
and Sorenson' studied systems of single-closed-shell
nuclei in 1960. Since that time, several attempts have
been made to extend these techniques in heavier nuclei
to systems that contain both neutrons and protons out-
side magic con6gurations. ' ' The neutron-proton inter-
action was either assumed to affect the single-particle
energies in some systematic way or was taken explcitly
into account in first-order perturbation theory. Al-

though Kisslinger and Sorenson' concluded that their
calculations were consistent with the limited amount of
information on odd-odd nuclei available at that time,
no detailed calculations using an odd-odd quasiparticle
model were attempted.

In the preceding paper we analyzed data from meas-
urements on the reaction La'"(d, p)La'". These data
and data from other experiments' ' give information
about (d,p) cross sections and gamma-ray branching
ratios, as well as the spins and parities of twelve states.
Therefore we have decided to make a quantitative com-
parison between experiment and theory for an odd-odd
quasiparticle model.

In this model we assume that the 50-proton 82-
neutron system forms an inert core. The self-consistent
single-particle energies for the 83rd neutron are deter-
mined from experimental data. For the seven valence
protons we make a special Bogoliubov transformation
to define quasiparticles. The energies and wave func-
tions for these excitations are determined by solving the
self-consistent equations which give the minimum en-

ergy for each quasiparticle state. Finally the neutron-

)This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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proton interaction is considered by diagonalizing it in
a truncated quasiparticle basis. Since none of the
experimental data' indicate any phonon admixture
in states which have been characterized, we neglect
those terms in the Hamiltonian introducing quasi-
particle correlations which generate collective vibra-
tions. In Secs. II and III we give the mathematical
details of the model, discuss how we fit the parameters
of the model to the experimental data, and give the
results of the calculation. In Sec. IV we compute (d,p)
spectroscopic factors, gamma transition probabilities,
and compare the results with experiment.

II. THEORY

We consider that the system "Sn50'" forms an inert
core with respect to single-particle and collective excita-
tions. It contributes only to the self-consistent potential
for nucleons outside this core. With this approximation,
the m-scheme Hamiltonian for the system may be
written in the occupation number representation as

where

FF=H„+H„+H„„,

H„=Q,C C,+,' Q ( pl V ly-b)C Cp CgC,

H„=Q e.C.'C. ,

H„„= Q (nal V„„1Pb)C„tC,tCpCg.

In this equation the e s are the single-particle energies,
the C's are annihilation operators for shell-model par-
ticles, Greek letters designate the quantum numbers for
a complete set of compatible observables in the assumed
self-consistent potential for protons, and Latin letters
designate these quantum numbers for the neutron.

If we assume that the single-particle states are gen-
erated from the usual shell-model harmonic-oscillator
potential with a single-particle spin-orbit term, then

I
0') =

l 4'(p) ~..i.~.~.),' and if we assume a truncated
space of only one oscillator shell, the proton summation
is performed over the 1g7~2, 2d5~2, 3s1~~, 2d3~2, and ih11~2

' We adopt the following conventions for notational conveni-
ence: a=n sl j m and j =n sl„j„.
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orbitals while the sum for the neutron is over the 2'/2,
3p2/2, 1h2/2, 3pt/2, 2f2/2, and 1it2/2 orbitals. Even this

highly truncated shell-model calculation would be very
laborious and probably not physically illuminating.
However, since in this region of the nuclear periodic
table the description of even- and odd-A systems in
terms of independent quasiparticles which are dedned

by a special Bogoliubov transformation is very good, '
we make the transformation

) t=N c t—s.t/ c (2)

Here $ t is a creation operator for quasiparticles. The
transformation coefficients are chosen so that the quasi-
particle operators obey the anticommutation relations
for fermions and that they transform under rotations in
the same manner that shell-model particles do. A set
of sufhcient conditions for the transformation to be
canonical and for the system to be spherically symmetric
are that I and v are real and that

v &0,
I~= gg

va= v~

2t 2+tt '=1,
( 1)t&g m~

(3)

By dehning s this way, we have adopted the Condon-
Shortley phase conventions. "

The state vector for a one-quasiparticle system can be
written

I
~'&= 4'I0) =C ' ll (N.-+s-~ -C-'C--')

I 0„&, (4)
n&0, any

where IO) is the quasiparticle vacuum and IO~& is the
proton shell-model vacuum. In the case of "La5z"' the
vacuum represents the fifty protons in the inert 'Sn50'"
core. The transformation coefficients are labeled with
respect to the single-quasiparticle state in order to indi-
cate that blocking will now be considered explicitly.
The coeKcients v~ are determined so that the expecta-
tion value, (y'I Zt, 'Iy'), is a minimum, where

H '=B —PÃ . (3)

It is necessary to use the primed auxiliary Hamiltonian
because the trial vectors given by Eq. (4) are not eigen-
vectors of E~, the counting operator for shell-model pro-
tons. Using the Lagrange multiplier X guarantees that
the number of protons will be conserved on the average.
The equations which must be solved self-consistently
for the values of v~ are

J
/'2, ;=—2 2 „—GU.i'-is~)2/, 2'

ip~i~ g

j,—2 J
Z —„G(j-»j.»~)'...'

2v

——. z —. GU.j,j.j,j),
2v ~2

1/2

(i-j.ol vli~i~o&;„;;;„;,
ip&i& j

where

+(i —2)l:( .,—~—l/ - - ) - - '

—-'I--
JV72 277q~iq/2 j &

J
/. ,;=—Z Z „G(i-i'-is&—)~;„,,'

&P»V ga

J
Z —. GU.j,j.j,J);„,
J Ja

More extensive treatments of quasiparticle descriptions
for systems of fermions can be found in several standard
references ""

For numerical simplicity and in order to reduce the
number of parameters in the theory, we use a pairing
force, i.e.,

(ttpl p
I
+tt) G( ] )j~j~+t~+t2+m~m~b g (g)

In order to minimize the energy of the ground state, the
use of the pairing force requires that

~N". v--
Jy2y Jy2y &

G(i.i/i -i sv) =(i-iszl V,.li.i'm) —(—1)'~'2+

X(j.as~I I ., I ~sj.~&,
j2—=2jr+1.

The energy of an E-particle system in the state Iyt/) is

(&'I~ I&'&=»+(,—~)—~, ,
+ Q j~f(27m X 2Qiyia)Viyaa

2a+ Jy

V 2 '2 2=
ly2a

2

6" —A, —IJ,
"/

ga JyJa
(6

(2 g /t& +g 2)1/2

—( 1)te(1 s 2)1/2

Equations (3) and (9) specify all sign conventions. It
has been shown that this is often an acceptable approxi-

"A. de-Shalit and I. Talmi, nuclear Shel/ Theory (Academic
Press Inc., New York, 1963).

'A. M. Lane, Euclear Theory (W. A. Benjamin, Inc., New
York, 1964)."D.J. Thouless, The Quantum 3fechgnics of 3fany-Body Sys-
tems (Academic Press Inc., New York, 1961).
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mation for the actual two-body force in pairing-type
matrix elements. "We further assume that the quasi-
particle representation is good in the sense that we can
neglect the correlations between the quasiparticles. It
is known that the lowest energy states that arise from
such correlations are collective and vibrational in char-
acter. ' It is also known that for single-closed-shell even-
even nuclei in the mass-140 region the energy of this
state is about 1.5 MeV but as neutrons are added, the
neutron-proton long-range quadrupole force causes the
energy of the lowest vibrational state to drop sharply. '
However, since La'" is a single-closed-shell-plus-one

nucleus and because there are experimental assignments
for only the 6rst 0.5 MeV of excitation, we assume that
we can neglect vibrational particle mixing.

The basic states for the odd-odd system are chosen to
be

(10)

where the bracket notation denotes vector coupling and
IO') is the direct product IO) IOn).

Assuming a truncation so that a state with a particu-
lar angular momentum, parity, and charge occurs only
once, matrix elements of B ~ are given by

where

&iai &i 7a

)a

(12)

Equation (11) is a special case of the matrix element for the neutron-proton interaction in the case where both
proton and neutron are quasiparticles.

(ga Ja &
I
I/nn

I gp pa &)=F(ga1 p)F(ga1 s) (+/p/, +/ ~'p+jb/, +/, /a+&/p/. &/. /p&/~/p/ /q)(gaga& I
1 ny I gpgeJ)

(+jgja+jajp&jgja&jajg++jgja+jajb&78ja&ja/8) 2 & &gajb& I &anl jpga& )
ib

J/
+~;.;,t'.;~~ 2 —„&i,ia~'I l'nial 272&J'&(I/a/agjagb ~Jb7 ~7afb)~2 7y

&V~' ga

+~hJp~g 3b Z ~(i,i .~ I ~-.Ii .i .~)~;./, "/.~.
' (13)

itic~

The formulas that we have presented assume only that B„„is a two-body interaction. At present there are three
diRerent methods for treating this interaction. One may take a highly realistic interaction, i.e., one which explains
two-nucleon scattering —the deuteron problem —and gives the correct results in nuclear-matter calculations, and
then attempt to explain differences between experiment and theory by systematic corrections to the model. The
second approach is to invent an interaction which has desirable analytic properties and can explain certain sys-
tematic features observed in many nuclear spectra. The well-known pairing-plus-quadrupole model is an example
of this. Finally, one may choose an interaction which is suSciently simple to allow extensive calculations and even
parameter-Gtting but which is complicated enough to simulate the properties of the realistic force. Such an interac-
tion will be model-dependent, for it will depend on the assumptions of the model (e.g. , the stability of the inert
core), the extent to which the basic states approximate the Hartree-Fock self-consistent orbitals and the truncation
of the Hartree-Fock single-particle orbitals. The latter will depend on the region of the nuclear periodic table, the
number of valence particles, and the size of the computer. If the model is untested and there is only a limited amount

"Mannque Rho, Ph.D. thesis, University of California Lawrence Radiation Laboratory Report No. UCRL-11080, 1963
(unpublished).

"Nuclear Data Sheets, compiled by K. Way, et at. (Printing and Publishing, OfBce, National Academy of Sciences—National Re-
search Council, Washington, D. C.).
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of experimental data, the third approach is perhaps the most useful since it not only allows one to draw conclusions
about the physical assumptions built into the model but also makes predictions which can be tested experimentally.

For the neutron-proton interaction, the Pauli principle does not exclude any states of relative motion. Therefore
the number of parameters for a reasonably sophisticated interaction soon exceeds the number of available data. We
therefore choose the simplest possible force capable of explaining the data. The simplest reasonable neutron-proton
interaction is the 8 function. However, it fails to reproduce the experimental levels in La'". The next simplest
force is the 6nite-range central interaction with Gaussian shape. We chose this interaction but restricted it so that
all exchange components of the force have the same range parameters. With this approximation

V-i&l ~-.l 7 pi &)=2((&»+&ro)+(1 rE +ro)( 1)'p'—"+'~ .)(j.j.&I p " "'""Ijpj d)'
ef(~r—E ~sE+~ro &so)+—(&ra+&sr &ro —Vso)(——1)'P+"+ &;»,)(j j.JI p "~"'""~sIjpjaJ), (14)

where for notational convenience

Ij-j.j)= I
~-~.—(kl-) j-(el.)j.~~).

In this equation, ~z is the singlet projection operator, I'pt, is an operator which exchanges the proton and neutron
quantum numbers in the ket vector, the V s are the strengths of the two-body potential in the triplet-even, triplet-
odd, singlet-even, and singlet-odd states, and ro is the range of the force.

where

(&.1.~ I
p "'""""

I &pa~~) =2 f.~.,
k

(16)

Rn l (&y)Rn l (rn)vk(f&&re)Rnplp(r&)R»/&(r )r& ra drpdr (17)

and

f =(—1)'+"+'(i i

ipse

~)'"k
k E—-', 0 -,') —-,'0

with the restriction that both (l +k+lp) and (l,+k+lb) must be even, otherwise fr=0 The R.(r)'s are the radial
wave functions" and st. (r„,r ) is the Legendre transform of the Gaussian.

where

(7-7.~I p """"""~slipi b~)=4 Z c.F.,
k

(19)

jp gb 1N g~ 2 lp & lb t'4 k lp 4 k
pe=2( —1)"+'p+ +'k(J jpJ,jgl~lp/ lg)'~' (20)

1& lp j l, J l, k l ~0 0 0 0 0 0~

Finally let us consider the problem of conservation of
particle number in the proton quasiparticle wave func-
tions. Equation (4) corresponds to an ensemble of nuclei
each with a different number of protons. However, the
average number of protons taken over the ensemble is
equal to the number of valence protons. In order for this
to be true for each proton quasiparticle state, the BCS
equations must be solved for each state with proper re-
gard for conserving the average number of particles. In
doing this one blocks, " i.e., neglects, conjugate states
one of which is occupied by the odd particle. In general,
the v's for the various single-particle states depend on
the quasiparticle state, but since we consider states with
only one quasiparticle, their different spins and parities
automatically make them orthogonal. For many nuclear
properties simpler treatments than blocking are justi-
6ed, but the errors in the eigenvalues are not small if the

"We adopt the convention that n equals the number of nodes
(excluding r=0 but including r= ~) and that the nuclear-size
parameter v equals the mo/A which is twice the value used by
de-Shalit and Talmi (Ref. 10).

neutron-proton interaction is treated with basis states
generated by operating with the various quasiparticle
creation operators on the same BCS solution. If the e's
are chosen so that the expectation value of the number
operator is e in the ground state, then a one-quasi-
particle state for an orbital well below the Fermi surface
gives an expectation value (I 1). Those—states for
orbitals well above the Fermi surface have an expecta-
tion value of (@+1).Therefore, the neutron in La'4'
interacts with a different average number of protons
depending on the state of the quasiproton. Thus when
blocking is not considered, states which are predomi-
nantly hole have a higher energy relative to particle
states. In model calculations, Nilsson'6 has shown that
the blocking method may unduly reduce the pairing
correlation and that corrections due to blocking are
often spurious when states with different seniority are
being compared. However, since we are considering only
seniority-one states in the proton system, these consid-
erations are not important.

16 S, G, Nilsson, Nucl. Phys. 55, 97 (1964).
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III. NUMERICAL SOLUTIONS FOR La'4P

Before evaluating the n-p force matrix elements, we
seek a self-consistent iterative solution for the coupled
BCS equations to determine the quasiproton energies
and wave functions. To solve these equations it is neces-
sary to specify a p-p interaction (we have chosen a pair-
ing force) and a set of single-particle levels. We would
like to take single-particle proton energies (and the
single-particle neutron energies) from experimental data
for one nucleon outside the Sn'" core. Unfortunately
this is not now possible and so we must resort to empiri-
cal or calculated values. In all quasipartic1e calculations
the choice of single-particle levels is perhaps the most
uncertain feature and for this reason we have performed
our calculation with three rather di6erent sets of levels.
Two of these sets are those used by Kisslinger and
Sorensen' ' and the third is that of Tamura and
Udagawa. '7 In all cases the value of the pairing force
matrix element was that used by Kisslinger and Soren-
sen' and the 1g7/2-2d5/2 level spacing was altered so that
the calculation reproduces the experimental separation
in La'". The final results of the calculation are very
insensitive to the choice of single-particle levels and so
we present here only the results using the second scheme.
The parameters and the quasiparticle energies and occu-
pation probabilities are given in Table I. By using such
an empirical set of levels, we have already included the
first-order effects of self-energy contributions and so
have neglected them in this calculation.

For the neutrons we have taken the position of the
single-particle levels from the experimental work of
Fulmer et at. ," on Ce"'. Since this nucleus has one
neutron and eight protons outside the Sn"' core, it is
necessary to correct for the eRect of n p resid-ual inter-
action on the spacing of these levels. Considering only
first-order effects, we find that

J/
(j,j.~'~ ~,

~

j—,j.~').,'+. , (»)
gp A

where e;. is the value for Sn"', e;.' is the experimental
value for Ce"', and c is a constant chosen so that

0 The v~'s represent the unblocked solution of
Ce'" (see Table I). Finally for the theory as formulated,
we need to specify five parameters for the e-p interac-
tion. Four of these are the strengths of the interaction
in the triplet-even, triplet-odd, singlet-even, and singlet-
odd states of relative motion. The fifth parameter is
denoted by X and is given by

X=vrp'.

Although v and rp have different physical meanings,
only X has mathematical relevance. As we explained in
the last section, the values of these parameters are sen-
sitive to the truncation of the shell model and the quasi-
particle states. Since we expect that the model will have
validity only for the fourteen negative-parity states
that are predominantly from the configurations gen-
erated by the 1g7/& and 2d5/2 proton quasiparticle states
and the 2f7'2 neutron state, we have truncated the cal-
culation to include only the 1g7/2 2d5/2 and the 2d3/2

quasiproton states and the 2f7'2, 3p3'2, 2 '" neutron-
shell-model states. Each of these three quasipro ton
states is specified by the five shell-model orbitals that
are listed in Table I. To specify these five e-p force
parameters we have used a least-squares search tech-
nique to find the minimum of X in a six-dimensional
parameter space, where the last parameter specifies the
opt™umnormalization and where X' is the sum of the
squares of deviations in energy. We chose not to normal-
ize to the ground state because experimentally~ it is
found that the 3—ground state is strongly admixed be-
tween the 1g7/2 and 2d5/2 proton states and so its energy
position will be sensitive to the magnitude of an o6-
diagonal matrix element and also to the relative energy
spacing of the ig7/2 and 2d5/& quasiproton states. This
latter quantity might be expected to change slightly
from La'" to La'" because the neutron-proton quad-
rupole interaction will lower the energy of the vibra-
tional phonon. In Fig. 1 we compare the experimental
level scheme with the theoretical predictions for these
states. In Table II we list the energies and wave func-
tions for all levels below 600 keV in excitation energy.
The mean deviation between the experimental and theo-

TABLE I. Quasiparticle energies, parameters, and occupation probabilities.

Quasiparticle
state

Single-
particle
energy
(MeV)

Quasiparticle
energy
(Mev) (MeV) (Mev) 1gv/2 285/2

V coeKcients
ihll/2 2~3/2 3$1/2

Vacuum
ig7/2
2dj/2
ih11/2
2(S3/2

3$1/2

~ ~ ~

0.00
0.81
2.08
2,98
3.22

~ ~ ~

0.0
0.166
1.268
2.131
2.364

0.381
0.324
0.169
0.128
0.121
0.120

0.796
0.648
0.651
0.698
0.710
0.712

0.8460
0.8507
0.7912
0.7681
0.7643
0.7636

0.5134
0.4482
0.3870
0.3886
0.3902
0.3906

0.2173
0.1758
0.1634
0.1708
0.1729
0.1733

0.1481
0.1194
0.1135
0.1197
0.1214
0.1217

0.1363
0.1098
0.1049
0.11075
0.1123
0.

7 T. Tamura and T. Udagawa, Progr. Theoret. Phys. (Kyoto) 26, 947 (1961}.' R. H. I'ulmer A. L. McCarthy, and B.L. Cohen, Phys. Rev. 128, 1302 (1962).
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determined states in ~ La.
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0 lg7/2 2f7/2

Zero order First order Configuration Experimenta i

mixing

retical spectra is 54 keV. This spectrum was generated
with a neutron-proton force having t/"~~= —37.00
MeV, V~0= —j.4.80 MeV, V8~= —29.60 MeV, t/"so
= —11.10 MeV, and X=1.0.

is assumed to depend on the Q value, the orbital angula, r
momentum of the stripped neutron, and the angle of
the outgoing proton. The spectroscopic factor is a sum
of overlap integrals

IV. WAVE FUNCTIONS

A. (d,P) Spectroscopic Factors

Under certain general assumptions, " the differentia1
cross section for the (d,p) reaction may be written as

If we write a state vector in La'" as

%~~'= I7J//I)= g C;.;.J 12 02 JM)

(24)

do~ Jy=—„Q5P&(l,Q,e),
dQ J;&

(23) then the overlap integral for the state labeled 7 is

(26)
where J; is the spin of target nucleus, J~ is the spin of
the residual nucleus, and S~& is the spectroscopic factor. Here 0 p denotes the target ground state which we as-
The last factor, called the single-particle cross section, sume to be a pure 1g7~2 quasiproton state, and f& repre-

TAsLz II. Energies and wave functions for all levels below 600 keV in excitation energy.

Spin-parity

0-
1—

2—
2—
3—
3—
4—

5-
5—
6—
6—
7—

Energy
(MeV)

0.597—0.011
0.404
0.120
0.202
0.108
0.395
0.053
0.241
0.042
0.513—0.147
0.043
0.298

Tg7/2
2f7/2

0.9750
0.1613
0.9738
0.2615
0.9553
0.9892
0.0209
0.9931
0.0405
0.9897
0.0064
0.0831
0.9964
1.0

Tg7/z

3p3/2

—0.0454—0.1046—0.1336
0.0346—0.1032—0.0209—0.1358
0.0646

Tg7/2
2f&/2

0.0036—0.1034—0.0018—0,0488—0.0368—0.0099—0.0155—0.0073—0.0181—0.0024
0.0033
0.0167

2d &/2

2f7/2

0.9735—0.1678—0.9038
0.2662—0.0176
0.9883—0.0311
0.9216—0.0026
0.9865—0.9965
0.0831

State vectors
2~&/2

3P3/9

0.0041—0.0952—0.2210
0.0399—0.0124
0.1275—0.0306
0.3640

2'&/2
2f&/2

—0.1595
0.1239
0.0138—0.0698
0.0191
0.0031
0.0228—0.0036
0.0601
0.0139-0.0468

2d3/2
2f7/2

0.2348—0.0133
0.0327
0.0312
0.0280—0.1047
0.0388
0.1427

2d3/2
3P3/2

0.1548
0.1044
0.0482
0.0241
0.0226
0.0258
0.0595

2d3/2
2f&/2

—0.0076—0.0373
0.0577—0.0234—0.0042
0.0170—0.0103—0.0370

"M. H. Macfarlane and J. B. French, Rev. Mod. Phys. 32, 567 (1960).
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sents the spin-angle part of the stripped neutron's wave
function.

No experimental evidence exists from the (d,p) reac-
tion' for / mixing in the states observed to 580-keV
excitation. Therefore experimental spectroscopic factors
are extracted by assuming that the 2f7/g state is the
only single-particle neutron component in the wave
functions and by assuming that the 7—state at 284 keV
is entirely from the ig7/2 quasiproton configuration.

In Table III the experimental S3 values are compared
with the calculated values from the wave functions that
are listed in Table II. Also in Table III we compare
the theoretical and experimental diEerential cross sec-
tions normalized to the value for the 7—state at 284
keV. In computing the theoretical cross sections, we
have used the distorted-wave Born approximation
(DWBA) single-particle cross sections obtained from
fitting angular distributions for 65' in the laboratory
frame. ~ The experimental intensities for the 31-, 43-,
and 38-keV states were deduced by assuming that
the 1g7/2 and 2d~/2 proton states and the 2f7/2 neutron
states were the only components in the state vectors.
This was consistent with the total unresolved intensity
of these three states. This calculation underestimates
configuration mixing between the ig7~~ and 2d5f~ proton
quasiparticle states for spins 1, 2, and 3 and this is
consistent arith the incorrect energy ordering in the
lowest states. If one allows the spacing between the
ig7f~ and 2d5~2 quasiproton states to be an additional
parameter, then a slightly improved energy fit and much
better (d,p) predictions can be obtained. Insofar as this
parameter has any physical significance, it probably
simulates the erst-order sects of particle-phonon
coupling. The predictions for the other states seem to
be in good agreement with the (d,p) data.

B. Ml Transition Probabilities

This discussion of gamma transition probabilities is
based on Chap. 17 of de-Shalit and Talmi. "

In the long-wave approximation, the transition proba-

TABLE III. Calculated and experimental values
of Ss and relative intensity.

Energy
(keV)

579
43

467
31

162
0

319
63
38
49

284

Jn LS3]theor [S3/empt

0— 0.95 1.0
1— 0.03 0.66
1— 0.95 0.35
2 — 0.07 0.48
2 — 0.91 0.52
3— 0.98 0.81
3— 0.000 0.18
4— 0.99 1.0
5— 0.98 1.0
6— 0.99 1.0
7— 1.0 1.0

Relative
intensity

(theoretical)

0.06
0.01
0.19
0.02
0.31
0.47
0.00
0.60
0.74
0.86
1.0

Relative
intensity

(experimental)

0.05
0.13
0.07
0.16
0.17
0.38
0.09
0.58
0.73
0.85
1.0

bility is given by

87r(L+1) 1 AE '~+'
2' (L)= Bg(I.),

L[(2L+1)!!]h hc
(27)

where L is the multipolarity of the transition, AE is the
energy of the transition, t is an index so that t= e denotes
an electric multipole and t=m denotes a magnetic multi-

pole. The reduced transition rate is given by

a(L)= Z l(nfJ fM/lo~'~(p)go~«(n)lnÃ3f, &l~

(28)

Here O~'~(r) is the one-body multipole moment opera-
tor where r=i denotes a proton and v=2 denotes a
neutron. In general, for any one-body operator, we have

(i-'iz u lo "()lj 'jz~')
=«i-i/')V-i. ~/~rlo~"( )le/i~JW'& (29)

The factor E(j j//') is given by

~(i-i/ )=I'(i-iu)LN / -I= / (. 1).~—/-—~ -~/]b. .
+ (1—b, ,g), (30)

where (—1)~=—1 for operators which are odd under
time reversal and (—1)r=1 for operators which are
even. Eq. (28) can then be written as

1
Bg(L) =—Q C;;,g/ /Cjpj j' ~R(j js')(j j,J,llo ~(')llj//j t I'&

Js J~ Ja
2P Jb7

(31)

After decoupling the reduced matrix element, Eq. (31) may be written as

ja f ja
~( )= / & ~;~.~/ .-p~»,' (—1)""'"(j-j~1) . (j-llo"(P)lljs) ~., b

2~ 2a

JP 2b



1354 GORDON L. STRUBLE 153

Tmr, F, IV. Reduced transition probabilities and transition probabilities for all possible M 1
transitions between states below 579 l~eV in excitation.

Transi-
Spin- Spin- tion
parity Energy parity Energy energy

(initial) (MeV) (anal) (MeV) (MeV)

Rate
Th.-I

Type (sec ')

Relative Rate
rate Th. -II

Th.-I (sec ')
Relative

rate Th.-II

Rate
T}1.-III
(sec ')

Relative
rate

Th.-III

Experi-
mental

branching
ratios

0—

1—
2—

0.580

0.466

0.162

0.043
0.030

1—

2—
1—
2—
1—
2—
3—
2—
3—

0.466
0.043
0.162
0.043
0.030
0.043
0.030
0.
0.030
0.

0.114
0.537
0.304
0.423
0.436
0.119
0.132
0.162
0.013
0.030

3f1 9.63X10"
M1 2.41X10"
3II1 8.65 X10"
M 1 2.59X10"
Mi 1 08X10»
M 1 1.75 X 1P10

Ml 1 11X10'
F1 1.46X10"
iV1 2 26X10s
M 1 8.58X10'

0.40
1.0
1.0
0.30
1.2
0.12
0.0077
1.0
1.0
1.0

3,70X ip"
X 1P»

2.59X10»
1.90X10»

X1P»
9.54X10
7.56X10'
2.36X10"
1.74X ips
8.03X 10'

0.0051
1.0
1.0
0.73
0.59
0.004
0.032
1.0
1.0
1.0

3.98X10"
7.84X 10»
1.86X10»
1.24X10»
5.34X10"
1.04X10s
6.98X 10'
1.96X1011
1 35X10s
3 65X107

0.0051
1.0
1.0
0.67
0.29
0.0005
0.036
1.0
1.0
1.0

0.00069
1.0
1.0
0,56
0.53
0.011
0.047
1.0
1.0
1.0

where g, and g~ are the spin and oribtal angular momen-
tum gyromagnetic ratios. For convenience we define di-
mensionless reduced transition probabilities 8' by

8„'(1)= (4m-/3) (ek/2Mc) —'B„(1).
If the transition energy is expressed in MeV, then

(35)

T (1)=4.25X10"(AE)'8„'(1)sec '. (36)

Since details of the interaction (e.g. , neglect of tensor
force) might considerably influence the amount of con-
Qguration mixing, we computed transition probabilities
not only for the theoretical wave functions but also for
experimental wave functions extracted from the (d, p)
experiment. In Table IV we tabulated the reduced
transition probabilities and the transition probabilities
for all possible M1 transitions between states below
579 keV in excitation. In theory I we use the wave func-
tions from Table II and Schmidt-limit gyromagnetic
ratios. In theories II and III we used wave functions
extracted from the (d, p) experiment. e Of course only
absolute values of the state vector's coefficients can be
obtained. However, since there are only two components
in the expansion (see Ref. 6, Table V), we can specify
the vectors if we assume a sign for the off-diagonal
matrix element of the Hamiltonian matrices of angular
momentum one, two, and thret:. Ke choosy this sign to

Experimental information exists only for M1 transi-
tion probabilities. ' The reduced single-particle diagonal
matrix element for the 3fj multipole operator is

&~-', 1~IIO-'il~ll j)= L(3/4~) j(j+1)(2j+1)]'/'
Xg/;(ef//2Mc), (33)

where g&; is the gyromagnetic ratio for the state that has
orbital angular momentum / and spin j. The nondiag-
onal elements with our phase conventions are given by

(n-,'lJll0"'llew/'-, 'l' j')= (—1)' '+'"(gi—g, )

3 21(l+1) '" ehX— 8, p6„„, (34)
4ir (23+1) 2Mc

agree with that of the theoretical matrix element.
Theory II uses Schmidt-limit gyromagnetic ratios and
theory III uses eHective gyromagnetic ratios. These
were deduced from magnetic moment data" on the
nuclei La'"(1g7/2), Pr"'(2d, /2), and Ce'4i(2'/2). The
relative rates are normalized to the most intense gamma
ray that depopulates each parent state. The experi-
mental data are taken from the work of Geiger et al. ~

The very limited experimental data do not oBer a very
good test of the theoretical wave functions or of the
consistency of our model with (d,p) and gamma-ray
data. However, both theories II and III give acceptable
results. Underestimating the configuration mixing prob-
ably also explains the discrepancies that occur in theory
I.

V. DISCUSSION

In this paper we have investigated the possibility of
describing La'" in terms of the interaction between a
quasiproton and a shell-model neutron. Because of the
seniority-zero correlations between pairs of protons in-
herent in the quasiparticle description, a one-quasi-
particle state is partly particle in nature and partly
hole. The diagonal neutron-proton matrix elements in
the La'" problem reQect this by not only taking into
account the energy of the interaction between the neu-
tron and conjugate pairs of protons but also by forming
a linear combination of two-body particle-particle and
particle-hole matrix elements. Thus the calculation pre-
dicts that the lowest energy of the

l (1g7/2) 2f7/2 JM)
configuration is 6—.This is consistent with the Brennan
and Bernstein rule" for the ground state of particle-hole
odd-odd nuclei. The lowest member of the l(2d5/&)'
X2fi/2, JM) configuration is also 6—which is consistent
with the rules for particle-particle configurations. These
results occur because the BCS calculations show that
for 57 protons the 1gvf2 orbital is predominantly full and
the 2d5/2 orbital is predominantly empty (see Table I).

'0 I. Lindgren, in Beta- and Gamma-Ray SPectf/oscoPy, edited by
K. Siegbahn (North-Holland Publishing Company, Amsterdam,
1965).

"M. H. Brennan and S. A. Bernstein, Phys. Rev. 120, 927
(1960),
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The most plausible explanation for a 3—state being the
ground state is configuration interaction due to the
neutron-proton force. Experimentally' the ground state
appears to have large configuration admixtures but
theoretically we get a rather pure wave function for the
lowest 3—state particularly with respect to admixtures
of the 2d5~~ proton orbital. In the case of the 1—and 2—
states the magnitude of the matrix element connecting
the 1gz~2 and 2d5~2 configurations is also much too small.
This may be due to the fact that all these off-diagonal
matrix elements will be large for forces capable of pro-
ducing spin Qips but the least-squares force has strong
attractive singlet components. Moreover, o6-diagonal
matrix elements connecting proton configurations near
the Fermi level tend to be reduced due to the u and v

coefficients.

Another problem is posed by the1 —states. The experi-
mental data seem to demand that the state at 43 keV
has igz~2 as its largest proton component. However, the
calculation (in accordance with the empirical rules of
Brennan and Bernstein) computes the largest compo-
nent to be 2d5~2. This discrepancy might be explained

by the inclusion of a tensor force. The theoretical model
also predicts that there are appreciable admixtures of
higher conhgurations in some of the low-energy states.
The energy resolution of the (d,p) experiment' was suf-

ficiently poor that angular distributions had to be made
on groups of peaks. Therefore even appreciable admix-
tures of higher neutron con6gurations in the lower spin
states would not be detected in the angular distribu-
tions. However the energies of some of these con6gura-
tions are comparable with three-quasiproton states and
thus their a priori neglect is probably not justified.

In the present calculation, there are ambiguities in
the choice of force, single-particle energies, and trunca-
tion. Nevertheless the results are encouraging since with
a central two-body force we have been able to explain
the qualitative features of twelve low-lying levels in a
complicated eight-body system. Moreover use of model
wave functions obtained from the (d,p) experiment gives
remarkably good results when used to compute 3I1
branching ratios. Thus a more complete treatment of
the mass-140 region using realistic interactions and
Hartree-Fock —Bogoliubov theory would be worthwhile.
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