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By treating an electric field in the direction of the incident proton as a perturbation, the electron capture
cross section in the Brinkman-Kramers approximation up to the first order in the field is obtained. The
cross section for transition between principal quantum numbers, in particular for capture from the ground
state into the ground state, is quadratic in the field. The experimental verification of this symmetry is de-
sirable. The cross section in the zeroth-order approximation for transition between two Stark levels is in-
dependent of the quantum numbers of these levels and depends only on their principal quantum numbers.
The inclusion of the first order, which is linear in the field, splits the cross section into different values. The
simplicity of the zeroth-order cross-section formula between Stark levels allows through a transformation
the evaluation of the cross section between the optical levels as a polynomial in the incident energy. A
general expression for the capture from the state #l into the state »’)’ is given. An expression for the mo-
mentum distribution of the hydrogen atom in an electric field, correct up to the first order, is given. It is
found that this distribution for the Stark levels of the atom in the zeroth order is the same as the known
momentum distribution for their related principal quantum number. The momentum distributions for the
principal quantum numbers are found to be quadratic in the field.

I. INTRODUCTION

HE momentum density distribution function for a
bound electron occupying the state of the princi-
pal quantum number # and the azimuthal quantum
number / in the Coulomb field of a nucleus of charge Ze
has been found by Podolsky and Pauling! using the
Fourier transform of the spatial wave functions, and
by Fock? by solving the Schrodinger integral equation
in the momentum space. Fock further has shown that
when the momentum density distribution function is
averaged over /, the following simple function results.
Let p represent the momentum vector of the electron
and q its propagation vector, then p=+4#q and this func-
tion is given by?

82%3 1

n27l'2002 (a2+q2)4 ?

1 n—1
where
o= Z/%do . (2)

The function D(nl,q) is the distribution function for a
given # and /, and g, is the Bohr radius. Equation (1)
has also been given by May* by a different method.

It should be mentioned that a similar distribution to
that given by (1) can be derived classically, provided we
assume microcanonical distribution for the classical
particle.® By application of the Bohr quantization rule,
this distribution then becomes identical to the quantum-
mechanical distribution.

The momentum distribution function of a particle in
a Coulomb field, with states specified by n#nmam where
n1 and ne are quantum numbers appropriate to parabolic
coordinates and # is the absolute value of the magnetic

1 B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).

2V. Fock, Z. Physik 98, 145 (1935).

3 Reference 2, Eq. (40).

4R. M. May Phys. Rev. 136, A669 (1964).

® See, for example, R. A. Mapleton Proc. Phys. Soc. (London)
87, 219’ (1966) ; R. Abrines and I. C. Percival, bid. 88, 861 (1966).
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quantum number, has not been considered before. These
coordinates are appropriate for problems involving an
electric field. It will be shown that the distribution func-
tion corresponding to these coordinates has a much
simpler form than the analogous function D(#l,q), and
differs from D(n,q) by a weighting factor.

The cross section for electron capture by protons in
the hydrogen atom in the Born approximation in which
the interaction between the nuclei is neglected, known
also as the Brinkman-Kramers® approximation, is given
as an integral over the product of the momentum
density functions of the initial and final states of the
atom. In this paper perturbed wave functions due to an
electric field F, correct to the first order, for the initial
and the final states are used to calculate the capture
cross section. The electric field is taken to be parallel to
the direction of the incident proton. It is found that for
capture from #n#nm. into #'n1'ny’, the cross section in the
zeroth-order approximation is independent of i, #,,
n1’, and n¢/, and depends only on the principal quantum
numbers 7 and #’. For capture from # into #’, the cross
section is quadratic in F and is therefore independent of
the field up to the first order.

Since the capture cross section in parabolic coordi-
nates has a simpler form, it may be convenient in cases
where the capture cross section is spherical coordinates
is desirable—e.g., where radiative transitions affect the
population of the excited states with different /—to
solve the problem in parabolic and then transform to
spherical coordinates. This has been done here, and an
expression in the form of a finite number of terms has
been obtained for the capture cross section from any
initial #/ to any final »’/’. Previous results in this respect
are in integral forms, and the present method may be
used as an alternative. Similarly, the present method
can be extended to electron capture in many-electron

¢ H. C. Brinkman and H. A. Kramers, Proc. Acad. Sci. Amster-
dam 33, 973 (1930).
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atoms, provided that their wave function can be ex-
pressed as a sum of the hydrogenic wave functions, al-
though this has not been done here.

II. MOMENTUM DISTRIBUTION IN
PARABOLIC COORDINATES

The Schrodinger equation for a bound electron with
position vector r in the field of a charge Ze located at the
origin is given by

VA

[ pen-—twven, O
aop

with o defined in Eq. (2). The Fourier transform of

¥(a,r) is given by

U(e,q)=(2m)~%2 | 't (a,r)dr. 4

We define in addition the function
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Then by substituting (Z/r)¢(e,r) from (3) into (5)
and carrying out a partial integration, we obtain

Ue,q)= V(a,q). 6)

ao(e?+¢%)

The momentum density and also the electron capture
cross section are given in terms of the squared modulus
of U(a,q) summed over the magnetic quantum num-
bers. Since this quantity is a scalar and invariant under
rotation of the coordinate system, for evaluation of
U(a,q) we can take for convenience the z axis of the
coordinate system along the q; and we designate in this
case the Ula,q) and V(e,q) by Ulxg) and V(a,g),
respectively.

We now evaluate V(e,q) in parabolic coordinates. Re-
calling that in these coordinates r=2%(¢+1), z=%4(¢—1n),
dr=1(¢+7n)dtdndp, and expressing the spatial wave
function as the product of two associated Laguerre
functions,” we obtain from (5)

Z
V (nningm,g) = (2m)~%/2 / el —y(nnmom,t)dr=0, m#=0, 7
r

Z
V(e,q)=(2m)~%2 / e'v'*—y(a,r)dr. ®)
r
and
Z
V(nnn:0,q) = (2w)=32 | eiv*—y(nnn0,r)dr
r
1 Zad'?
B 27(2n)V2 nylng!
1 Zadl?
= I (n1)I*(n2)
27 (2n)V2 nylny!
where

/:o /: exp[—g(f-l-n)-l-%q(f—v)]Lnlo(aE)ano(an)dgd,,

(8

10)- f ) exp[—(g—g)s]w(as)ds. ©)

Using the generating function of the associated Laguerre
functions? it follows from (9) that

£ A exp[_ (f_fq__,__‘fs_) E]ds

=0 ! 1—sJo 2 2 1—s
=[3(e—ig)(1—s)+as]'= (10)
w+tw*s
where
w=1(a—1g). (11)

By expanding the right-hand side of (10) in terms of s
and equating coefficients of equal powers of s on both

sides, we obtain
n w¥\
I(l)=—<—-——> . (12)
w w

7H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), Sec. 6.
8 Reference 7, Sec. 3.

Equation (8) now becomes

1 Za3/2 w* n1—ng
(-—) . (13)

2r(2n)'? |02\

V(nnme0,9) =

Since
(14)

Eq. (13), if we neglect a constant phase factor, can
be written

1 Za3/2 w* 2n1
V(nnin,q) =—— (——) .
(nmn09) 2r(2n)? |w|2\ w

From this equation and Egs. (6), (11) we have similarly
1 Zad!? w¥y 271
L zrgeyn
2w (2n)Y? 2a0| 0|\ @

Equations (15) and (16) are the main equations from
which the momentum distribution and electron capture
cross sections are derived.

mtne=n—1—m,

(15)

U(ﬂﬂ]_nzo, q) =
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The momentum density of an electron in the state
nming, summed over the magnetic quantum number, is
given by

D(nnanz,q) =2 | U(nnanam,q) |*

Z2a3

= | U(nnn:0,q)| 2=

—, (17
%7‘.2002 (a2+q2)4
which is independent of the sublevel quantum numbers
7y and 7.

The averaged momentum distribution of an electron
in the shell % is given by averaging D(nnms,q) over n;
and #,. Since there are »? states for a given %, we obtain

n—1
D(n’q) =n? Z D(nnln2;q) = ”_ID(”nln2>q)

n1=0
8723 1
- nirlaq? (o g?)4 '

The integral with respect to q of D(#,q) is normalized
to unity which corresponds to an electron in the 7 shell:

/ o 322%} q%dq
D(n,q)dq= /
n*rag (2 +¢»)*
™

32225
= =1,

%271'0/02 320[5

(18)

(19)

The expression for D(n,q) given in Eq. (18) is identi-
cal to the expression given in Eq. (1), derived by Fock
using spherical coordinates, and to the classical mo-
mentum distribution of a particle in a Coulomb field
with the assumption of the microcanonical distribution.

Equation (17) has the interesting meaning that in the
zeroth order the Stark levels of the hydrogen atom
within a given shell # have the same momentum dis-
tribution. The first-order correction to the momentum
distribution will be given in Sec. VI.

III. CAPTURE CROSS SECTION IN AN ELECTRIC
FIELD: ZEROTH-FIELD APPROXIMATION

Assume a nucleus of charge Z’ and mass M’ captures
an electron from a single electron atom with nucleus of
charge Z and mass M to form an atom with nucleus of
charge Z’ and mass M. The capture cross section in the
Born approximation with the interaction between the
nuclei neglected is given by?1°

27!' 7,,2,2 o/ +1
i

U(e,q) |2
PP _1| (20)]

X |V (,q")|%d(cost), (20)

where u is the reduced mass of the system, e the absolute
value of the electronic charge, » and v’ the magnitudes

9 D. R. Bates and A. Dalgarno, Proc. Phys. Soc. (London) A66,

972 (1953).
10 J, D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1953)
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of the initial and final velocities of relative motion of
the nuclei, and 6 the angle between v and v'. From here
on the unprimed symbols correspond to the initial
states while the primed are for the final states. The
vectors q and q’ are related to the velocities v and v’
through

’

q= kK, ¢=k———FK, (21)
M+m M'+m
with
M/ (M+ MM+
_ MWAm) o MM Lo
W(M'+M+m) WM+ M~+m)

In the impact-parameter approximation the cor-
responding expression for the cross section is given
by4,ll,l2

) (2,".)5 0
== / | Uleo)|2X | V(&) 0o, (23)
0
with p a dimensionless quantity defined by
p="Hv/e? (24)
and p given by
p*=¢.*+q,"=q."*+q,"%. (25)

The validity of the second equality in (25) is implicit
in the impact parameter approximation. Similarly by
setting ¢,=8, ¢.’=p' it is found that

8 1r \ (Z2 VAL
—2aop—P n? n’z):l,

—1r VAR AL,
-5
2a0pl n? n'?

with @, the Bohr radius and » and #’ the principal
quantum numbers of the initial and the final states of
the electron.

Since the integral that appears in the impact param-
eter method is easier to evaluate, the cross sections be-
low are evaluated according to this method. The differ-
ence between the two methods at high energies is
probably negligible.

The capture cross section in the impact parameter
approximation with the atom Z in the state nnme
and the atom Z’ in the state »n'nin.’, through Egs.
(15), (16), and (23), is given by

2222 (ad)? [ pdp
/ . @2n
16nn’'ag?p? Jo |w|8X|o'|*
Furthermore, through Egs. (11), (2), (25), and (26) it
is implied that

lo’|?=1*+¢?)=1(+)=]w|%  (28)

11 D. R. Bates, in Atomic and Molecular Processes, edited by
D. R. Bates (Academlc Press Inc., New York, 1962), p. ’s585. Equa-
tion (23) can be derived by some mampulatlon of Egs. (135),
(133), and .(119) of this reference.

12 M. H. Mittleman, Phys. Rev. 122, 499 (1961).

(26)

oc(nnine,n'ni'ng) =
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consequently
27(Z2" )2 (e )® [ odp
(4 (nnlnz,n’nl’nz’) = /
nn' agp? o [e24B2+p2T
\ 2%(Z72')" 1

ag . (29)
S(nn’)'p? [(+8%) e’

As was stated previously it is evident that o(nnme,
n'ni'ny’) is independent of mymani'ns’. The transition
o(nnmem’) is obtained by summing o(nnme,n'ni'n.")
over n1'ny’. Noticing that only states with m'=0 con-
tribute to the cross section, we obtain

o(nninan’) =n'a(nnins,m'ni'ne’)

0228 2z’ 1
Suin'3p? [(a2+82)ac
Finally the transition o(#,n") is obtained by averaging
o(nnima,m’) over the initial states. Only # states of the

n? states of the initial states have nonvanishing cross
section. Then

(30)

a(nn)=n"lo(nnina,n’)

28(Z22')" 1
=7ao?

0 Snon'3p? [(a2+B)act ]

This result is identical with the result obtained by
May.4

€Y

IV. CAPTURE CROSS SECTION IN
SPHERICAL COORDINATES

Let ¢(nlm,x) represent the wave function of the
hydrogen atom in spherical coordinates. Then we de-
fine the function f(nlm,q) and g(nim,q) by

f(nlm,q)=(2m)~2"* / e'ip(nim,x)dr, (32)

Z
g(nim,q)=(2r)3/2 / e *—ag(nlm,r)dr. (33)
r

As before, we designate the f(nim,q) by f(nlm,q) when q
coincides with the coordinate z axis. Then by the in-
variance of the scalar quantities under rotation we have

2 | foim@l*= T | i) =1 S0 0%, 39

Since the wave function of the hydrogen atom forms
a complete set in each of the two spherical and para-
bolic coordinates, the wave function in spherical co-
ordinates can be expressed as a linear combination of
the wave functions in parabolic coordinates. In this
transformation the principal and the magnetic quan-

KAZEM OMIDVAR
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tum numbers # and m remain fixed:
n—l—m
p(nlmxp)= 3 ain(nnmam,r), (35)
n1=0

where a;,, are the elements of the transformation matrix.
The same relationship holds between the Fourier trans-
forms of ¢ and ¢. In our problem 7 =0, and by dropping
n, m, 1y from the indices in Eq. (35) and replacing #;
by i, through Eqgs. (4) and (32) we obtain

n—1

1,9)=X auli(ig).

=0

(36)

The determination of a;; for arbitrary # and m is
worked out in Appendix A and the matrices for n=1, 2,
3, 4, 5 are given explicitly.

By Eq. (16) we now obtain

n—1 n—

1[G ]= X X auaU(i,q)U*(5,9)

=0 j=0

YA w¥\ 20—27
Z QA5

32n2a%n|w|® i w
Z%3 Re[w*4li=i]

= 2 aum , (37
32r%aetn|w|8 i H [ ] 4le=dl (

where Re stands for the real part of w*4+l,
When a binomial expansion is made of this quantity
in terms of @ and ¢, [cf. Eq. (11)], we obtain

822a3 n—1 n—1 2'4—j!
2 (=1

w2ag?n(a?+q2)* i=0 =0 A=0

[ f9)|2=

4]7;_ ]I atli—dl=2hg2
Xauazj( )——-————— -, (38)
2\ (a2+q2)2|1—-][
In a similar way, through Eq. (15),
Z2 3
)= ()
le(,9)] ()
4[1'_ 71\ atlii—2ag2a
Xalialj( )—“‘——— . (39)
2)\ (a2+q2)2[i—]]

Replacement of f(J,g) and g(/,¢") for U(a,g) and
V(e',¢') in Eq. (23) allows the integration in this equa-
tion to be carried out analytically. This is done in
Appendix B and here we give the final results. Intro-
duce the dimensionless 4 and 4’ as

a2 a’2
A= , A= ,
a2 a2

where o and 8 are given by (2) and (26). Then the cap-
ture cross section for a process in which the electron is
initially in the state n/, averaged over m, and finally in
the state #’l/, summed over #/, is given as a polynomial

(40)
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in4 and 4’:

)=
o(nlp'l)=———a(nn
QI+1)n’
2(n—1) 2(n’-1)

XX X

=0 v'=0

Clnlou'ly') AA" | (41)

where o(n,n") is the cross section between # and #’ and is
given by (31), and

Clnbv'1v) =23 2 (14-p+p')?
r v
(5+ 2(i— j+i'— N\
x )
1+ptu
XD@y)D(' '),

4i—4j
D(y;y)= [2—6(i,j)](")”“lf"‘f( 2\ ])

XC) (v—-]—)\i-zg-__ ].)) , (43)

where 8(,7) is the Kronecker delta. In Eq. (42), v
stands for four integers 7, 7, N\, u whose ranges are
given by

(42)

.

[%”]7 [%V]_i_l: )
» 17 2;' ) i— 2
O’ 1 27"') 2(7’_])—'/;
[u/2]={%v, v even,
= 130+1), »odd.

A similar rule applies to v’ and other primed integers.
Equation (41) then expresses the capture cross sections
between two arbitrary states #/ and #’l in terms of a
finite number of terms, while previous results have been
expressed in integral forms.

From Egs. (41), (42), and (31), the following recipro-
city equation results:

QU1)p"%0 ('l ml) = Ql4-1)p?e(nln'l).  (45)

As an example from Eq. (41) the following simple
formulas are obtained for the electron capture cross
sections with the ground state as the initial state and
the sublevels of #=1, 2, 3, 4 as the final states. The
prime in the final state is omitted for convenience

Type (I):

n—1;

T >,
[

(44)

o(1s,15)=0(1,1), (46)

in agreement with the value given by Bates and
Dalgarno,?

Type (II):

10 20
o(1s,2s) = 0(1,2)(1—€A +—7—A 2) ; (47)

10 20
a(ls,Zp)=a(1,2)<—3—A -7A2) . (48)
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Type (III):
80 1760
a(ls,3s)=a'(1,3)(1—-——A+ A2
9 63
320 1280
——A%+ A‘) . (49)
9 81

80 800 160 640
o(15,3p)=0(1,3) (-—A ——A424+—A43%— —‘*A‘I) , (50)
9 21 3 27

160

640 640
o(15,3d)= 0(1,3)(——A Ryt Ny 4) . (51)
63 9 81

Equations (47) through (51) have also been obtained
by May and Lodge!* by explicit evaluation of the
integrals in the impact parameter approximation.

Type (IV):

50 740
o(1s,4s)= 0(1,4)<1 ——gA +—7—A 232043

1280
x7),
11

060
. -A%452843

4480
+ 5 -44—38445+

50 1
o(1s,4p)=0(1,4) (71 -

2624 3456 2304
444 45—

. (53)
3 5 11

47),

320
0’(15,4d) = 0’(1,4)(714 2—-24043

A4—38445+

4160 1280
+ A ") , (54)
9 11

256 384 256
0’(15,4f) = 0(1,4)(32A 3"—3‘-A 4+~3—A5—“T{A 6) . (55)

Type (V):
0(2s,25)=40(2,2)

20 120 80
X(l—?A+—7—A2—20A3+;A4), (56)

10 100 80
a(zs,Zp)=40(2,2)<?4—7A2+20A3—;A4) , (57

G(ZP)ZS) = %‘7(23:2P) ’ (58)

(2p,2p)=40(2 2)(80A2 20A3—l- %0 ) )
o =4¢ —A42—— —A44). 59
72272 “No1 3 27 (
As a check it can be verified that when averaging and
summing are performed over the initial and final states,
the corresponding Q(n,n') results.

13 R. M. May and J. G. Lodge, Phys. Rev. 137, A699 (1965).
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Extensive tabulation of the cross sections of the type
(I)-(V) in the integral form are given by Hiskes.!

V. FIRST-ORDER WAVE FUNCTION IN AN

ELECTRIC FIELD

Assume X(nnmom,r) is the atomic wave function in
an electric field of strength F. Then by writing
X(nninam,r) = uy(E)us(n)et™¢/(2m)V'2,  (60)

the Schrodinger equation for the system reduces to the
following equations!s:

d ( duy 1 m?
_( —)‘l' (“Ef‘f‘zl——)ul: iFEu,
2 4¢

dg\ dé
(61)
d/ dus 1 m?
_<77_>+ (—En+Z2—~—)u2= —Ius,
dn\ dn 2 4y
nl
bn1—2=
82«
nkF
bnx—-1=~
2202
nk
bn1+1=
2702
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where E is the energy of the system and

Zi=aa[m+im+1)], Zy=aalnst+i(m+1)],

62
Z1+Z2=Z, ( )

Z being the charge of the nucleus. The right-hand side of
Egs. (61) can be treated as a small perturbation. Then
the first-order solution to the first of these equations can
be written as

UL="Un,+ Z Onytny (63)

ni’#ny

where #,, and #,, are the homogeneous solutions of this
equation with Z; and Z,’ as their eigenvalues, and

—1F(ny| 82| ny)
bm,=L1!l_l. (64)
Z\—Z

The matrices in (64) are given by Bethe and Salpeter.!®
In this way we find that

’ 2[121(;11— 1) (na+m) (n1— 14m) ]2,

Qu+m)[#1(01+m) 12,

(65)

(2n+24m)[ (1) (m4-14m) 112,

nF
bape=—— (114 2)(n1+1) (214 24+m) 11+ 1+m) ]2,
8Za?

and b,, vanishes otherwise.
It is convenient to introduce a new function:

1
M<fm,x>=i[5<j+m>2<j—1+m>2Lj_2+mm<.v>—2<2j+m) (M) yam()

4Za?

(7+1(+2)

2j424m)(j+1 1
+2(] m)(j+1)

j+1+m

~j+1+m

— Ljteem™®) |; (66
x 2 G 1+m) G+ 2+4m) +2+ (ﬁv)jl (66)

then, expressing #n, as Laguerre functions, and combining (63) and (65) we obtain

[(2/n)V2am+312(py 1) JH/2
LGat-m) 12

u1(£)=

e Ly (a) + FM (1am,ad)].

(67)

Similarly the solution to the second of Egs. (61) is given by changing the index 1 to 2 in (63) and (65), and chang-

ing the sign of F in (65). Thus
[(2/71)1/2a"‘+3/2(n2 !)]1/2
[(nat-m)! ]

14 J. R, Hiskes, Phys. Rev. 137, A361 (1965).
15 Reference 7, Sec. 51.
16 Reference 7, Sec. 52.

us(n)=

e 22 Lpyym™(am) —F M (nam,am)].

(68)
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In this way Eq. (60) can be written, to first order:
e:l:im¢ (nl !n2 !) IIZam+3/2

(wn)V2 [(n1t-m) {(not-m) 13/

X(nnnom,r)=

As a special case the perturbed ground-state wave
function is given by

x(1000,r)
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e ED 12(gyYm/2

X {Ln1+mm(a‘§)L‘nz+mm(a77) +F [M (”lm;ag)LnH-mm(aﬂ) -M (n2m:a77)Ln1+mm(a£)]} . (69)
it follows that
F(nnin0,9) = U(mnm:0,q)+ 2 bay U(nni'ns0,9)
+2 by U(nming/0,9),  (74)

a3l2g—alEtn /2
=_7_{ 14-F[M(00,a£)— M (00,a) 1}

™

Urge@iz( F(t—n)
il |1— (& "rz+f(s+n)]}
4Za L2

V% x
as/ze—arl-l Fr c050/2+ ):I (10)
B T l_ 2Za e

In the special case of the ground state, the above equa-
tion can also be derived by solving the Schrédinger
equation for the hydrogen atom perturbed by a weak
electric field, using spherical coordinates.”

Expression (70) as the wave function of the perturbed
hydrogen atom has been applied successfully by Temkin
and Lamkin!® to the problem of elastic scattering of
electrons by the hydrogen atom. F in this case is due to
the incident electron. This approach is named the
method of polarized orbitals.

To the extent that the indices of each term in the
product M (nym,ct) X Lp,im™(en) do not satisfy the
condition (14), the terms on the right-hand side of (69),
except for the first term, are not hydrogenic wave
functions.

VI. FIRST-ORDER EFFECT ON THE CROSS
SECTION DUE TO THE FIELD

By combining Egs. (60) and (63) we can write to the
first order

X(nnampam,X) =y (nnmam,t)+ 3 bnyp(nny'nom,x)
ny’#ny

+ 2 bu¥(nnmmyr).

ny’#ng

(71)
Defining

F(nningm,q)= (2r)~3/2 / e rx(nnngm,r)dr (72)

Z
G(nningm,q)= (2m)=3/2 / v —x(nnmam,r)dr, (73)
7

17 R. M. Sternheimer, Phys. Rev. 96, 951 (1954).
18 A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1960).

ng’

G(nnng0,9) =V (nn1n20,q)+23_ bay V (n11'1:0,q)
ny’
3" bny V(nnm2'0,9) . (75)
no’

The coefficients 4., are given by (65), and b,,” are ob-
tained from &,,” by changing the index 1 to 2 and re-
placing F by —F.

The squared modulus of F(n#n11:0,q) gives the mo-
mentum distribution in an electric field. Through Egs.
(6), (13), and (74) the first-order term in the momentum
distribution is given by

VA
[IF (nn1m0,q) | 2:| =

1 167%a¢n|w|8

w*y\ m—n1’ w¥y\ ne—n2’
e e R G I
w [0

(76)

For a given #, let us call the state specified by n1=j
and ny=1, with < and j two integers, the state conjugate
to the state #;=1 and #,= 4. Then from (76) it follows
that the first-order correction to the momentum distri-
bution of a conjugate state is the negative of this cor-
rection to the state itself. In particular when #;=1,,
the first-order correction vanishes. The change in sign
of F interchanges the first-order distribution for the two
conjugate states. By averaging over #; and #, for a given
n, the first-order terms drop out, and the momentum
distribution for the principal quantum numbers be-
comes quadratic in F.

A similar consideration applies to the first-order cor-
rection to G(nn1n:0,9), and through Eq. (23) it follows
that the capture cross section is quadratic in the
field.

The evaluation of the cross section integral for the
transition nnme to n'ny'ny, Eq. (23), is similar to the
evaluation of this integral for the capture cross section
in spherical coordinates. The final result is given below.
Let Q represent the capture cross section is an electric
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Fic. 1. Electron capture cross sections for the initial
state n=2, }=0, and the final states n’'=3.

Fi1c. 2. Electron capture cross sections for the initial

state n=2, I=1, and the final states n'=3.



153

field up to the first order. Then
n
Q(nnine,n'ny'ny) = ——/zr(n,n’)
n

X[1+P(n1)+P(n2)+P(ny')+P(ny')],

where P(i) depend linearly on the electric field.
Explicitly,

a7

P(i)=10 i Clip)A®,

(78)
v=0
where 4 is defined in Eq. (40) and
C(Z’V)=; [1‘6(17.7)]D(1av7]:)‘7,“) ) (79)
Au
o S+[i— 71\
N )
I
2]i— j|\ /X A—
O @
2\ w/ \vA—|i—j|
f=i=2, i—1,--, i—w;
i+, itv+1,-- -, i+2;
(81)
A=li—jl—r, [i—jl=vt1,---, |i=]l;
v=0,1,2,---, [Z—]| —v.

The coefficients b; depend linearly on F and are given
by (65).

VII. DISCUSSION

As an example of the applicability of Sec. IV, in Figs.
1(a), 1(b), 2(a), and 2(b) the capture cross sections from
the states 2s and 2p to the states 3s, 3p and 3d are
plotted as a function of the incident proton energies.
The method of this section provides an easy way to
calculate the electron capture by protons in any atomic
or molecular gas, provided that the central field ap-
proximation can be applied to the particles of the gas,
and that their wave functions can be expressed as
hydrogenic wave functions.

The analysis of Sec. VI showed that the capture cross
section between principal quantum numbers is quadratic
in the field and invariant up to the second order under
the change of sign of the field. Verification of this sym-
metry by experiment will provide a good test on the
validity of the Brinkman-Kramers approximation.

Note added in proof. When in electron capture by a
proton the interaction between the nuclei is included,
the cross section will depend on F (nn17:0,q), Eq. (74),
as well as on its absolute value (cf. Ref. 10). Since
the first-order correction to F(nn150,9) does not van-
ish, the quadratic symmetry is destroyed in this
approximation.
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APPENDIX I: THE ELEMENTS OF THE TRANS-
FORMATION MATRIX BETWEEN THE
WAVE FUNCTIONS IN SPHERICAL
AND PARABOLIC COORDINATES

We require the transformation matrix which for a
given principal quantum number # and absolute value
of the magnetic quantum number m transforms the
n—m states in spherical coordinates to another set of
n—m states in parabolic coordinates. The simplest way
to find the transformation matrix is by noticing that
the matrix elements of interaction of an electric field
with the hydrogen atom, taken with the unperturbed
wave function of the atom, are diagonal in the parabolic
coordinates representation. Let ¢ be this matrix and let
A be the transformation matrix. We must then have

AH'A'=¢, (A1)

where H' is the interaction matrix in spherical coordi-
nates. e is given by?'?

€;;= — 5(1,])%”6F(1«0(2]+1 —n-l—m) y

A2
J=0,1,2,-++,n—m—1, (42

with F the strength of the electric field. Similarly we
can write

H;/=—¢eF / Dasam™ (1) COSOP njam(T)dE

=—¢F f R;(r)R,;(r)ridr
0

X / Viam(Q)Vi1m(Q) cosbd2, (A3)

where 7 and j are the angular-momentum quantum num-
bers of the two states considered. It can be verified that

i2._m2

1/2
1] 8, j+1)

/Y,im*(ﬂ) inm(ﬂ) C050d9=|:

72—

P mr V2

+[ - ] 8Gi+1, 7). (A4)
4452—1

Also®

/ RM' Rm’—l r3dr=%aon(n2—i2)”2. (AS)
0

¥ E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1951), p. 399.
20 Reference 19, p. 132.
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TaBLE 1. Elements of the transformation matrices.

1 1 1
a(20) =—( )
Vv2\ -1 1

. 1 1 1
a(30) =— [ -v@/2) o V(3/2)] .
V3
vi —-v2

a(31) —( )
-1 1

(I) n=2, m=0

(II) n=3,m=0

(III) n=3, m=1

(IV) n=4,m=0
1

1| =3/4/5 —1/4/5 1/4/5 3/4/5
a(40) =- .
2 -1 -1 1
—1/4/5 3/+/5 =3/v/5 1/4/5
V) n=4,m=1
VG/10)  vE V(3/10)
a(dl)=| —+/} 0 1/4/2
1/4/5 - 1/4/5
VD) 4t w2 /v vi Yy
a(42) —-—( )
11
(VII) n=5,m=0
1 1 1 1 1
-2 —-vi 0 Vi V2
a0 =— | VA0/D) —V/(/18) —v(0/D — V19 v/ |,
-3 V2 0 -2 Vi
VA4 —v@/T) V8T =8/ V(1/14)
(VIII) n=5,m=1
1/4/5 VGE/10)  VGB/10) i
Al = —VG/T)  =vU/18) VA1) VBT
V(3/10) -vi -vi  vEnn|
—va/19) v/ =G/ V(118

(IX) n=5,m=2

v@/n  vE/T V2T
a(s2)=| —+4% 0 Vi

Vv3/14) —v@&/7) ~@/14)

1 1 1
a(53) =———-( )
v2\ -1 1

In this way we obtain

(X) n=5,m=3

H,/=—%4neFal C:8(i, j+1)+C;8(i+1, 7)1, (A6)
with
i R
Equation (A1) can now be written
(A8)

2 AaHy =esdij,
l .

which by means of Egs. (A2) and (A6) reduces to
u+1CJ+1+A u—lCJ (27/'{"1 n+m)A 27

This is a recursion relationship for A by means of which
all the elements of a row of A can be found once the
first element of the row is given.

(A9)

KAZEM OMIDVAR
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The unitary condition on A gives
n—1
3 A4.2=1, (A10)
=0

where we have assumed that the elements of A are
real, and if a solution for A is found our assumption is
justified.

Equations (A9) and (A10) are sufficient for the de-
termination of A for any given # and . In the text the
inverse of A is needed. Let a be the inverse of A,

=A1=1, (A11)
with 4 the transpose of A. Table I gives the values of a
for n=1, 2, 3, 4, 5, and all possible values of .

APPENDIX B

Since the interchange of 7 and 7 in (38) does not
change the value of | f(/,9)|2, we can write

82%3 n—1 § 2(i—j)

2 X X [2-66,]

ragtn(atH )t = =0 A=

4i— 4\ at=D=20g2\
x(—))‘dlialf( )————— -. (B1)
ZA (a2+ 92)2(1—7)

| fg)|2=

Similar considerations apply to |g(/,¢)|? as given by
Eq. (39). Making use of the expansion

A /N
P=Grrep=x (g (@2
B=0 \ U
in Egs. (38) and (39), and recalling Eq. (28), we ob-
tain the capture cross section with the initial states »l
and the final states '/, averaged over the initial states
and summed over the final states. This is given by

(2m)® =
In'l)y=——— L) |2X | g(,q")| %4,
a(nlp'l) 2T | /@12 X 1e(,q")| *edp
297r(ZZ')2(aa')3
——————— 3.2 B(y)B(Y)
(2H—1)a02p27/m v
2(n+u’)+1dp
f (83)
(a2+,32+p2)2(3+| i=jlH =)
where

B(y)=[2-68(,7)](— ) anas;

4i—44\ /N
X < )( )a4i—4j—2)\ﬂ27\——2,u; (B4)
2\ M

« stands for the set of 4 integers 7, 7, A, u which take on
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the following values: which, after integration by parts, yields
1/=0,1,2,"',1:L—1; N\
A=0,1,2,- ;2(7’_—]): M
p=0,1,2,-+, .
N—1\
The integral appearing in Eq. (B3) is of the form =M+ 1)"1( ) b2W=M=1 _ (B7)
2M+1 M+1
dp
101,7) = / (B6) . .
@242V’ In this way we obtain
Sn B(v)B()
o(nlp'l')=———a(nn')> > , (B8)
l+1)n' 7 v 542(i—j+i'— ") s
(1_}_#_}_#/)( )(a2+ﬂ2)2(i~z+i’—a’)—(n+u’)
1+p+p’
where o(n,n’) is given by (31). Introducing
A=a/(@’+p%, (B9)
it follows that
. di— 44\ /N
e R LM CO (i VRS
L
- 4i— 47\ [N\ A—pu ‘
= Z [2*5(1',].)]('—))"""‘0“(11]'( )( )( )A2(i—1)-—>\+#1
P51 2\ 12 M1
=2 D)4’ (B10)
where
r=2(i—j)—Mtm (B11)
and
N 4i— 4\ I\ A—u
D(vyy)=[2— 5(1,])](_)vaualj( )( )( i ) . (B12)
2\ u/ \v+A—2¢4275
Thus we can write
5n 542(i— j+i'— F)\
o(nlnl)=————a(nn')2 Z(1+u+u’)"( ) 22 Dy)De' Y )Ar 4™ . (B13)
(2l+ 1)71/ r v 1+[,l+,u, v v ( (
When summation between v and » are interchanged, we obtain
L S 0 (B14)
o(nlpn'l)y=———c(nn’ nlyn'lV)A74™ B14
(21““ 1) v/=0
542(— j+i'— N\
Clabpt)= X (1l ) DemDEa), (815)
Yore 1+utp’

where y stands for 4, j, A, u, and the range of 7, 7, A, u are given by Eq. (44) of the text.



