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By treating an electric field in the direction of the incident proton as a perturbation, the electron capture
cross section in the Brinkman —Kramers approximation up to the Grst order in the Geld is obtained. The
cross section for transition between principal quantum numbers, in particular for capture from the ground
state into the ground state, is quadratic in the Geld. The experimental verification of this symmetry is de-
sirable. The cross section in the zeroth-order approximation for transition between two Stark levels is in-
dependent of the quantum numbers of these levels and depends only on their principal quantum numbers.
The inclusion of the first order, which is linear in the Geld, splits the cross section into different values. The
simplicity of the zeroth-order cross-section formula between Stark levels allows through a transformation
the evaluation of the cross section between the optical levels as a polynomial in the incident energy. A
general expression for the capture from the state nl into the state n'l' is given. An expression for the mo-
mentum distribution of the hydrogen atom in an electric field, correct up to the Grst order, is given. It is
found that this distribution for the Stark levels of the atom in the zeroth order is the same as the known
momentum distribution for their related principal quantum number. The momentum distributions for the
principal quantum numbers are found to be quadratic in the field.

quantum number, has not been considered before. These
coordinates are appropriate for problems involving an
electric Geld. It will be shown that the distribution func-
tion corresponding to these coordinates has a much
simpler form than the analogous function D(el, q), and
differs from D(tt, q) by a weighting factor.

The cross section for electron capture by protons in
the hydrogen atom in the Born approximation in which
the interaction between the nuclei is neglected, known
also as the Brinkman-Kramers~ approximation, is given
as an integral over the product of the momentum
density functions of the initial and final states of the
atom. In this paper perturbed wave functions due to an
electric Geld Ii, correct to the first order, for the initial
and the Gnal states are used to calculate the capture
cross section. The electric field is taken to be parallel to
the direction of the incident proton. It is found that for
capture from nn1e2 into e'n1'n2', the cross section in the
zeroth-order approximation is independent of n1, e2,
m&', and e2', and depends only on the principal quantum
numbers n and e'. For capture from n into n', the cross
section is quadratic in Ii and is therefore independent of
the field up to the first order.

Since the capture cross section in parabolic coordi-
nates has a simpler form, it may be convenient in cases
where the capture cross section is spherical coordinates
is desirable —e.g., where radiative transitions affect the
population of the excited states with different l—to
solve the problem in parabolic and then transform to
spherical coordinates. This has been done here, and an
expression in the form of a Qnite number of terms has
been obtained for the capture cross section from any
initial nl to any Gnal eV. Previous results in this respect
are in integral forms, and the present method may be
used as an alternative. Similarly, the present method
can be extended to electron capture in many-electron

I. INTRODUCTION

HE momentum density distribution function for a
bound electron occupying the state of the princi-

pal quantum number e and the azimuthal quantum
number / in the Coulomb Geld of a nucleus of charge Ze
has been found by Podolsky and Pauling' using the
Fourier transform of the spatial wave functions, and
by Fock' by solving the Schrodinger integral equation
in the momentum space. Fock further has shown that
when the momentum density distribution function is
averaged over /, the following simple function results.
Let p represent the momentum vector of the electron
and q its propagation vector, then p= Aq and this func-
tion is given by'

1 n—1 8Z'n' 1
D(e,q) =—g (2l+1)D(el,q)=, (1)

S2 l=o ~s~srr s (~s+qs)4

where
rr =Z/nae. (2)

6 H. C. Brinkman and H. A. Kramers, Proc. Acad. Sci. Amster-
dam 33, 973 (1930).

121

The function D(nl, q) is the distribution function for a
given e and l, and ae is the Bohr radius. Equation (1)
has also been given by May4 by a different method.

It should be mentioned that a similar distribution to
that given by (1) can be derived classically, provided we
assume microcanonical distribution for the classical
particle. By application of the Bohr quantization rule,
this distribution then becomes identical to the quantum-
mechanical distribution.

The momentum distribution function of a particle in
a Coulomb Geld, with states speciGed by nw&e2m where
n& and rs2 are quantum numbers appropriate to parabolic
coordinates and m is the absolute value of the magnetic

' B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).' V. Fock, Z. Physik 98, 145 (1935).' Reference 2, Kq. (40).
4 R. M. May, Phys. Rev. 136, A669 (1964).' See, for example, R. A. Mapleton, Proc. Phys. Soc. (London)

87, 219 {1966);R. Abrines and I.C. Percival, ibid 88, 861 (1966). .
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by substituting ( /r)l (Z r a,r) from (3) into (5)" that their wave function can -

in out a partial integration, we o " '
atoms, provided ta,

f ctions al- and carrying oupressed as a sum f the hydrogenic wave unc
'

though this has not been done here.

II. MOMOMENTUM DISTRIBUTION IN
PARABOLIC COORDINATE S
-

in er e uation for a bound electron with
position vec o
origin is given by

Z-
iV2
2 0(a, r) = —2aV(a, r), (3)

(4)

We define in addition the function

z
(~,q)=( ~—(, )=(2 ) 'I' e'z' —f(a,r)dr.

aor

w' ' E . (2). The Fourier transform ofwith n defined in r,q.
P(a, r) is given by

U(a q) = (2zr) '~' e'&'P(a, r)dr.
7

U(a, q) =
2

V(a,q) .
a 0( a'+q')

(6)

densit and also the electron capture
are iven in terms o the square mo

ed over the magnetic quan
is a scalar and invariant underbers. Since this quantity is a scalar an inv

rotation of the coordina e sy
we can take for convenience the s axis o

case the U(a, q) and V(a, q) by U(a, q an a,
respectively.

in arabolic coordinates. Re-W o l ateV( q)' p o
these coordinates r= 2($+—q, s= 2

h
'

ldr= ,'(P+g—)d$dg~, and expressing e s
ssociated Laguerrefunction as the product of two associa e

5

and

) 'I' e'" P(nnzn—zm, r)dr=, mWmrna,V(nnznzm, q)= (2zr e' — z, —— mW

~dr)=(2 ' 'I' e'&*—P(nnznz0, r rV(nnznz0, q&=t zrq

where

g 3/2 oo eo

exp —-( + &)+ (~—~) L„,o—(a~)L„,O(a&)dgd~
2zr(2n) I nz!nzt 0 0

Z~3/2

I(n, )I*(n,)
2zr(2n)'" nz!nz!

exp —
l

——$ Lzo(a))df.

'
n of the associated LaguerreU

'
the generating function o e

functions it follows from &,

lt 1—s 0 — 2

1

Zaz/2 ( (g4) %g 'llR

2' 2s
Since

nz+nz n 1 ——m, ——

Equation (8) now becomes

1
(13)

(14)

where

= [2(a—zq)(1 —s)+as] '= t a constant phase factor, can(10) Eq. (13), if we neglect a cons p
be written

3/2 (gO 2ng

ides, we obtain
l!

(12I(&)=-I—
Gl( co

.. Sal eter, Quantum. lfeclianics of One-

V 1 3 1 1957) Sand Two-E&leclron Atoms (Springer- er ag, e, , 6.
Reference 7, Sec. 3.

(11),'(a zq)-—
the ri ht-hand side of (10) in terms of s

an e
'

s of e ual powers of s on bothand equating coeScients of equa pow
s

(15)("""')=2.
(2„)

is . 6 11) we have similarlyF this equation and Eqs.From is
A@3/2 Q7+ 2n1

0 = — . (16)"""'"'"=2-(2.
) 2..l-l-

ri utio a d electron capturewhich the momentum distribution an e e
cross sections are derived.
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=
I
~(nn, ns0, v) I

'=
8Z'n' I

(1&)
nm saps (ms+ qs)4

which is independent of the sublevel quantum numbers

ng and np.
The averaged momentum distribution of an electron

in the shell n is given by averaging D(nnqns, q) over nq

and n~. Since there are n' states for a given n, we obtain

D(n, q)=n ' g D(nnans, q)=n 'D(nn~ns, q)
n1=0

nsvrsa ' (no+a')4
(18)

The momentum density of an electron in the state
nn&n&, summed over the magnetic quantum number, is
given by

D(nn~ns, q) =P I
U(nn~nsm, q) I

'

with

3f 3f'
q= k—k', q'=4-

M+m M'+m
(21)

M'(M+m) M(M'+m)
v, k'= v'. (22)

A(M'+M+m) A(M'+M+m)

In the impact-parameter approximation the cor-
responding expression for the cross section is given
by4, 11,12

(2o-) '
a(s f)=

2
I U(,q) I

'&&
I ~( ',q')

I pdp

of the initial and 6nal velocities of relative motion of
the nuclei, and 8 the angle between v and v'. From here
on the unprimed symbols correspond to the initia&

states while the primed are for the Anal states. The
vectors q and q' are related to the velocities v and v'

through

The integral with respect to q of D(n, q) is normalized
to unity which corresponds to an electron in the n shell:

with p a dimensionless quantity de6ned by

p =Ao/e'

and p given by
(2&)

32Z2n3 g 2dg
D (n, q)dq =

ns«os o (esp+ qs)4

32Z cP
1 .

n 7t Qo 32(X

The expression for D(n, q) given in Eq. (18) is identi-
cal to the expression given in Eq. (1), derived by Fock
using spherical coordinates, and to the classical mo-
mentum distribution of a particle in a Coulomb field
with the assumption of the microcanonical distribution.

Equation (17) has the interesting meaning that in the
zeroth order the Stark levels of the hydrogen atom
within a given shell n have the same momentum dis-
tribution. The 6rst-order correction to the momentum
distribution will be given in Sec. VI.

III. CAPTURE CROSS SECTION IN AN ELECTRIC
FIELD: ZERO TH-FIELD APPROXIMA TION

Assume a nucleus of charge Z' and mass M' captures
an electron from a single electron atom with nucleus of
charge Z and mass M to form an atom with nucleus of
charge Z' and mass M'. The capture cross section iri the
Born approximation with the interaction between the
nuclei neglected is given by'

(2o-)'use' o' +'
-(',f)= —

I ~(,q) I

'
h4

X I V( ',q')
I
'd(cos8), (20)

where p is the reduced mass of the system, e the absolute
val ue of the electronic charge, e and e' the magnitudes

' D. R. Bates and A. Dalgarno, Proc. Phys. Soc. (London) A66,
972 (1953).

&P J. D. Jackson and H. Schiir, Phys. Rev. 89, 359 (1953l.

p =Us +0w =Ps +Vs (25)

The validity of the second equality in (25) is implicit
in the impact parameter approximation. Similarly by
setting q, =P, q, '=P' it is found that

2app—
(26)

with ao the Bohr radius and n and n' the principal
quantum numbers of the initial and the Anal states of
the electron.

Since the integral that appears in the impact param-
eter method is easier to evaluate, the cross sections be-
low are evaluated according to this method. The di8er-
ence between the two methods at high energies is
probably negligible.

The capture cross section in the impact parameter
approximation with the atom Z in the state nn ~n2

and the atom Z' in the state n'n~'n2', through Kqs.
(15), (16), and (23), is given by

27rZsZ" (nn') ' "
pdp

(27)
16nn'ao p o I

~
I
'x

I
~'

I

'
0' nn]n2 n~n] n2

leo'I '=-'(cs"+tf")=s(cs'+v') = I ~I
' (28)

"D. R. Bates, in Atomic arsd Molecular Processes, edited by
D. R. Bates (Academic Press Inc. , New York, 1962), p. 585. Equa-
tion (23) can be derived by some manipulation of Eqs. (135),
(133), and .(119) of this reference.

'~ M, H. Mittleman, Phys. Rev. 122, 499 (1961).

Furthermore, through Eqs. (11), (2), (25), and (26) it
is implied that
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turn numbers n and ns remain 6xed:

o (nnIn2, n'nI'n 2') =
nn'ao P2 L422+p2+p2j5

2'0r(ZZ')'(4242')' "
pdp

y(nlm, r) = p ai.,p(nnrn2m, r), (35)

2'(ZZ')' 1=X'Co

5(ee') 4P'
I (422+P') a02$5

(29)

Finally the transition o(n, n') is obtained by averaging
o.(neIn2, n') over the initial states. Only e states of the
n' states of the initial states have nonvanishing cross
section. Then

As was stated previously it is evident that o(eere2,
e'nl'n2') is illdepeIldeIlt of nIn2nI'n2'. Tile trallsitioII
o(nnrn2, n') is obtained by summing o(nnin2, n'nI'n2')
over n~'n2'. Noticing that only states with ns'=0 con-
tribute to the cross section, @re obtain

o'('nnrn2 n )=n ir(nnln2 n nl n2 )
2'(ZZ')' 1

=X'80 (30)
5n4n/5P2

I (a2+P2)g 2j5

f(l,q)= Q aI;U(i, q)
i=a

(36)

The determination of aE; for arbitrary n and m is
vrork. ed out in Appendix A and the matrices for n= j., 2,
3, 4, 5 are given explicitly.

By Eq. (16) we now obtain

n—I ri—1

I f(l,q) I'= 2 2 «'ai U(2, q) U*(i,q)
i=0 j'=0

Z Q &04) 2i—2i

Z ariaig

where u~„, are the elements of the transformation matrix.
The same relationship holds between the Fourier trans-
forms of p and/. In our problem m=0, and by dropping
n, m, n2 from the indices in Eq. (35) and replacing eI
by 2, through Eqs. (4) and (32} we obtain

Z Q Rel &00'4I4—ilj
Q ai;aI (37)

32 r2a202nliol'4. I I40I4I'—~'I

o (n, n') =e—'o (enrn2, n')

2'(ZZ')' 1
=~ao'

5n5n~SP2 L(422+P2)a 2j5

8Z'Q' ri—1 ri—12;i—j~

~ (31} where Re stands for the real part of 00*4I'—&'I.

When a binomial expansion is made of this quantity
0 r r ~a ~

Th js result is ident jce l with the result obtained by
'0 L q' 'L )J

May. 4

IV. CAPTURE CROSS SECTION IN
SPHERICAL COORDINATES

Let it(nlm, r) represent the wave function of the
hydrogen atom in spherical coordinates. Then we de-
6ne the function f(nlm, q) and g(nlm, q) by

If(lq)l'=. . . , , Z Z Z (—)"
7I' g0 n(42 +q ) i 01'-0 I 0=

4I5-il a'I' 'I '"q'"
ga);a); (38)

(i52+ q2) 2I 4

In a similar way, through Eq. (15),

f(nlm„q) = (22r)-"2 'e'2y( nl mr)dr,

Z
g(nlm, q) = (22r)-212 e' '~2( l nrm)dr. (33)

lg(l q) I'= Q( )5
2r2n(u2+q2) 2 i, ~', I

~41 4—iI—2&q25

Q CII;C~&

~

~ (39)
2X (a +q2)2I'2

As before, we designate the f(nlm, q) by f(nlm, q) when q
coincides with the coordinate s axis. Then by the in-
variance of the scalar quantities under rotation we have

Q I f(nlm, q) I
'= Q I f(nlm q) I

'=
I f(nl0 q) I

'. (34)

Since the wave function of the hydrogen atom forms
a complete set in each of the two spherical and para-
bolic coordinates, the vive function in spherical co-
ordinates can be expressed as a linear combination of
the wave functions in parabolic coordinates. In this
transformation the principal and the magnetic quan-

Replacement of f(l,q) and g(l', q') for U(n, q) and
p'(42', q') in Fq. (23) allows the integration in this equa-
tion to be carried out analytically. This is done in
Appendix 3 and here we give the 6nal results. Intro-
duce the dimensionless A and A' as

Q
A'=

422+p2 i22+p
(40}

where a and P are given by (2) and (26). Then the cap-
ture cross section for a process in which the electron is
initially in the state nl, averaged over m, and finally in
the state eV, summed over m', is given as a polynomial
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in' and A':

5n
a (nl, js'l') = o (e,n')

(2l+1)33'

2(n—1) 2(n' —1)

C(nlv, n'l v')A "A'"', (41)
v=0 v'=0

where h(i,j) is the Kronecker delta. In Eq. (42), p
stands for four integers i, j, X, p whose ranges are
given by

[v/2]=

Hvl, Psv]+1,",
0, 1, 2, , i—Pv];
2(i j) —v2(—i j) —v+1— 2(i j)—2 1 1 1 (44)
0, 1, 2, , 2(i j) —v;—

2v, p eVen

s(v+1), v odd.

A similar rule applies to y' and other primed integers.
Equation (41) then expresses the capture cross sections
between two arbitrary states nl and n'l' in terms of a
6nite number of terms, while previous results have been
expressed in integral forms.

From Eqs. (41), (42), and (31), the following recipro-
city equation results:

where a(js,n') is the cross section between n and n' and is
given by (31), and

C(v5lv, 33'l'v') =Q Q (1+j3+j4')—'
7 7'

(
5+2(j—j+1'—j')) '

X
1+j3+j3'

XD(,y)D( ',v'), (42)

4i—4j
D(v, V) =9—6(i,j)7(—)"«*Ojj

2X

Type (III):
80 1760

o(is,3s)=o(1,3)i 1——A+ A'
9 63

320 1280
(49)

9 81 i
80 800 i60 640

()s,3)s) = (1,3) —4 — As+ 4'— 4') (50)
9 2i 3 27

640 160 640
o(is,3d)=o(1,3) As — As+ A4

i
.

63 9 81

Equations (47) through (51) have also been obtained
by May and Lodge" by explicit evaluation of the
integrals in the impact parameter approximation.

Type (IV):
50 740

(1s,4s) = (1,4)(1—4+ 4' —3204 s

3 7

4480 1280
+ A '—3542 s+ A s) (52)

9 ii
50 i060

o(is,4P) =o(1,4) —A — As+ 528A s

3 7

2624 3456 2304
A4+ A' — A' ~, (53)5» i

t5320
a(1s,4d)=o.(1,4)i A' —240A'

k7
4160 1280

+ A' —384A'+ A' i, (54)
9 11

256 384 256
o(is,4f)=o(134)~ 32A' — A4+ A' — -A' ~. (55)

3 5 11 j
(2l'+1)p"a (e'1',nl) = (2l+1)p'o (nl, e'l') , (45). Type (V):

o (2s, 2s) = 4o (2,2)

20 120 80
X~ 1——A+ A' —20A'+—A4

~ 2 (56)i'
/10 100 80

o(2s, 2p) =4o(2,2)i —A — A'+20A' ——A4 i, (57)
7

a (2p, 2s) = —s,a(2s, 2p),
/80 20 80

o(2p, 2p) =4o(2,2)i —A' ——A'+ —A4
i
.

&21 3 27

As an example from Eq. (41) the following simple
formulas are obtained for the electron capture cross
sections with the ground state as the initial state and
the sublevels of n= 1, 2, 3, 4 as the 6nal states. The
prime in the final state is omitted for convenience

Type (I):
o (1s,1s)=o(1,1), (46)

(58)in agreement with the value given by Bates and
Dalgarno, '
Type (II): (59)

10 20
o(1s,2s) =o(1,2)~ 1——A+—A'

3 7

10 20
o(1s,2p) =o(1,2) —A ——A'

i
.

3 7

As a check it can be veri6ed that when averaging and
47

summing are performed over the initial and 6nal states,
the corresponding Q(n, N') results.

"R.M. May and J. G. Lodge, Phys. Rev. 137, A699 (1965).
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Extensive tabula. tion of the cross sections of the type
(I)—(V) in the integral form are given by Hiskes. "

V. FIRST-ORDER WAVE FUNCTION IN AN
ELECTRIC FIELD

Assume X(nnznzm, r) is the atomic wave function in
an electric field of strength F. Then by writing

where I: is the energy of the system and

Z1——na3[nl+-', (m+1)], Z2 ——nao[n2+-';(m+1)], '
(62)

Z1+Z2= Z,

Z being the charge of the nucleus. The right-hand side of
Eqs. (61) can be treated as a small perturbation. Then
the first-order solution to the first of these equa, tions can
be written as

X(nnznzm, r) =uz($)u2(z/)e+'"&/(2zr)"', (60) uI ulll+ Z bill'unl' l
R1 gA$

(63)

the Schrodinger equation for the system reduces to the
following equations": where I„,and I„, are the homogeneous solutions of this

equation with Z~ and Z~' as their eigenvalues, and
d I duly f1 m2~

I+I Lq+zz ——[u1=4Ftzuz,
d$k de) (2 4$)

(61)

——,'I'(nz~ tz~ nl')
bn1 =

Zg Zi
(64)

d // dz/2) p1 mz)
(+ (

I.&+Z2 -~uz= ', I n—'u-„'
dz/k dg) E2 4q)

The matrices in (64) are given by Bethe and Salpeter. "
In this way we find that

~z1'

b, 2= [nl(n1 —1)(n1+m)(n1 —1+m)]"',8''
nF

b„, 1=— (2nl+m) [n1(n1+m) 7'/',
2ZA

~zF
b„+1= (2n1+2+m)[(n1+1)(n1+1+m)]"',

2ZG

(65)

SIz
b„,+.= — [(/z1+2)(n1+1) (nl+2+m)(nl+1+m)7'",8''

and b„, vanishes otherwise.
It is convenient to introduce a new function:

n
M(jm, x) = (j+m)'(j —1+m)'I., —2+ (x) 2(2j+—m)(j+m)'I , 1+~ (x.)4'' 2

(2j+2+m)(j+1) 1 (j+1)(j+2)
+2 I-;+1+~"(x)—— I.,+2+„"(x); (66)

j+1+zn 2 (j+1+m)(j+2+m)

then, expressing u„, as Laguerre functions, and combining (63) and (65) we obtain

[(2/n) 1/2~m+3/2(n !)]1/2

ul($) = e '&+"'"e"/'[I-„,+„"(el&)+I&'M(nzm n$)].
[(n1+m)!]'/'

Similarly the solution to the second of Eqs. (61) is given by changing the index 1 to 2 in (63) and (65), and chang-

ing the sign of F in (65). Thus

[(2/n) 1/212™+3/2(nzl)]1/2
uz(z/) = e»'2/~/'[I „~ "(elz/) PM(nzm, e/r/)]. —

[(nz+m)!]"'

"J.R. Hiskes, Phys. Rev. 131, A361 (1965).
"Reference 7, Sec. 51.
"Reference 7, Sec. 52.
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In this way Eq. (60) can be written, to first order:

(ni!np!) &/p/r~+p/p

X(nnin2m, r) = e
—a(g+p)/p((~)m/2

(n.n) "' Dni+m)! (np+m)! j'/'

X{L,+ "(n&)L„~„"(ng)+FLM(nim, n&)L„~„"(ni/)—M(npm, ur/)L, p "(n&)]}. (69)

As a special case the perturbed ground-state wave it follows that
function is given by

F(nnin20 q) U(nnin20 q)+Q b 'II(nni n20 q)
X(1000,r)

~3/2~ —a ($+g) /2

{1+FBI(00,n$) —M(00,nr/) j}

ny'

+P b„,.V(nn, n, 'o, q), (74)
n2'

~3/2g —0 (5+a&/2 F(k—n)
2+-(&+~)

4Zn 2

G(nninp0, q) = V(nninp0, q)+Q b„;V(nni'np0, q)
ny'

+P b„;V(nninp'O, q) . (75)
n2'

Fr costI
1— (2+ur)

2Zn
(70)

In the special case of the ground state, the above equa-
tion can also be derived by solving the Schrodinger
equation for the hydrogen atom perturbed by a weak
electric Geld, using spherical coordinates. "

Expression (70) as the wave function of the perturbed
hydrogen atom has been applied successfully by Temkin
and Lamkin" to the problem of elastic scattering of
electrons by the hydrogen atom. F in this case is due to
the incident electron. This approach is named the
method of polarized orbitals.

To the extent that the indices of each term in the
product M(nim, n$)XL„~ (ag) do not satisfy the
condition (14), the terms on the right-hand side of (69),
except for the first term, are not hydrogenic wave
functions.

X(nninpm, r) =P(nninpm, r)+ g b„, f(nni'npm, r)
n1 Qn]

+ g b„,P(nninp'm, r). (71)
n2'Hn2

Defining

F(nninpm, q) = (2m) '/' e'P'x(nninpm, r)dr, (72)

z
G(nn&npm, q) = (2~) P/' e'&' X(nn&npm—,r)dr, (73)

r

'7 R. M. Sternheimer, Phys. Rev. 96, 951 (j.954).' A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1960).

VI. FIRST-ORDER EFFECT ON THE CROSS
SECTION DUE TO THE FIELD

By combining Eqs. (60) and (63) we can write to the
first order

The coeflicients b„,' are given by (65), and b„,' are ob-
tained from b„,' by changing the index 1 to 2 and re-
placing F by —P.

The squared modulus of F(nn&n&0, q) gives the mo-
mentum distribution in an electric field. Through Eqs.
(6), (13), and (74) the first-order term in the momentum
distribution is given by

g 2Q 3

IF(nn, np0, q) I

16m'//p'n
I

p/I '

(pe) $$ si ( p/p) the pp

XRe Zb il —) +Zb pl
——

I~i ~)
(76)

For a given n, let us call the state specified by m&= j
and n2=i, withi and j two integers, the state conjugate
to the state ni ——i and n& ——j.Then from (76) it follows
that the first-order correction to the momentum distri-
bution of a conjugate state is the negative of this cor-
rection to the state itself. In particular when ni=e2,
the first-order correction vanishes. The change in sign
of F interchanges the first-order distribution, for the two
conjugate states. By averaging over n& and e2 for a given
n, the first-order terms drop out, and the momentum
distribution for the principal quantum numbers be-
comes quadratic in F.

A similar consideration applies to the first-order cor-
rection to G(nninp0, q), and through Eq. (23) it follows
that the capture cross section is quadratic in the
field.

The evaluation of the cross section integral for the
transition nninp to n'ni'np', Eq. (23), is similar to the
evaluation of this integral for the capture cross section
in spherical coordinates. The final result is given below.
Let Q represent the capture cross section is an electric
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Fro. 1. Electron capture cross sections for the initial
state n =2, l=0, and the final states e'= 3.

FIG. 2. Electron capture cross sections for the initial
state n=2, l=1, and the final states e'=3.
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Geld up to the Grst order. Then

Q(nnin3, n'ni'n3') = o—(n, n')
n'

XI 1+P(ni)+P(n3)+P(ni')+P(n3')], (77)
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P(i)=10 Q C(i,«)A",
v=0

(78)
We require the transformation matrix which for a

given principal quantum number n and absolute value
of the magnetic quantum number m transforms the
n —nz states in spherical coordinates to another set of
e—m states in parabolic coordinates. The simplest way
to Gnd the transformation matrix is by noticing that
the matrix elements of interaction of an electric Geld

with the hydrogen atom, taken with the unperturbed
wave function of the atom, are diagonal in the parabolic
coordinates representation. Let e be this matrix and let
A be the transformation matrix. We must then have

where A is defined in Eq. (40) and

C(i,«) =P (1 8(ij—)]D(i,«j,X,t3), (79)

APPENDIX I: THE ELEMENTS OF THE TRANS-
where P(i) depend linearly on the electric field. FORMAy10~ MA~R1X pEywEE~ yHE
Explicitly, WAVE FUNCTIONS IN SPHERICAL

2 AND PARABOLIC COORDINATES

AH'A-'= e (A1)

where H is the interaction matrix in spherical coordi-
nates. e is given by"

li—jl —«+»
e;1 8(——i,j—)33neFae(2j +1 n+ n—3),

j=or 2" e—m —I7 P 7 7 7

(A2)

The coefficients b; depend linearly on I' and are given with F the strength of the electric Geld. Similarly we
by (65). can write

VII. DISCUSSION

As an example of the applicability of Sec. IV, in Figs.
1(a), 1(b), 2(a), and 2(b) the capture cross sections from
the states 2s and 2p to the states 3s, 3p and 3d are
plotted as a function of the incident proton energies.
The method of this section provides an easy way to
calculate the electron capture by protons in any atomic
or molecular gas, provided that the central field ap-
proximation can be applied to the particles of the gas,
and that their wave functions can be expressed as
hydrogenic wave functions.

The analysis of Sec. VI showed that the capture cross
section between principal quantum numbers is quadratic
in the Geld and invariant up to the second order under
the change of sign of the field. Verification of this sym-
metry by experiment will provide a good test on the
validity of the Brinkman-Kramers approximation.

Note added in proof. When in electron capture by a
proton the interaction between the nuclei is included,
the cross section will depend on F(nnin30, q), Eq. (74),
as well as on its absolute value (cf. Ref. 10). Since
the first-order correction to F(nnin30, q) does not van-
ish, the quadratic symmetry is destroyed in this
approximation.

H; = —eF Q„;~„(r)rcos8$„;~ (r)dr

eF R—(r)R (r)r'dr
0

X Y;~„(Q)Y; (Q) cos8dQ, (A3)

where i and j are the angular-momentum quantum num-
bers of the two states considered. It can be verified that

-~2 m2- 1/2

8(i, j+1)Y;~ ~(Q)Y,~ (Q) cos8dQ=
4j2—1

Also"

-j2 ~2- I/2

+ b(i+1, j). (A4)
4j2-i

'—1 r3dr —33 a n(n2 32)1/2

E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge University Press, New York, 1951), p. 399.' Reference 19, p. 132.
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Ymxz I. Elements of the transformation matrices. The unitary condition on A gives

(I) n=2, m 0

R(20) =—
I—1

Q A;i' ——1, (A10)

(II) x=3, m=0 r 1 1
1

a(30) =——Q(3/2) 0 g(3/2)
Q3

v'4 —v'2 v'4
(III) m=3, m=1

a(31) =—
(IV) =4, m=o

1 1 1 1

where we have assumed that the elements of A are
real, and if a solution for A is found our assumption is
justified.

Equations (A9) and (A10) are sufhcient for the de-
termination of A for any given n and m. In the text the
inverse of A is needed. Let a be the inverse of A,

1 -3/Q5 -1/Q5 1/Q5 3/Q5
a(40) =-

2 1 -1 —1 1 a=A '=2
) (A11)

(V) m=4, m=1
.—1/~5 3/~5 —3/+5 1/+5.

v'(3/10) v'4 v'(3/10)

a(41) = —Q$ 0 1/Q2

- 1/v'5 -v'0 1/v'5 .
a(42) =—

with 3 the transpose of A. Table I gives the values of a
for n= 1, 2, 3, 4, 5, and all possible values of m.

APPENDIX 8

(VII) ~=5, m=0

—Q2
1

a(50) =—Q(10/7)
+5 —v'4

.v'(1/14)

—v'k

—v'(5/14)

Q2

—v'(8/7)

1 1 1

0 v'k v'2

—v'(10/7) —v'(5/14) v'(10/7)
—v'2 v'k

v'(18I7) —v'(8/7) v'(1/14)

8Z2O, 3 n—1 ~ 2(j—j)
If(/, q)l'= Z & Z I:2—b(i,j)j

pr2(ippn(&2+q2)4 i—p &'—p p p

Since the interchange of i and j in (38) does not
change the value of

I f(/, q) I
', we can write

(VIII) ~=5, m=1

il v'5 V'(3/10) v'(3/10) v'~a

—Q(3/7) —Q(1/14) Q(1/14) +(3/7)
a(51) =

v'(3/10) —v'~ —v'. V'(3/10)

.—v'(1/14) v'(3/7) —v'(3/7) V'(1/14)-

(IX) m =5, m =2 ' V(2/7) v'(3/7) v'(2/7)

a(52) = —Q$ 0 v'k

V(3/14) —v'(4/7) v'(3/&4).
(X) m =5, m =3

a(53) =—

q
x ( +p)) —g Ip

xp p

p=p /i
(82)

in Eqs. (38) and (39), and recalling Eq. (28), we ob-
tain the capture cross section with the initial states el
and the final states e'l', averaged over the initial states
and summed over the Anal states. This is given by

/'41 4g) (K4(i i) 2xqpx

x(- )«'«. I I . . (»)
2)( ) (n'+q')'(' &)-'

Similar considerations apply to Ig(/, q) I' as given by
Eq. (39). Making use of the expansion

In this way we obtain
(2~)'

H;,'= —pneFapLC, li(i, j+1)+C,b(i+1, j)j, (A6) p(n/, n'/') =.
(2/+1) '

p

with

I f(/ q) I
'x

I g(/', q')
I
'pdp

C,=
(n2 j2)(j2 mp) (/2

m& j. (A/)

2'~(ZZ')'(an')'

, Z Z &(v)&b')
(2/+1)apPPPnn' p v'

Equation (A1) can now be written

P A;)P/)'= p;;He,

which by means of Eqs. (A2) and (A6) reduces to

A;;+(C;+q+A;; iC;= (2i+1 n+m)A;—; (A9).
This is a recursion relationship for A by means of which

all the elements of a row of A can be found once the
6rst element of the row is given.

00 p2 (/I+p')+&gp

(83)
(iipy pp+ 2) p (3+Ii-jl+I i'-i'

I )

where

&b) =L2—~(,j)l(-)";;
4i-4j ))(~

X Iiiii—4j—2xppx —2y ~ (g4)
&pi

p stands for the set of 4 integers i, j, X, p which take on
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the following values:

i=0,
j=0,
X=O,

p, =0,

1 2 m —1
7 7 7

7 7 7 7

1, 2, , 2(i—j);
1, 2,

(85)

The integral appearing in Eq. (83) is of the form

p23f+1gp

I(M,N)=, (8
(l)o+p 2) iv

which, after integration by parts, yields

t N —1y-'
I(M,N) =

I I I(0, N M—)&Mi

(N —1~-'
(M+—1)

—
)I

I
b
—2&&—~—» (87)

(M+1)

In this way we obtain

Se &(v)&(v')
o(nl, n'l'. )= o(n, e')Q Q

(2l+ 1)e' v v' (5+2(i—j+i'—j')
(1+)+) ')I I(no+po)2(i —j+i'—j')—{v+y,')

1+p+p' j

(88)

where o (n, ii') is given by (31). Introducing

it follows that
A =n'/(n'+P'), (89)

p4i 4j q pX—~
( '+)7') "" "+"&(v)=L2—~(i,j)j(—)"«'~

I II
IA"' " "(1—A)" "

2) i &pl

h,—p 4i 4j ~ -t X~ X-) ~= Z L2-~(,j)j(-)"+"'~'~
II I

IA"' " "+"'
ill 2X )&p) )r &

=Q D(v,v)A", (810)

where

and

Thus we can write

v = 2 (2', —j)—X+@&

4i—4j~ X~ X—)i
D(v, v) = L2 —~(i,j)j(—)"«'«

2X ) )i1 v+1—2i+2j

(811)

5' 5+2(i—j+i'—j')~ —'
o (nl, n'l') = o.(m, n')Q Q(1+)i+)i')—' Q Q D(v, v)D(v', v') A "A'"'.

(2l+1)n' p p 1+p+p' j
%hen summation between y and v are interchanged, we obtain

5g 2(n—1) 2(n' —1)
(orl, ie'l') = o(n, n') g P C(mlv, n'l'v')A"A'"',

(2l+1)ri' v=o v -o

, 5+2(i—i+~' i')) '—
C(nlv, n'l'v') = Q (1+)i+)i') '

I
D(v,v)D(v' v'),

Y~V~ 1+v+) '

where v stands for i, j, X, )i, and the range of i, j, X, )i are given by Eq. (44) of the text.

(813)

(815)


