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Remarks on Variational Bounds in Scattering Theory*
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The lower variational bound on the eigenphase shifts obtained by Sugar and Blankenbecler (SB) is
shown to be formally equivalent to the upper variational bound (K ')„~ on the inverse of the reactance
matrix K ' that had been obtained earlier. 'By formally equivalent we mean that if the identical trial function
is used in the two formulations, the eigenphase shifts contained in (K )„p are identical with those deter-
mined by the SB formulation. A still more recent variational bound by Rosenberg (R) is shown to be
identical, for most purposes, to the SB result, and therefore also formally equivalent to the original varia-
tional bound. The SB and R approaches may nevertheless have certain advantages, since they suggest
diBerent actual numerical procedures. A lower variational bound on K ' is obtained by means of the SB
technique for determining upper bounds on the eigenphase shifts.

1. INTRODUCTION

'HE erst variational bounds derived in scattering
theory were for the case of zero-incident relative

kinetic energy for which single-channel elastic scattering
is the only possible process. If the two systems cannot
form a bound state, the expression that represents an
upper variational bound on the scattering length' is
exactly the same as one of the expressions obtained in a
standard variational calculation. (Thus, with no addi-
tional labor, we can pass judgment on the relative
merits of two such calculations, the lower number being
the better one. ) If the two systems can form a known
number 1V~ of bound states, the upper variational
bound on the scattering length requires the evaluation
of E& additional integrals, but the calculation is really
equivalent to a standard variational calculation
nonetheless. ' The formulation has been applied to a
number of atomic and nuclear scattering problems.

The formulation has been extended to include non-
zero incident kinetic energies. The essential feature for
zero and nonzero energies is the existence of a potential,
which can be weak or strong. From the computational
and from the formal point of view, however, the situa-
tion is much more complicated for an incident kinetic
energy different from zero. Firstly, two different kinds
of results were originally obtained, and under slightly
different conditions. (We will return to the conditions
later. ) Lower bounds were obtained on the eigenphase
shifts, ' while upper variational bounds were obtained
on the inverse K ' of the reactance matrix K.' (We use
the word "bound" when the method generates one
number which represents a bound on some quantity.
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We use the expression "variational bound" when the
'method generates not a numerical bound but a varia-
tional bound containing variational parameters which
enable one not only to improve the variational bound
but to improve it monotonically until, at least in
principle, the variational bound assumes the exact
value. ) Secondly, for nonzero incident energies varia-
tional bound calculations are appreciably more difficult
than standard variational calculations and every effort
should be made to find new variational bounds or to
improve the calculational techniques required for the
evaluation of the original variational bound.

Recently, Sugar and Blankenbecler' derived upper
and lower variational bounds on the eigenphase shifts.
They were exceedingly gracious in acknowledging the
use of some results of the earlier work, but they were
under the impression that their lower variational bound
on the eigenphase shifts was independent of the earlier

upper variational bound on I '. It is one of the main

purposes of this article to show that, on the contrary,
these two variational bound formulations are, in a
sense to be described, formally identical.

It is very much simpler to obtain an upper variational
bound on a discrete energy eigenvalue of a system than
a lower variational bound. Correspondingly, it is always
very much simpler to obtain one variational bound
than the other on scattering parameters. The simpler
variational bound to obtain is the upper one on the
scattering length, the lower one on phase shifts and on
eigenphase shifts, and the upper one on the inverse of
the reactance matrix. Sections 2 and 3 are concerned
with the "simple" variational bound, while Sec.4 is con-
cerned with the opposite, more difficult, variational bound.

2. LOWER VARIATIONAL BOUNDS ON THE
EIGENPHASE SHIFTS

The starting points for the determination of a bound
for nonzero incident kinetic energy' are the equivalent
one-body equation'

P[H+HQG&QH E]P%'=0, (2.1)—
' R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1964).
6 H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958);19, 287 (1962).
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and the (numerically solvable) approximation equation

P[H —E]P~P=0. (2.2)

Q(E—H)Q&0 (2.4)

follows. Let us assume this inequality to be satisfied.
It is an immediate consequence that

G~&0,

and, since QHP is the adjoint of PHQ, that

(2.5)

[The notation is that of Refs. 3 and 4; we will not re-
derive most of the results but will simply summarize
those that are relevant for our present purposes.
Furthermore, we will for simplicity assume that the
incident particle is distinguishable. (It is then possible
to replace PHQ by PVQ, where V is the interaction
between the incident particle and the target particles,
but we will not do so.) The case of identical particles
follows with entirely trivial modifications. ]H is the full
Hamiltonian. I' is a projection operator on to all target
states associated with open channels (P could include
some closed channels in addition, but to simplify the
discussion we will assume that it does not); Q=1 P, . —
and E=Erp+E', with E the total energy of the system,
ET 0 the target ground-state energy, and E' the incident
kinetic energy. G, which is not normally calculable, is
formally defined by

«-=Q[Q(E-H)Q]-'Q (23)

and by appropriate boundary conditions. It is also
useful to introduce the (numerically) calcmlable Green's
function G~ defined by

G~= P[P(E H)P—] 'P—
and by appropriate boundary conditions. When I' con-
tains only one open channel, Eq. (2.2) corresponds to
an approximation in which the target is fixed in its
ground state and the approximation is then normally
referred to as the static approximation. When I' con-
tains more than one open channel, Eq. (2.2) is often
referred to as the close-coupling approximation
equation.

The continuous spectrum of QHQ begins at the energy
E.i of the lowest closed channel. E,i could be the energy
of the lowest target state associated with a closed
channel or it could be the energy associated with a
pickup process, but in any event we have E,»K If
QHQ does not have any discrete eigenvalues below E,
which will often be the case, the inequality

the inhuence of the incoming particle since it can be
virtually excited to target states associated with closed
channels. ) The monotonicity theorem immediately
provides us with the sought-for bounds. With g; and g;~
the ordered eigenphase shifts, we have

(2.7)

where E~ is the number of open channels. Here and
elsewhere, it will always be understood that some given
total angular momentum is under consideration.

[Contrary to the impression often given in the
literature, it is very dificult for scattering by a com-
pound system to give an absolute definition of the phase
shift, that is, a definition which fixes the multiple of m. ,
which is calculationally meaningful. Inequality (2.7) is
formally meaningless without such a definition. From
the practical point of view, however, inequality (2.7)
can be very helpful. This whole question is discussed in
some detail in Ref. 3. All phase-shift inequalities in the
present paper will be given this "practical" inter-
pretation. ]

Sugar and Blankenbecler' start from the same one-
body equation (2.1) and from the same assumed
inequality (2.4) but arrive at an improved result.
Instead of simply saying that G@(0and therefore that
F(0, they construct an improved variational upper
bound on G@ and therefore on I', and therefore ulti-
mately a variational lower bound on the q;. Thus, it
follows from Schwarz's theorem for any negative-
definite Hermitian operator D which has a right inverse
and for any function f& which may have to satisfy
certain boundary conditions but which is otherwise
arbitrary that

Df)&f D

(f~lDI f~&

therefore, operating with D ' on the right, taking the
Hermitian adjoint, and then operating with D ' on the
right again, it follows that

fi&(fi

&filDIfi&

We can therefore set D equal to Q(E—H)Q, and obtain
a variational upper bound on G@. More generally,
introducing the set of trial functions f;, with j running
from 1 to E, which vanish asymptotically but which
are otherwise arbitrary, it also follows trivially from
the Schwarz inequality that

P=-(PHQ)«(QHP) « (2 6)

On comparing Eqs. (2.1) and (2.2), we see that the
effective interaction between the incident particle and
the target is more negative for the true problem than it
is for the static or close-coupling approximation. (In
the true problem, the target can better adapt itself to

1
If)(& ')'&f I«,

D j', I
(2.8)

where the matrix D has elements (f, I
D

I fq&. Introducing
the 1X1V row vector If) with elements which are the
functions f;,

lf&=(l j.&lf.& IS &),
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and the EX1 cohue vector

(fil

.&f~l.

the inequality (2.8) can be rewritten as

—& If&&fl D If& '&fl «
D

(2.9)

(Note that with the somewhat unusual form of (fl
and If) above, introduced to avoid the continual use of
a transpose, entities such as (flDlf) are not numbers
but matrices. ) Once again setting D equal to Q(E—a)g,
we arrive at

Go&
I
f&A

—'(f
I
=—Gso& 0, (2.10)

where f is to be chosen to lie in Q space, and where the
matrix A is de6ned by

A=(fig(E —a)glf&. (2.11)

(As opposed to the purely formal if perfectly well-

defined operator G@, the operator Gs@ defined by (2.10)
is in an immediately usable form. ) We immediately
obtain the variational bound

I'=—(PHQ)G'i(QHP) & (PHQ)Gso(QHP) &0. (2.12)

On introducing the approximate equivalent one-body
problem defined by

P[a+HQGs@ga —EjZes= 0, (2.13)

(As always, there appear the two wave functions and
the difference in the corresponding potentials. ) The
components of the E")&1 matrix a are arbitrary and
appear in the specification of the boundary conditions
assumed for E%'", for Pkg, and for Pk. They are
related to the amplitudes of the regular functions in the
diGerent open channels.

As noted earlier, we consider I'%'~ and G~, which are
de6ned by a set of Ã~ coupled equations, to be numeri-

cally determinable. Since G8, upon diagonalization,
consists of a finite number of separable terms —that is
why we used the subscript S in GB@—any quantity
associated with Eq. (2.13) can be obtained. Thus, we
rewrite Eq. (2.13) as the integral equation

Pcs= Pe ~+Gr PHQGsogazes
=Pe"+G Paglf)A '(flgazes&. (3.2)

Multiplying through by (fl QHP I, we find

(f I QHPes) =[I—(fl QHPG~PHQ
I
f)A-'7'

x&flgaze. &. (3.3)

Substituting into Eq. (3.1), we have our explicit
expression

6s= (PeP
I PHQf &[A—(f I

QHPGPPHQ
I f&] '

x(fl gaze~). (3.4)

Introducing the operator X, which crops up regularly
in this topic, defined by

with associated ordered eigenphase shifts q8;, the lower
variational bounds

Q (X—E)Q =—Q (H+HGPH —E)Q,

and using Eq. (2.11), we immediately obtain

(3.5)

1&i&X~, (2.14)

follow. ' The qz; are to be improved by varying the
parameters contained in the functions f; or by intro-
ducing additional functions.

The result, (2.14), therefore provides a lower varia-
tional bound on the g;, whereas the original result, (2.7),
provided only a lower bound on the q; (The origin.al
version corresponds to setting each of the f; equal to
zero, ) It will, however, be interesting to compare the
SB lower variational bound on the eigenphase shifts
with the eigenphase shifts extracted from the original
upper variational bound' on the inverse K—' of the
reactance matrix K. Ke will now do this.

3. UPPER VARIATIONAL BOUND ON THE IN-
VERSE OF THE REACTANCE MATRIX

Let E~ and K8 be the reactance matrices associated
with Eqs. (2.2) and (2.13), respectively. By manipu-
lating these two equations in the canonical way, that
is, multiplying each by the solution of the other, sub-
tracting, and integrating, one obtains

ps=—a'[(Ks) '—(K~)-'ja
=&ze~lzaqf&A-i&flqaze, &. (3.1)

»= &ze'I PHQf)L(f I Q(E—&)Q I f&3
'

x(figaro&). (3.6)

Since a is arbitrary, one can extract Ks ' from (3.6).
Let us now introduce the quantity 6 associated with

the exact and static equations, (2.1) and (2.2),

6—=ar[K—'—(K~) ']a. (3.7)

It does not follow from the above discussion that 68
provides a variational bound (or even a bound) on 5,
nor that Ks ' provides a variational bound (or even
a bound) on K ', the elements of K ' involve trigono-
metric functions of the g; in addition to mixing param-
eters and a bound on q; does not provide a bound on
a trigonometric function of q;.

One can obtain an upper variational bound on 6 and
therefore on K '. lt was shown' that 6 could be written
as

A=2&ge lalze')+&Qe Ig(&—L)QIQe &

—&Qfllg(& —E)gl gal& (3 g)

where K is defined by (3.5), where Qe, is a trial function
in closed channel space which must 1:herefore vanish
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asymptotically, and where QQ is the (unknown)
difference function defined by

(The inhomogeneous term contains P4, not P4.)
Introducing the Green's function go defined by

QQ—=Q+,—Q+. QL~ —&heb'= —Q (3.15)

QBCQ divers from QHQ by a potential term, and its
continuous spectrum, as that of QHQ, will begin above
E. It will often be the case that QKQ does not have a
discrete spectrum, which is sufhcient though not neces-
sary to guarantee that

and by appropriate boundary conditions, we have

Q@=goeHP@~. (3.16)

In addition to the forms of 6 that were used in the
derivation of (3.8),

0,= (P% P,PHQ+)

z= —(Q+,pc —z]ee),
e(~—~)e&0 (3 9)

and

we can therefore also write

I et us assume this to be the case. It follows immediately,
looking at the boundary conditions satisfied by QQ, that

(3.17)

(3.18)

6&6„,= 2(e+, I
H

I
P@~&

+&e~ le(~-~)ele~) (3»)
Since a is arbitrary, one can extract an upper variational
bound on K ' from (3.10),

K—'& (K—')

Taking Q@~ to be of the form

Ie+i)=~' lf &—= If)C (311)

(as defined earlier, If) is a row vector while C is a
column vector in the parameter space), with the same
set of functions f, as chosen previously, and minimizing
the right-hand side of (3.10) with respect to the linear
variational parameters c;, one finds that 6„p reduces
to As, defined by (3.6). We thus have

We also have
p=~8

K '&(E—') =K —'

(3.12)

(3.13)

QL3'.—EjQ+= QHP+~, —(3.14)

We can now summarize the formal results as follows.
If inequality (2.4) is satisfied, the "static" or "close
coupling" eigenphase shift g;~ provides a lower bound
on g;,' better still, gq; provides a lower variational bound
on g;. If the diferent inequality (3.9) is satisfied, A„~
provides a variational bound on A. Finally, assume that
both inequalities are satisfied, which will often be the
case, and that the same functions f, are used in the
determination of the lower variational bounds gq; and
in the determination of the upper variational bound
(K ')„~. It follows from our discussion that the eigen-
phase shift estimates (modulo 7r) extracted from (K ')„~
are exactly the qq;. It is in this sense that the two
variational bounds are formally the same.

The exact agreement of the two variational bounds
may seem somewhat remarkable, especially since they
begin with the assumption of different inequalities, (2.4)
and (3.9).The agreement can be made more reasonable
by a consideration of Green's functions. Thus, Eq. (2.1)
represents the uncoupled equation for I'O'. The corre-
sponding uncoupled equation for QC' is given by

~«QHP~ lf)~-'&fleHP )=-~'-.

If we choose
I f)=

I f), we find that

~' p=~.p=~S

(3.22)

(3.23)

This remarkably simple connection between 6'
p and

hs for
I f) chosen equal to If), and the not unrelated

formal equivalence of the two variational bounds, have
their roots in the following connection between Gq
and &so, for

I f) chosen equal to If). The exact Green's
functions G@ and g9 satisfy the relationship

g@=Ga+g@QHPG~PHQGo (3.24).

This follows from the defining relations, (2.3) and
(3.15). We will now show that gs@ and Gso satisfy an
analogous equation,

russo
=Gsrt+ gsoeHPGPPHQGs@ (3.25)

Because of the separability of Gs@, as given by (2.10),
gs@ as defined by (3.25) can be obtained explicitly.
Substituting for Gs'i from (2.10), we need merely
multiply (3.25) on the right by QHPG~PHQI f), solve
for gsoeHPG PHQ

I f), and substitute back into (3.25).
We then And

9"=If&L&f le%—~)elf&3 '&fl, (3.26)

which, with If)= If), agrees with (3.20). Thus, to go
from Gs@ to /so, we need merely replace H by BC. The
presence of the same function If) in both Green's func-
tions is the origin of the various simplificatiogs note&
above,

6= (QHP+" gaQHP%'") (3 19)

g is a formidable operator, but if (3.9) is satisfied, it
can be bounded in exactly the same way' that G@ was.
With 3'. defined by (3.5), we then have, in analogy
with (2.10),

8'&
I f&21 '&fl —=Bs' (3 2o)

where
I f) is an arbitrary 1XN rovo vector in Q space

and where
21—= (fle(~ —&)elf& (3»)

It follows immediately that
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We have up to this point restricted ourselves to the
case for which Q(K —E)Q and Q(II—E)Q have only
continuous spectra, but the method of obtaining a
variational bound when there is a known number of
discrete eigenvalues has been available for some time. ' 4

The formal equivalence of the two formulations can
readily be extended to include the case when the num-
ber of discrete eigenvalues of Q(K —E)Q and of
Q(H —E)Q is the same.

Very recently, a third version of variational bounds
has appeared. ' Rosenberg showed that if (2.4) is
satisfied, the ordered eigenphase shifts of the approxi-
mate equivalent one-body problem

where
e it (H E)&u pP g =—0, (3.27)

~,=P+GiQQHP (3.2g)

with G&@ an arbitrary approximation to G, provides
lower variational bounds on the eigenphase shifts of the
original problem. For the reasonable and useful (but
not necessary) choice GiQ=GsQ, with GBQ defined by
(2.10), it is trivial to check that (3.27) reduces to (2.13).

More generally, let us consider the choice

GiQ=~~, ~I fi)d;~&f~I = If)D&fI (329)

where the matrix 9 is to be symmetric but is as yet
otherwise unspecified. Eq. (3.27) then becomes

P[H—E+H
I f) (2D—DAD) (f I

H]P%'ii ——0 (3.30)

with A defined by (2.11).The best possible choice of D
is that which makes 2D—DAD an extremum. This is
readily seen to be D=A ', in which case 20—DAD
reduces to A ' and (3.30) reduces to (2.13). We thus
see that for the very reasonable and quite wide class of
choices encompassed by (3.29), Rosenberg's formulation
is equivalent to that of Ref. 5 and therefore in turn is
formally equivalent to that of Ref. 4.

Since the dimensionality of If) in (3.29) will neces-
sarily be finite, the form (3.29) is not quite completely
general. Thus, one might approximate the nonlocal
operator G@ by an approximation G&@ which is local
and which could only be expressed in the form of (3.29)
by an infinite sum.

It may be of interest to derive Rosenberg's result in
a somewhat simpler fashion than that used originally.
For a positive definite 2, it follows immediately if 3'"
has a left and a right inverse [this latter requirement is
not necessary to obtain (3.31)j from

(1—A'"PA'")') 0

where p is arbitrary, that

1/A & 2P —PAP. (3.31)

Rosenberg's result follows from using (3.31), with
A =Q(H —E)o, in Eq. (2.1).

7 L. Rosenberg, Phys. Rev, l38, 81343 (1965),

We will not use the result, but because it might prove
fruitful, we record the result

Q(E—K)Q E—H
(3.32)

This result is proved in Appendix 8 of Ref. 3.

4. THE OPPOSITE BOUND

As noted earlier, it is far more difFicult to obtain upper
than lower variational bounds on the eigenphase shifts
and lower than upper variation bounds on I '. The
results that have been obtained for the opposite more
difficult bounds (or variational bounds) are much less
useful and the discussion will be much briefer.

Under reasonably general conditions, it is possible
to obtain the opposite bound by obtaining a simple (if
possibly crude) eumerica/ lower bound GQ on GQ. ' Thus,
let us assume that we can find an energy E such that

QIIQ&EQ&E. (4.1)

The solution of the equation

P[H+ (E EQ) 'HQH EjP%—"=0— (4.—3)

then provides the other bound, the upper bound on
the p;.' Though the approach is not always applicable,
and though the upper bound, even when applicable, is
of limited accuracy, (4.3) does at least have the virtue,
when applicable, of being suKciently simple that one
can actually obtain numerical bounds. (PHQ reduces
to PVQ for a distinguishable incident particle, and a
comparable simplification occurs for an indistinguishable
incident particle. The essential point is that the difFicult
kinetic energy operators vanish when between P and Q.)

An approach which is in principle much superior, in
that it supplies a variational upper bound on the q;, is
available. Assuming inequality (4.1) to be satisfied, it
can be shown that

GQ) (E—EQ)—i

X(1+PIp)L&pIP(1 —P) Ili)j '&liIP}—=G ',
I.. Spruch, in Fez Nucleon Problems, Ninth Summer Meeting

of Yugoslav Physicists, Hercegnovi, edited by M. Cerineo (Federal
Nuclear Energy Commission of Yugoslavia, Belgrade, 1964).

This may be possible if (2.4) is valid. If QHQ has no
discrete spectrum, we can choose EQ=E,i. If QHQ has
a discrete spectrum but the lowest eigenvalue lies
above E, w'e can set E& equal to that lowest eigenvalue.
If that lowest eigenvalue lies below E, there are a num-
ber of things that can be done, at least in principle, one
of which is to include more states in P space, and there-
fore fewer in Q space. In any event, assuming that we
can Find an EQ satisfying (4.1), we immediately have

«-=O[O(E—H)m-O&O(E-EQ)-'-=G" (42)
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P[(H E)+—HQG, oeH jP%',=0, (4.6)

provides variational upper bounds on the eigenphase
shifts. [Upper variational bounds were also obtained'
when (2.4) is not satisfied, by the approximate "sub-
traction" of the discrete eigenvalues following the
procedure of Refs. 2 and 4.]

Although this procedure is, in principle, of potentially
unlimited accuracy, unfortunately, as is so often the
case in formalisms for the dificult bound, it requires,
because of the appearance of (y I

F (1—F) I y), the
evaluation of matrix elements of the square of H, and
is therefore extremely dificult to use.

Extensions and generalizations along the lines of both
of the above approaches are included in the contents of
a recent paper, ' but no truly general and practical
approach is yet available.

(4.3) and (4.6) were based on the possibility of ob-
taining a numerical lower bound Gl.& on G, and an
operator lower variational bound G,@ on G, respec-
tively. Corresponding results can be obtained by
considering g& rather than G@. These latter results are
in some ways more useful since inequalities on trigono-
metric functions of phase shifts are normally more
useful than inequalities on the phase shifts themselves.

Thus, if we can find an energy h such that

QXQ& H&E, (4.7)

which should be possible if (3.9) is valid, we have

8'=-Q[e(E-~)ej-'Q&e(E-h )-' (4g)

It then follows from (3.19) that

L& (E So) '(QHEK~—,QHP-@~) . (4.9)

Correspondingly, if (3.9) is valid, a lower variational
bound on 6 is obtained by utilizing the analogue of (4.4)
and (4.5), namely,

go) (E go)—&

X{1+5'Ig)[(VI&(1—5) I4)j '(@I&}—=5 ' (4 1o)

where
~=-Q(~- ~')Q/(E- ~'). (4»)

We then have

3 & (QHP+ g oeHPV ). (4.12)

As opposed to the situation for the "simple" bounds,
there does not for the de.cult bounds appear to be any
elegantly simple connection between the approach
based on the equivalent one-body equation (2.1) and

' P. Hahn, Phys. Rev. 139, 3212 (1965).

where
I p) is an arbitrary 1XSmatrix and where

F-=e(H-E )e/(E-E') (4.5)

The solution of the equation obtained by replacing G@

in (2.1) by G,&,

the approach based on an analysis of h. Such connec-
tions are not to be expected since g,o and G & do not
appear to satisfy the analog of (3.25).

We would like to mention that we have shown (to be
published) that, as is intuitively reasonable, the adia-
batic approximation can also be used to obtain the
dificult opposite bound.

5. CONCLUSIONS

The formal equivalence of the Sugar-Blankenbecler
lower variational bound on the eigenphase shifts (and,
by and large, of the Rosenberg variational bound) with
an earlier version4 do not detract from their potential
importance, for they suggest an alternative procedure
for performing the necessary numerical calculations.
The advantages and disadvantages of the different
approaches will only become clear after many further
numerical calculations have been performed. It may
very well be, for example, that the relative merits of the
various approaches depend upon how close the scatter-
ing energy is to a resonance.

We make one final observation. The equivalence
between the SB and the original formulations was
shown to be intimately related to the connection be-
tween Go and go given by (3.24), or rather to the
connection (3.25) between Gso and /so, the approxi-
mations to G@ and go, respectively. The SB formulation
contains Gq@ which involves the matrix element of
Q(H —E)Q, while the other formulation can be ex-
pressed in terms of /so which involves the matrix
element of Q(K—E)Q. Thus in one case the energy-
independent operator H appears, while in the other case
the energy-dependent operator BC(E) appears. A com-
parison of the two is therefore reminiscent of a com-
parison of the Wigner-Eisenbud and Kapur-Peierls
formulations of reaction theory. These latter formula-
tions are clearly equivalent to one another since they
are each exact. (The reminiscence would seem to be
marred by the existence of a cutoG radius in the theory
of nuclear reactions, a cutoff which does not appear in
the variational bound expressions since they utilize the
unified reaction theory of Feshbach' which does not
intrinsically contain a cutoff radius. Such a radius can,
however, be readily introduced into unihed reaction
theory by the appropriate choice of the projection
operator, and the relationship between the Wigner-
Eisenbud and Kapur-Peierls approaches has been con-
sidered by Feshbach' within the context of his unified
theory. ) The equivalence of the different formulations
of variational bounds was by no means obvious since
they are approximations to the exact results.
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