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groups are given in Figs. 15—18, and Table VII lists the
diRerential cross sections for the ground state, the
4.55-MeV state, and the 10.79-MeV state groups. The
latter group has been recently studied by Detraz,
et al. at 43.7 MeV. Though the angular distributions
agree remarkably well in shape, there exists a difference
in the absolute cross sections which is hard to attribute
to such a small difference in the incident energy.

D. Summary

Table VIII gives a summary of the reactions induced

by the bombardment of Be' by 46-MeV protons studied
in the present experiment. The simultaneous measure-
ment of proton, deuteron, and triton spectra enabled
us to accumulate the data with reasonable speed and to

determine the absolute cross sections with increased
accuracy.

Optical-model and distorted-wave Born-approxi-
mation calculations of the present data will be reported
in a separate paper.
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A microscopic theory of the low-lying states of even-even spherical nuclei is developed in which eigen-

vectors are linear combinations of two- and four-quasiparticle excitations. The quasiparticles are dined
by the Bogoliubov-Valatin canonical transformation. The method is called the quasiparticle second Tamm-
Dancog (QSTD) approximation, since no ground-state correlations are included. It is found that the spurious
kets due to the particle-number nonconservation must be absolutely projected out of the secular matrices
before their diagonalization. Such a procedure is described and applied. Formulas are given for the electro-
magnetic transition probabilities. The theory is applied to the study of the 2+, 4+, and 0+ states of the even

tin isotopes. The single-particle radial wave functions employed are those of a Saxon-Woods potential and

of a harmonic-oscillator potential. The two-nucleon residual interaction potential is spin-dependent and of
zero range. Satisfactory numerical agreement with the observed 2+ and 4+ low-lying levels is obtained with

the Saxon-Woods wave functions for a reasonable strength constant of our zero-range force. Appreciable
admixtures of the four-quasiparticle creation components are found. even in the lowest lying levels. Poor
agreement is obtained for the 0+ states, for which a more reined theory is necessary (rather unreasonable

values of the strength constant of the zero-range potential are required to 6t the 0+ data). Generally,
markedly worse 2+ results are obtained if we replace the Saxon-Woods wave functions with harmonic-

oscillator wave functions.

1. INTRODUCTION

ECENTI.V, microscopic theories have been pro-
posed for two-phonon-type vibrational states

of spherical "superconductor" nuclei in a paper by
*Present address: Centro di Calcolo del Comitato Nazionale

per l'Energia Nucleare, Bologna, Italy.
f Present address: Istituto di Fisica di Bologna, Bologna, Italy.
f Present address: CERN, Geneva, Switrerland.
$ Deceased on June 15, 1965,

by three of us' (hereafter referred to as I), and in

papers by Tamura and Udagawa' and by Hsu and
French. ' In the formalism of these papers the two-

/

M. Savoia, J. Sawicki, and A. Tomasini, Nuovo Cimento 32,
991 (1964); this reference contains numerous misprints, and we
present here several of the equations of I in their corrected form.

'T. Tamura and T. Udagawa, Nucl. Phys. 53, 33 (1964).
' L. S. Hsu and J. B. French, Phys. Letters 19, 135 (1965); cf.

also N, Auerbach, ibid. 21, 57 (1966),
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and the four-quasiparticle excitations are treated on the
same footing. Essentially, it is a generalization of the
particle-hole (or random-phase-approximation) theory
for closed-shell nuclei and of the two-quasiparticle
random phase approximation (RPA) in the case of
"superconductor" nuclei. A corresponding generaliza-
tion in the case of the "normal"-state nuclei is the
higher (second) RPA as discussed in a paper by one of
us4 (cf. also Leonardi et al. '). This microscopic ap-
proach is in contrast to the "serniphenomenological"
one in which one assumes two-phonon-type states
(i.e., the 0+, 2+, 4+ triplets) to be generated simply
by appropriate quadratic combinations of one-phonon
RPA modes. In order to attempt to justify such a
hypothesis, one has in fact to develop a truly rnicro-
scopic theory. A criticism of the "semiphenomenologi-
cal" philosophy and some of the relevant literature are
discussed in the Introduction of I.

One way to derive the relevant sceular matrix for
such "doubles" (two-quasiparticle operators) and
"quadruples" (four-quasiparticle operators) is to linear-
ize the Heisenberg equations of motion for the relevant
operators at the level at which one assumes for them a
closed soluble system of equations. The difliculties of
this method and, in particular, the non-Hermiticity of
the resulting secular matrices, are discussed in I and
in Ref. 2. In the following we shall concentrate on a
simple variational approach previously discussed in I
which seems to provide a reasonable approximation to
a complete four-quasiparticle-operator theory, and in
which one works with Hermitian secular matrices. This
is equivalent to the quasiparticle second TD (Tamm-
Dancoff) approximation (and probably to what is de-
noted by TD4 and PTD4 in Ref. 3).

In the numerical part of the present paper we present
results for even isotopes of tin. The results on tin
isotopes are of particular interest because of very recent
experimental results' ' on these nuclides.

We compare our results with (1) the recent experi-
mental data for the positions of the first and second
vibrational levels, and (2) the simple quasiparticle
Tamm-Dancoff (QTD) calculations of Arvieu et ats'.
for the Sn even isotopes.

2. THEORY

We assume a shell-model Hamiltonian corresponding
to the complete set of single-particle states of energies

{EP). These energies are assumed to be determined in
an approximately self-consistent way in the Hartree-
Fock sense, so that we can exclude in the following
any self-energy terms of the two-body residual in-
teraction potential U=—V(1,2)(1—Pts), where Pts ex-
changes 1 and 2. Such terms appear in the process of
linearization by contractions of the equations of motion
in the RPA (or SRPA) method.

We introduce the pairing correlations by the Bogoliu-
bov-Valatin canonical transformation defining the set
of the usual quasiparticle creation and absorption
operators n~t and o,~. As a result of the usual approxi-
mate diagonalization, we obtain the quasiparticle
energies as

E =[(E '—X)'+6 ']'~'

P and the energy gap 6 are determined in terms of the
pairing force by the usual BCS equations. "

As we have to deal with states of definite spin, z pro-
jection of spin, and parity, we consider the following
fundamental operators in our theory Lour n~t and n~
are exactly as in Refs. 8 and 10; we use the Condon-
Shortley phase conventions throughout]:

A,~ («')= 2 (f.g..;m.m..Isa)~.. ~. ,

Appar(«') = (A gsrt(«'))t

%sr(«')= g (—)'-".(j.j;;—m.m.
~
JM)

tomas

X~..t~. . (2)

The commutators between these operators are given
in Appendix A. In our notations a latin subscript
(e.g. p) stands for all the quantum numbers of the
corresponding Greek subscript (e.g., or) except the s pro-
jection m of j„.The isotopic spin is not involved, as we
confine ourselves to one-nucleonic charge state of
quasiparticles. In practice we shall consider nuclei with
major shells of protons closed and the entire core of
protons inert (only the unfilled neutron subshells are
active).

With the above notations we can write our total
Hamiltonian as

4 J. Sawicki, Phys. Rev. 126, 2231 (1962); see also, e,g. , G. E.
Brown and N. Vinh Mau, Phys. Letters 1, 36 (1962); P. Di Porto
and M. Di Toro, Nuovo Cimento 36, 873 (1965).'R. Leonardi, P. Loncke, and J. Pradal, Nucl. Phys. 75, 305
(1965); Phys. Rev. 146, 615 (1966).

'H. H. Bolotin, Phys. Rev. 136, B1557 (1964); 136, B1566
(1964).

7 D. L. Allan, B.H. Armitage, and B.A. Doran, Nucl. Phys. 66,
481 (1965).

R. Arvieu, thesis, University of Paris, 1963 (unpublished);
Arvieu, Baranger, Veneroni, Baranger, and Gillet, Phys. Letters 4,
119 (1963).

9 R. Arvieu, E. Salusti, and M. Veneroni, Phys, Letters 8, 334
(1964); R. Arvipu aud E. Salusti, Nucl. Phys. 66, 305 (1965).

where

H=H»+H; t, ,

H»= —Q, E.gQ pp(«),

with c'= 2c+1, and

H;.t =H4o+Hst+Hss+Hts+Ho4,

I See, e.g., M. Baranger, Phys. Rev. 120, 957 (1960).

(3)

(4)
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with

H4Q HQ4 —
Q Q ( ) Q uauQVaVag j'(bucd)

JrMr abed

XAj sr'(b-a)A j s'(cd), (6)

12r21—B'222 — 1 Q ( )j'+sr'
abed

X(u.ubu, vagj (hued)+u. v Qv,vafj (hued) )

XA ji scat(ba)A j.sr. (cd), (7)

II22 Q Q Q j (uasQs, u/+vavbvava)g j'(bade)
J'N' abed

number nonconservation (project it out in the secular
problem), and the final dimension corresponds to the
exact number of physical states determined in the
subspace of the states considered.

Our formalism can be developed from a variational
principle for the excited states J M:

(+js IJJI+» )
bE=O= 8

where we assume our variational trial function in the
form of a superposition of two- and four-quasiparticle
excitations.

+4savQuavaf j (bade))A ji&(rit(ba)A ji&(ri(dc) . (8)
where

l+jsc') =oj~"lo), (12)

Oursymbolsgj and fj.(abed) are defined in terms of,
((2pl Ulyb) in Eq. (6) of I"; gj (abed)= 4G(abc—dJ')
and fj.(abed) = 4F(abcdJ—') in the notation of Baran-
ger."The u. and e. are the usual coeffi.cients of the
Bogoliubov-Valatin canonical transformation;

u.'+v.'= 1.

We now define the "quadruples" as the operators:

B(jijvc) j2c (uu bb )=$(j&jli) j(aa bb )
X~(j j-»)(( (uu'bb')

~ (9)

where X is a normalization factor and

8(ji j») jsr (aa'bb')= (Aj t(au') SA—j-t(bb')) jss

XAj'jlj't(aa')A j»~&.t(bb'), (10)

and 8—= (St)t; J)t and the commutators involving IV, 8
are given in Appendix A.

The operators Bt of Eq. (9) are not, in general,
linearly independent and mutually orthogonal, and
cannot, therefore, serve directly as part of a good basis.
This fact is connected with the vector coupling remov-
ing the m degeneracy. The symmetry or quasiparticle
exchange properties of Bt of Eq. (10) are given in
Eqs. (16)—(17) of I. The original basis of At and Bt
is redundant and would produce spurious states in the
secular problem. To eliminate this redundancy we have
to orthonormalize this basis of At and 8~ by the
Schmidt procedure, as described in I for the case of one
subshell, and to assure the correct dimension of the
basis (and of the secular matrix). In the next step,
we eliminate all the spuriousness due to the nucleon-

"(at)iUi&g)=2a g gj(abed)(jojb, mamptJ'3P)'
J'Nr X(j.ja,

m„mcus

1'M')

jj (acdb)(j,j,; m —m„i J")V")
X(jaj4, m4 mvi J"M")s,sv, —

where s = (—)7'o ~~. Q&i can be written also as

IZ„=—-', P (—)j'+24' P gj (bacd)(N, N4N, va v,vcv,cca)—
8'j(f' &(AJ.~ t(bu)Ag ~ (cd).

0jss~' =g aja(p—p')A jss'(Pp')+Z Z
(a) r&r'&s&s'

Xb(a)a(rr'ss')(IS( )jsrt(rr'ss'). (13)

Our basis of a complete set of operators orthonormal
in the sense of the quasiparticle vacuum is defined here
as

A jsrt (aa') = rcj(au') A jsrt (aa'),
Lrcj(au')]-2= 1+(—)jb.. . (14)

(where with a'= a only J= even are possible, as is seen
from the symmetry properties of the At), and

(ft(a) j3 '(bb'«') = Zc(a) j"—' "(bb'«')
JlJll

Xg(ji j»)jsc"(bb cc ) i (15)

where the (real) coeKcients c( &

j(j'j"& are determined
from our numerical orthonormalization procedure. The
ordering (() of the single-nucleon levels (subshells)
avoids repetitions of the same sets (pp') or (rr'ss').
In fact, we have now

(0 lA j.sr (tt')A jsc"(ss') l0) —8j jhr 248, (8, (

and

(01$(v)j &(c (aa bb')(8( )jsct(cc dd ) l0)
~aP~ J' J~M'3l~ac~a' c'~bd~b'd' ~

From Eq. (11) we obtain the following system of equa-
tions for the coefficients a and b:

(E,+E, —E)aj(ss')+ g 8j(ss'tt')a j(tt')

+Z Z +( )j(ss PP"")
(a) p&p'&r&r'

Xb( )j(pp'rr') =0, (16a)

(Ev+Ev +E„+E„E)b(a&j(PP'rr')—

+ Q r( &
j(ss', pp'rr')uj(ss")

s& s'

+Z Z B(.v»(pp'«' tt'su')
(P) t&t'&u&u'

Xb(())j(tt su') =0, (16b)
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where

~&-)/(»', pp'«') = Z—«-)/""(pp"i')
(J/ J//)

XF&/ / )/(ss pp rr ) (17)

«&)&(Pp'«'tt'uu')= Z Z c&s»' "'(PP'«')
J/ J// I/II/

XG&// )/&r. r )(PP'rr', tt'uu')c& )/&r'r")(tt'uu'). (18)

The coeKcients 8, F, and G contain all the informa-
tion on the interaction V(1,2) and are given explicitly
in Appendix B in terms of f a,nd g of Eq. (6) of I.

If we write the Heisenberg equations of motion for
the operators {O.t)={A,t,B,") in their commutator
form EO,t=(H, O,tj, and linearize them by applying
them to the quasiparticle vacuum IO) and by contrac-
tions of the appropriate n;nit (replaced by b,;), we
obtain equations equivalent to Eqs. (16a)—(16b). The
corresponding (Hermitian and real) secular matrix is
identical to that determined by Eqs. (16a)—(16b).

For a given nuclide we determine first its ground-state
chemical potential X, the energy gaps 6, from all the
single-particle energies {E,o) to be considered. We then
assume the parameters ()&,E„E,) to be valid for our
excited states. Given a realistic V(1,2) and the cor-
responding gJ we could, in principle, solve the coupled
system of equations for l&, t),„and {E,) in a self-consist-
ent way in the sense of the method of Hartree and
Bogoliubov. This would be a formidable task. in itself
and not essential for our problem. Instead, we employ
the usual pairing-force results as, e.g., in Ref. 8. This
means neglecting the "blocking" effects throughout.

For a given family of states characterized by spin-
parity J and a given "residual" interaction potential

V(1,2), we calculate the coeKcients h, P, and g and
thus, finally, our (Hermitian) secular matrix. By
diagonalizing it, we 6nd the relevant energies E and
the corresponding eigenvectors {&t/,b& )/ ).The latter
are orthonormalized as

& ~ '*(PP')~ '(pp')+Z Z b ~ '*( r'»')
(a) r&r'&s&s'

Xb& )/s(rr'ss')= b)/)/ . (19)

One of the difhculties of the present approach is the
true particle- (nucleon-) number nonconservation and
the related spuriousness e8ects. This particle-number
violation due to the Bogoliubov-Valatin quasiparticle
transformation is a difhculty even in the usual simple
RPA method. The changes in the effective Anal occupa-
tion factors for our higher excited states, relative to the
first excited states of the RPA, should most probably
mean significantly greater modifications of the ground
state X and 6, than would be the case for the lowest
excited (RPA) states. Instead, as in the standard RPA
calculations, we preserve here in all our excited states
the ground-state values of our parameters X and 5,.
The spuriousness due to the particle-number non-
conservation should be, in general, more dangerous in
our case than what it is for the 0+ states in the usual
RPA. One can 6rst examine this spuriousness by cal-
culating the fluctuations of the expectation values of
the nucleon-number operator N about the correct
number Eo for each of the obtained eigenvectors
I)P/o/v). This fluctuation is given by

$/+ Q /~&
I
+

I +/ j/E) @go—Q g &v—2 (20)

where (with g and b real)

«e&)i/s
I
cV

I
@/)i/s) = J)'to+ 2 (u '—v '+u '—v,')

I
a&E(ss')

s& s'

+g p (u '—v '+u '—v '+u' —v'+u' —v')Ib& )/~(pp'rr)I'
(~) p& p'&r&r'

4 Z Z Z L2nuvvv&t& (rr )u& (rr )4v'b&'ob&"J'+j u v o/ (pp )rtJ' (pp )b '4"ob/'/ ( )
(n) J'J"p& p'&r&r'

Xi'i"u„v,o (Pr')u'(Pr')W(7'„J'q'„J"; J„J) b(1+(—)/'b )(1+(—)/"b„,.)(1+(—)/b „b,„)$

Xc& )/&
' ")(pp'rr')b& )/ (pp'rr'). (20a)

The quantity 8/ /Eo and the corresponding fluctua-
tions of N' measure the relative contamination of our
state (E,J) by the parasite states.

The most appropriate and convenient method to
handle this diKc".@~Appears to be the projecting most
of the spurious k. ut of the secular matrix before its
diagonalization. In fact, in our numerical work we have
applied this technique and we present below the results
obtained with the projection method along with those
where the parasite kets have not been eliminated. A
similar projection method, but for modes involving pro-

ducts of an odd number of quasiparticle operators, has
been applied by Kuo, Baranger, and Baranger" to a
shell-model calculation of the odd tin isotopes.

The method requires an explicit construction of the
most important spurious kets to be eliminated. The first
obvious one of such kets is the well-known 0+ parasit-
the only one such in the usual TD (RPA) calculations

"T.T. S. Kuo, E. U. Baranger, and M. Baranger, Nucl. Phys.
79, 513 (1966).
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M= (1—P)M(1 —P), (25)

where we have P;,= 4i,ii;* for eac—h ~4',p). (In the case
J =Or, ~+.») also is projected out with the corres-
ponding P;,= f',f,* )The . ~+,p)'s are automatically
eigenvectors of M and correspond to zero eigenvalues.

Spurious kets of the type (X E.;so )S& &~2—rt (CC'dd')

X
~
0) contribute mainly in higher orders, and are less

important in our case.
A study of E2-transition probabilities and the respec-

tive branching ratios for our collective states is of great
importance. Unfortunately, in the case when only
neutron subshells are involved, a completely micro-
scopic calculation of the transition probabilities is not
possible, and one has to introduce the neutron effec-
tive charge. The contribution of the core protons to our
collective states is still an open problem. ' "Only when
the complete A-particle SRPA problem is solved can

"In the case J=O there would appear the ground state itself
(0) as an extra component of (4',p4, 44(cc')); however, this com-
ponent cannot give any contribution to our excited states since
they are automatically orthogonal to ~0). For J=O we must pro-
ject out also the spurious ket = itr. p'(1V2 —Nos)

~
0)."A recent paper by Campi-Benet and Lombard (Ref. 15) in-

dicates that such a contribution of the core protons is not at all
negligible in an RPA calculation of the 6rst excited states of some
even-even nuclei."X.Campi-Benet and R. J. Lombard, Phys. Letters 19, 502
(1965);Fuel. Phys. 83, 303 (1966).

of 0+ states for even isotopes:

I+sp2) Ãsp2(& —Xo) IO) =Z. t.&oo'(aa)
I o) (21)

Where f,=—V2—E,psj 24, Ps; gasps iS fOund aS Xsp22

=2(g, j, 22,42p, )2'. The important four-quasiparticle
spurious kets are then immediately identified as

4, Jpr(cc )) 1V 4,j(cc )
X (X—Ar..)Aqsrt(cc') i0), (22)

where X..—=Pbj bspb2 ps—2+24,2 p—.2+u, ' Th.e number
of such kets is equal to the number of the pairs (CC')

with C&c'. Equation (22) can be expressed in the form

(j~0)12

p4, jpr(CC ) ) iV p4, J (CC') Pb jbtcb'VbB (p J') J'44

X (bbcc') ~0). (23)

These kets can now be expanded in terms of our
orthonormal complete basis {S,t) of Eq. (15) as

sp4 jsr(cc')) =p; l;g( cc'),(8;jsr ~0, ), (24)

where i is a shorthn. nd notation for the set of indices of
Eq. (15), (n), rr'ss'. It is obvious that there are only
very few coefficients rl, NO for each set (bbcc') of Eq.
(23).

We wish now to project our total secular matrix M
of Eqs. (16a)—(16b) onto the subspa, ce free of all the
~+„),i.e., a subspace of sta.tes which are orthogonal to
all the

~
+,p). This is done simply by solving the secular

problem of the matrix:

we perform truly microscopic calculations of the transi-
tion probabilities.

For an electric & transition, the corresponding one-

particle operator can be written as

M(E))=—eb' Q (C4'~r"Vb„(84tP) ~n)C tC,
ae'

(26)

where the c's are the true particle operators. After the
canonical transformation, 3f for P /0 can be rewritten
in the form:

For the case of a general transition between two
states ~%'~br ) and ~%'~ sr '), wefind

(egprs
~
M(E),f4)

~
+g sr s') = (J'):M'I4

~
JM)

(QJE~~M(pp ) ~~+&, &') (29)

where the reduced matrix element (~~M~~) is given in
terms of u's and b's in Appendix C.

3. NUMERICAL CALCULATIONS AND
DISCUSSION

We have performed numerical computations for
excited states of even isotopes of tin from 116 through
124. The states in question are of J =2+, 4+, and 0+.

For the nucleon-nucleon intern, ction potential we
take a simple zero-range force:

V(1 2) = Vpb(rt 2'2) (ao+a 4rt'422) . (30)

For this force we calculate the reduced antisym-
metrized matrix elements g~ and fq(abed) defined in

Eq. (6) of I. Using the notations of Arvieu, 'we can
show that in the case of our V(1,2) of Eq. (30) and
for identical nucleons (our neutrons),

gJ(abed) = —Vp'2[GJ''(—abed) (—' "Gz—'(abdc)j-
—=—Vp'2 (—) ' +'Hgb (abed),

Vp' =—Vp(ap —3a,), (31)

where Gq'(abed) is defined on p. 87 of Ref. 8 apart from
a parity factor to be multiplied by and equal to x b,&

here 2rsbss= 22(1+( )s+tb+4s+4&—)

—M(~&, i )=Z M...(~)&24...[A,„t(a'a)+(—)'-
ae'

XAb-„(a'a) j—2(—)"+"' "&..Ab„(aa')), (27)

where the explicit form of M„()), 24„, and p„ is
given in Eq. (55) of I.

The most important and the simplest transitions are
the ones from our collective states

~
+~pc) to the ground

state ~0). For the E) matrix element we find in this
case the expression:

—(4'qpre
~
M(EX,l4)

~
0)= bbgo„br g 24„.age(ss')22~(ss')

s(s'

X [M, ,()i)—(—)"+"' ~M.. () )7. (28)
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In the notation of Ref. 8 we And for f~,

fg(abed) = —Uo'2[H~'(abed) K—z'(abed) $
Vo—'2( )'+—'o+'+~' ~sK-~'(abdc) (32)

where H~' is defined on p. 87 of Ref. 8, and K~'(abed)
= ( )—'+'G~'(abed) A.fter some geometrical transfor-
mations f~ can be put in the explicit form:

fz(abed) = —Vo'( )"+"—+"+"m a.sFo(abed)j jsj,j s
y3' 't-( —)'~'"+'+"+'o (jg joy

rs—is
I Jo)(j,jd i sr —ss

I
Jo)

+(—)"+"+'(j.Jo; s s I
J1)(j.js; s s I

J1)3 (33)

OQ

Fo(abed) = —R—,RsR,Rsr'dr.
4~ o

The functions fz and gz are related by

g (cabd)= —P 2"W(j jj.j;J'J)f (abdc). (34)

For the case of the tin isotopes, we have had available
to us all the interesting radial integrals Fo(abed) of a
zero-range V(1,2) involving single-particle wave func-
tions of a Saxon-Woods shell-model potential. These
Saxon-Woods (SW) wave functions and single-particle
energies were computed numerically at Harwell for
parameters appropriate to Sn"'." The SW potential
vrith a spin-orbit part has the depth parameter Vaw
:=44.5 MeV, the usual spin-orbit parameter 'A= 35, the
diffuseness parameter u =0.67, and the radius parame-
ter ro= 1.3 F.

The 6ve single-particle subshells (levels) we con-
sider are 2d5/2, 1g7/2, 3s~/2, 2d3/2, and 1k~~/2, with the
respective binding energies 9.85, 9.33, 7.97, 7.52, and
6.90 MeV. The effect of any variation of our final
results with any reasonable modihcation of the above
single-particle energies is generally small. The total
number of all the integrals Fo(abed) involved in our
problem of the 2+, 4+, and 0+ states is 70.

The zero-range force parameters are determined as
follows: Let us introduce the normalization as+a, = 1;
then we consider the following exchange force mixtures:
(1) Wigner (Serber), ao ——1, a,=0; (2) Rosenfeld,
ao ——0.9, a,=0.1; (3) Ferrell-Visscher, ao= 0.9085,
a,=0.0915; (4) Soper, ao ——0.865, as=0.135. A reason-
able effective depth parameter Vo' should be of the
order of several hundred MeV. In practice it will be
our only adjustable parameter. The value equivalent, in
the sense of the potential volume, to the Gaussian
potential of Arvieu would be about 950 MeV F'. In
our computations we vary Vo' between 650 and 950
MeV F'. The meaning of Vo depends, then, on the
value of the factor (ao—3a,), which is in our respective
cases: (1) 1, (2) 0.6, (3) 0.634, (4) 0.46 and, banally, (5)
for a mixture considered by Vinh Mau, " 0.487. The

E. Bradford {private communication); we are greatly in-
debted to Dr. Bradford for evaluating for us the radial integrals
with the Saxon-VVoods wave functions.

» N. Vinh Mau, thesis, University of Paris, 1963 (unpubhshed).

equivalence in the sense of an average If'
0 would imply a

Vo' even smaller than 700 MeV F'.
It is interesting to compare our final results with

those obtained with the harmonic-oscillator shell-model
wave functions for our value of Vo' and our {E„'}kept
fixed. The spring constant of the harmonic oscil-
lator can be taken as that of Arvieu: n= (M~o/0)'l'
=0.454 F '. Our first excited levels can be compared
with those of Arvieu' in the sense that his Va' should be
of about 950 MeV F' and the "unperturbed" single-
particle energies slightly modified (the levels 2ds~s,

1g7/2 3s] /2, 2d3/2, and 1h~~/2 are 6xed in Ref. 8 as 0, 0.4,
2.3, 3.1, and 3.4 MeV, respectively).

In fact, in order to determine our {E„},N., and e„,
we have just employed the respective numerical values
of Ref. 8 throughout in the main bulk of our numerical
work. In order to justify this assumption, which is
somewhat inconsistent with our radial integrals in the
case corresponding to Ref. 16, we have performed the
following test calculation. We assumed only the gap
parameters 6, to be those of Ref. 8 (these are generally
rather insensitive to the choice of the pairing force
within any reasonable limits), we took the Saxon-
Woods single-particle energies {E„'}of Ref. 16 as
explicitly given above, and we computed the cor-
responding {E„},I„, and e„. The phases of u„and e„
determined as in Ref. 8 (es„„&0and ss„„(0).rs

In fact, a complete calculation of the 2+ and 4+
states for this model for Sn" shows that our results are
indeed relatively insensitive to the choice of {E„}.

The dimensions of the secular matrices for the 2+,
4+, and 0+ states are 175)&175, 204&& 204, and 55)&55,
respectively. There is an excellent approximation for
several of the lowest lying states in the cases 4+ and 2+,
reducing considerably the dimensions of the respective
matrices. In our results, tabulated or described below,
we give for each J" the energies of several of the lowest
lying levels (1) without and (2) with the projecting out
of the spurious kets, and for the radial integrals with

(a) the Saxon-Woods wave functions" and (b) with
the harmonic-oscillator wave functions.

For each case (2) we give the percentage weight of
the b components of the corresponding eigenvectors (the
four-quasiparticle terms). This indicates the extent to
which a state can have a two-phonon character.

The parameters {E„},I„, and s„have the numerical
values of Ref. 8.

A. The 2+ States

In our search of the best value of our parameter Vo'

of Kqs. (30)—(31), we Gnd Vo'= 700 MeV F'. Increasing
Vo' by 50 MeV F' lowers the energies for case (2) in our
Table I by less than 14%, and reducing Vo' by the
same gives about the same effect in the opposite direc-

Ths Qhoicc of signs is essentia] @p pzplzip&P ip Ref, 8,
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TABLE I.Results for the four lowest lying 2+ states of the quasi-
particle second Tamm-Dancoff {QSTD) calculations for even
tin isotopes. The (best) value of the zero-range force parameter
is V0'= 700 MeV (F)'. The radial matrix elements are those with
Saxon-Woods functions' (case a); the values of fL&,), N,„and v„
are those of Ref. 8. The spurious kets of Eqs. (21)—(24) are (1)
not projected out or (2) projected out. The percentage of the b
components of the respective eigenvectors is indicated for case 2.
The QTD levels (with no b components) are those of Ref. 8
(Table 9b). The observed level energies are quoted from Ref. 7.

Level energy (MeV) QTD
b compon- l.evels ofJ =2+ (1) No (2) With ents (/&) Ref. 8

A projection projection (case 2) (MeV)

Observed
level

energies
(MeV}

116

120

122

0.40
1.24
1.42
1.56

—0.06
0.78
1.03
1.40

-0.41
0.42
0.77
1.29

—0.66
0.15
0.59
1.24

—0.85—0.06
0.47
1.22

1.49
2;05
2.28
2.49

1.29
1.95
2.04
2.38

1.18
1.81
2.09
2.36

1.13
1.76
2.17
2.33

1.10
1.74
2.19
2.39

19
27
42
23

14
24
40
78

12
23
40
73

10
20
60
56

8
17
92
25

1.56
2.62
2.90

1.36

$.27

1.23

1.21

1.291
2.108
2.224

1.229

1.166

1.142

1.132

&See Ref. i6.

tion (increasing the energies). The dependence of the
lowest lying energies on Vo' is almost linear in the
critical region of our Vo (attractive potential). With a
quite reasonable value of Vo' (700 MeV F') we obtain
a satisfactory agreement ~ith the lowest lying 2+

states. The only second 2+ state observed to date is that
of the A =116 isotope at 2.108 MeV', for this we find
2.05 MeV with our model. The general trend of the
variation of the energy of the first 2+ state with A is also
consistent with our model.

From the first column of Table I (case 1), we see
that the spurious kets of Kqs. (21)—(24) must be
absolutely projected out in the sense of Eq. (25) in order
for any reasonable results to be obtained at all.

Much less satisfactory results are obtained in the
case when harmonic-oscillator radial wave functions
are employed (with the parameter (x of Ref. 8) in the
place of our Saxon-Woods radial wave functions in all
the radial integrals. If the same zero-range force is
employed with Vo' ——700 MeV F' we find the following
first four 2+ level energies of the A=116 isotope: (1)
without projection: 0.32, 0.69, 1.37, and 1.44 MeV and

(2) with projection: 1.35, 1.69, 2.28, and 2.43 MeV. The
spacing pf t'he 6rst. iso levels is much too small. This
situation persists also for the other isotopes (A &~118).

Proyn the third column of ppr Tp,bie I, we see the

percentage weight of the four-quasiparticle components
in each of the eigenvectors (case 2).

Generally (for all the values of A), the eigenvectors of
the first 2+ states are dominated by the following com-
ponents: A t(11/2, 11/2), At( —',,2), and At(ss, ~8) (for
A=116 the respective u components are: —0.660,—0.493, and 0.304). Similarly, the most important
components remain the same for the second and the
third 2+ states; only the b components become in-
creasingly important, in particular b(i&2(s, ~,11/2, 11/2),
b(2&2(32, 3~,11/2, 11/2), and b(mi2(-', Bs,11/2, 11/2) where (1)
stands for (j'j")=(02)and (2) for (J'J")=(20) in our
case.

As is seen from Table I the QTD approximation
(b=0) is definitely invalid for the third and fourth 2+
states.

It is impossible to give here numerical tables of all
the eigenvectors obtained; such tables or any part of
them are available from the authors upon request.

B. The 4+ States

The numerical results for the 4+ case are obtained
for the same models as those of the preceding 2+ case.
The remarkable feature of these is that the same value
of Vo' ——700 MeV F' gives here again a satisfactory
agreement with the data. For the A=116 case, the
first four 4+ states have been observed7 as given in
Table II. All the important general features of the 2+
results described above persist in the 4+ case.

The first four 4+ levels of Sn"' observed~ at 2.391,
2.531, 2.803, and 3.047 MeV are rather well reproduced
by our levels at 2.15, 2.65, 2.95, and 3.01 MeV cal-
culated with the Saxon-Woods radial wave functions
and with the same parameter values as our 2+ levels.
The dependence of our 4+ results on Vo' is about the
same as that of our 2+ results described above.

Here again our model is consistent with the A
variation of the first 4+ state. The projecting out of the
spurious kets is necessary, as in the 2+ case.

The corresponding results with the harmonic-
oscillator wave functions of the same a parameter
as in the 2+ case and with the same Vo'=700MeV F'
are in the 4+ case even better. For the first four 4+
levels of Sn"' we find (1) without projection: 0.92, 1.57,
1.82, and 2.04 MeV and (2) with projection: 2.14,
2.49, 2.92, and 3.18 MeV.

The percentage weight of the b components in our 4+
eigenvectors is generally high. For the first two 4+ states
it is higher than for the first 2+ states, which is easy to
understand. On the other hand, the first 4+ level
definitely cannot be described as a two-phonon-
type state. In fact, it is dominated by the A t(11/2, 11/2)
component (a(11/2, 11/2) =0.890 in Sn»'). The
most important four-quasiparticle component is b~04~4-

(-,',—,',11/2, 11/2). For Sn"~ the second, the third, and
the fourth 4+ levels are dominated by our components:
o(2 2) db(40)4(2 2 2 2) (i(2 2) db(40)4(s 2 11/2 1 /2)
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TABLE II. Results for the four lowest lying 4+ states of the
QSTD calculations for even tin isotopes. The (best} value of the
zero-range force parameter is the same as in Table I: V0'=700
MeV F'. The model, all the parameters employed and the meaning
of all the results presented are as in Table I. The QTD levels (no
b components) are those of Ref. 8 (Table 9a). The observed level
energies are quoted from Ref. 7.

Jn. —4+
A

Level energy (MeV)
(case e) b compon-

(1)No (2) with ents (%)
projection projection (case 2)

QTD
levels
Ref. 8
(MeV)

Observed
level

energies
(MeV}

116

120

122

124

1.07
1.74
1.90
2.19

0.59
1.74
2.01
2.03

0.27
1.78
1.92
1.96

0.02
1.83
1.87
1.93

—0.16
1.79
1.84
1.94

2.15
2.61
2.95
3.01

1.87
2.81
3.12
3.37

1.78
2.76
3.39
3.41

1.74
2.71
3.33
3.65

1.75
2.65
3.41
3.70

20
23
58
65

17
96
20
16

15
98
96
21

12
99
98
64

10
99
99
88

2.44
3.16
3.49
3.75

2.30

2.27

2.25

2.22

2.391
2.531
2.803
3.047

2.278

2.183

and a(-,',—,'), b&s4&4(,'P„11/-2,11/2), andb&4s&4(sv, —,",11/2, 11/2),
respectively.

We can conclude that, although the simple QTD
(and QRPA) approximation (b—=0) are definitely too
crude as the four-quasiparticle components are quite
appreciable, a naive two-phonon description of the 4+

states cannot be justified either.

C. The 0+ States

Unfortunately, no satisfactory results could have
been obtained with our model for the 0+ states. In
order to fit the first 0+ level of Sn"6 observed~ at 1.762
MeV, we have to reduce our Vo' to the value =350
Mev F', which appears unreasonable (the Saxon-

Woods wave functions employed. and all the other
parameters are the same as before, spurious kets pro-
jected out).

The difhculty with the 0+ states may be due to one
or to several reasons. The eBective reduced matrix
elements are generally large in this case and capable of
giving relatively strong couplings between various
diferent configurations. It is possible that in this con-
nection the role played by the core nucleons (cf.
Ref. 15) left out in our treatment should be particularly
important in the 0+ case. It is also possible that six-
and more-quasiparticle excitations are particularly
important in this case (with such modes the higher
order spurious kets, mentioned in the text but not pro-

jected out by us, are to be eliminated). Finally, it is
possible that the ground-state correlations in the sense
of the QSRPA (the "de-excitation" or the "backward-
going" graphs) are particularly strong in the 0+ case
Lsee, however, Note added in proofj. A more refined
theory including these points should be applied here,
it seems.

D. Final Remarks

Our microscopic model seems to give a satisfactory
description of the low-lying 2+ and 4+ states and a poor
description of the 0+ states. It is evident that while the
simple QTD (QRPA) description of the second, and
higher 2+ and 4+ states' cannot be justified, a naive
two-phonon description of such states is also hardly
possible. The two- and four-quasiparticle excitations
have to be treated on the same footing. On the other
hand, the question of the numerical stability of our
results against the inclusion of six- and more-quasi-
particle terms (the convergence of the series of the suc-
cessive higher QTD approximations) remains unsettled.

The problem of a possibly important role played by
the left-out core nucleons discussed in Ref. 15 at the
QTD (QRPA) level remains open. Unfortunately, the
relevant computational difhculties are prohibitive at
the QSTD level.
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Zoic added im Proof. (1) We do not have to project
out the spurious states of the center-of-mass motion in
our case. In fact, the only single particle (s.p.) state of
negative parity is 1h»f2, and the maximum j of the
states of positive parity=~, ' consequently, we cannot
have any pairs coupled to J' =1 present in our
'( )JM ~

(2) We have studied the effects of the ground state
(g.s.) correlations by mixing in the BCS (or the q.p.
vacuum) ~0) itself with our St ~0) in the J' =0+ case.
I or Sn it means working with matrices of 56)(56 in-
stead. of those of 55&(55.The said coupling follows from
Hp4 of Eq. (6). Similarly as in Ref. 3 for Ni, we find only
a very small shift (lowering) of our Sn g.s. energies due
-to these g.s. correlations.



OTTAUIAN I, SA VOIA, SA WI C KI, AN D TOMASI N I

All the (seven) described spurious kets are projected
out before diagonalization. All the s.p. parameters are
as in Sec. 3A,B, For Vo'=350 MeV F', 2=116 and
the Koods-Saxon s.p. wave functions we 6nd the lower-

ing of the g.s. energy to be only = —0.07 MeV and the
first four excited 0+ levels at 1.71, 2.44, 3.52 and 3.88
MeV; the first excited 0+ observed' lies at 1.762 MeV.

We believe that the discrepancy between our Vo' here
and that of Sec. 3A and 38 is due mainly to the particu-
lar inadequacy of our zero range force for the 0+ states
rather than to the other reasons discussed in Sec. 3C
(cf. also, e.g., the "extra" monopole potential term in
Ref. 3). Our results for finite range and realistic forces

including also the B(E2)- and Q2+-values will be
published soon.

One of us (J. S.) is indebted to R. Arvieu, V. Gillet,
B. Giraud, M. Jean, G. Ripka, and M. Veneroni for a
helpful discussion of these questions.

APPENDIX A

Ke present here some commutators between the
operators defined by Kqs. (1), (2), and (10). We use
everywhere the shorthand notation.

4 (ab, cd) =b.,b—&~ ( )—/—+/'+&"b. ~8v,

These commutators are necessary to derive the equa-
tions of the main text.

&&A//z(aa'), As. sz t(bb')]= 4 /"5szsz 8j('aa', bb')+ JQ 2'(JJ";I)/I, I)/I' —3II I J'M')

&&{I:~~'&lf (Jj~J'j&'i6 J")~~sr sz, (ab-') j (——)/+"+'")a~ a'j
—(—)/+&&+&&'p ~b'j+( )&+/o+/ '+&'+/a+/i [a~« ~ b ~ b'1}

LA ( a')A (bb'))= —J'Q J"(J'J";&V',3II—3E') old){I t), ,lf'(J'j, J'jv, j,J')A „,(bg')j

—(—)""'"La~a'j}, (»)
[A/sz(ga'), 8 (/, »)/. sz t(bb'cc')]= (JzJ2, M, 3I'—J/I I J'I/I') b//, v/(ga', bb') A/, /z, jzt(cc')

+(J&J2, I(/I' J(I, 3l
~

J'J/I')4—»4(aa', cc')A/, ,sz szt(bb') Q(J"J—; M' —3f, 3f
I
J'J)l')

y {[&,(aa', b'c')(bc(J")b'c'(J) J'&bb'(Jz)cc'(J, )J')A, -,„~. ~t(bc)j
( ) /s+z&+z&'p ~ b'j (—)»+za+ze'p ~ c'$+ ( )&&+is+/) '+&a+/)+i c'Lb ~b' c ~ c'j}

+terms containing products of the type Atci. (A3)

Here the symbol ( ~ ) is defined in terms of a 9 jsym—bol as, e.g. , in I.
The terms omitted in the last expression are generally unimportant, and are not involved in the equations of the

ma, in text.

LA sz(«), 8&/, , ~ ~ (bb' c'))c= —JJ' Q J (JJ,MM ~J, M+M)
J// J///

+ (—)/~+»+/'(Ji ~ J2,' b ~ c, b'++ c'j+( )/'+& &+'&'+—&~+&")J'i~J 'b~ c~, b~ ~'cj}. (A4)

We give here only the expression for the main value of the commutator [8,8t) in the 3CS state because the com-
plete expression is rather complicated and unimportant for our purpose:

P(z s-) z(z z-)(aa'bb', cc'dd') = (0I I 8(/'/")JM(«—'bb') 8 &z z")/ &(cc'dd')]t 0)=4 z 4"z''0/'(aa cc )4. (bb dd )
+( )/+/'+s" 4 z—&/"z 4 («', dd') 4"(bb', «') {[8/ (aa', cd)—8/" (bb', c'd') (cd(J') c'd'(J")J

~

cc'(I')dd'(I")J)]
+( )z+;,+;..+z +,~+,~.tc~c d~d j} (A.&)

In particular, we have for the normalization factor of the S~ operators:

[N&/ / )/(aa bb ) I =P(/ s )/(s s )(a—a~bb aa bb ).

APPENDIX 3
We give below the explicit form of P, F, and G (in terms of g and f) which determine our secular problem.

p ( /sos') = 8 {Du,u, ru&u&~+v, v, ~v,v&~)g/(ss ft )+4vqu, ~v&up f/(ss 0 )$
(—)/a+is' &$g ~ s j—(—)2t+/(' /[] ~ ( )+( )ia+ia'+it+/'t'[g ~ s~ (~ ]~1} (111)
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and for h of Eq. (16a) we have: Bs(ss'tt')=Is(ss')Ns(tt')Es(ss'tt');

F&s q.&s(ss; pprr)={F&J q &s(rs,pprr)b„, ( —)—+»"F&ss"&s(r s,ppr »)8„,+(—) + +

X[F&~"~&s(p" »»'PP')4~ (—)—'+'"+'"'F& "
&

(P' '~ 'P'P)b ]}—(—) +"+'"{s~s'} (&2)
where

F&s s-&s(rs, pp'rr') = 2m—s(-»s)J'J"W(J'j,J"j»j„J){fs (p'pr's) ( )~—'+' +' '[ u,—u,&&~ u, +e,&&~u~ &&;]

+fr c(pp r s)[ug'Dip&urn seuy&&y''ere]+gJ'(pp r s)['cg&&y&&yours uguyuys&&ps]} ~ (Q3)

G&~,~-&~&» r-&(Pp'rr', tt'uu') =6J r 5~. I"b~ (rr'uu')Eg (pp'tt')+( )+—'+ "bs r bg-r bs-(rr', tt')EJ (pp'uu')

+b sz. b s. ibad. (PP'tt')Es (rr'uu)+( —) + + bsr-bg-r bg (PP,uu)Es-(»r tt) —(—) + +

&& {[E~(Pp't'u') «u(J")t'u'(J') J
i
«'(I')uu'(I") J&4-(«',«)]—(—)"+'"+'"'[u~ u'] —(—)'+&''+~'[t ~ t']

+( )I"+i~+»~+&'+jr+i& [u~ u~. t~ t~]} {J~~ J'~. »~ p»~~ pi} ( )J+I'+I"

&& {[Er(P'r'«')(Pr(I")P'r'(I') J I
Pp'(J')«'(J") J')b~ (P» uu')] —(—)""'"'[»~ r']—(—)"'""[p~ p']

+ ( )s"+'"+'"—+~ '+' +' '[r ~ r', p ~ p']}—{I'~ I";t ~ u, t' ~u'}+2 z {[Q&a z"
& &r r"

& gz (Pp'rr', tt'uu')

XE;(p'r t'u') —(—)~"+~'+~' Q&s. &-& &i r-& z, (pp'r'r, tt'uu')E;(p'rt'u') —(—)~'+~'+~' Q&, ,„&&r,,„»,(p'pr»' tt'uu')

XEj(p» t u )+( ) " " ~ ~ Q& j'~ J'~~& &I'I~'&s j(p p» r tt uu )Eg(p»t u )] ( ) +~++&+ [u ~ u ]
( )r'+~i+~~~[t ~ t~]+( )I"+ju+»„i+p+j(+jt~[u ~ ui t~ ti]} (Ir4)

where:

Q&z z & &I r &zz(PP'rr', t t uu)=Ps (Pr(J')P'r'(J) J~ PP'(J')rr'(J") J)bs (Pr tu)(tu(J')t'u'(J) J & tt'(I')uu'(I") J& (BS)

APPENDIX C

The reduced matrix element of the E&&transition operator M(EX) for &&NO of Eq. (29) can be put in the form:

&+~'I IM(E& ) I I
+s '&=»J' 2 2 aJ"(aa')a~ '(bb')u~(«')N~ (bb') {[b"~ W(J'i ~ & j.; j~J)~~M~.(&)]

a&a b&b'

( )—'+'—+'"La a'] ()—~+ b+ ~'[b b']+( )'+"—+'"+'+"+"[a a" b b']}
—J'(J) 'Q Q Q Q ag (aa')I g(aa')b&. &z (bb'cc')c&.

& g & ' "(bb'cc'){bis,b~»b~(aa')cc')u„, M„,(y)
a J1,Jr a& a' b& b'& c& c'

+(—)'+'+"»~.b» b~(aa' bb')u- M- ( )—[(—)'+'+"bz(«', bc) &bc(J)b'c'( )J'& bb'(Ji)cc'(J, )J'&u~„.M,...(&)]

+ (—) &+»+» '[b &-+ b']+ ( )»+& +h'[—c f-+ c']—( )~1+ib+ib'+—s 9+i +& [b ~ b ~ c ~ c ]}
—(—)'+'+"2 2 & 2 a~ ' (aa')«(aa')b&s&s' (bb'cc')c&s&~"'"(bb'cc') {bisbs'z bi'(aa CC )uppllEyy(&)

P JsJ4 a& a' b& b'& c& c'

+(—)'+'+"b» b~ ~.b~ (aa'»b')u- M- (~)—L(—)'+'+"4 (aa', bc)&bc(J')b'c'(&) J
~

bb"(J,)cc'(J,)J)„, M, (&,)]
+(—)'"'""[b~b']+(—)'""'"[c~"]—(—)'+ +"+'+ + "[b~ b'; c~;]}

b& &gg(aa'bb')b&s&s ~'(cc'dd')c&, &»~4&(aa'bb')c, , &» &(
'

d)d}2&( )z+z+i
c&&P J1JRJSJ4 a& a & 5& b c& c &d& d

&&C{LJi~sW(J&JJi&& i JlJ )8J2s4b J4(bb', dd') (W(J'j e"ja', jc'Js) (—)"'+'~' "&,I,~M,~,~(& )b„—(—)~s+&~+&'~'
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+(terms involving products of 2 nine-j symbols which are generally much smaller)

Here we have used the notation:
3II&,.(&&) =M.&,0&)—(—)" &+' &+' M&(X).

M, &,(&&) and u. b, &&.&, are defined explicitly in Eq. (SS) of I.
(C2)


