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The charge and magnetic form factors of H? and He?® have been calculated on the lines of Schiff’s analysis
for the problem. The three-body wave functions used for this purpose are the ones which had earlier been
derived in an exact fashion by the authors, using separable potentials involving central as well as tensor
forces. These wave functions are all characterized by a small S’-state probability (~19,). The calculations of
the form factors and their corresponding radii have been carried out (a) for pure s-wave forces, and (b) for
tensor forces, using the potential parameters of both Yamaguchi and Naqvi. It has been found that, whereas
the agreement with experiment for pure s-wave forces is poor, the inclusion of tensor forces improves the
results considerably, so that they fall short of experimental values by not more than about 109, which is
fully within the scope of hard-core effects. To account for the appreciable difference (~0.17 F) between the
charge radii of He® and H?, we require a positive value for the slope of neutron charge distribution, which
is in agreement with the recent analysis from inelastic electron-deuteron scattering. A reasonable value for
this slope, deduced from deuteron-scattering data, however, accounts for only about 0.1 F of this difference
in the two radii. The remaining difference of about 0.07 F could probably be ascribed to hard-core effects,
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electromagnetic violations of charge independence, and effects of exchange moments.

1. INTRODUCTION

HE experiments on elastic electron scattering
from H? and He? by Hofstadter and collaborators!
opened up a new possibility for probing into the charge
structure of the neutron,? the estimation of which had
hitherto been confined only to deuteron-scattering ex-
periments.® While theoretically the deuteron is a simpler
structure, scattering from the triton and He? provides an
independent determination of the neutron form factor,
which could be checked against the corresponding
deuteron-scattering data.

For such a program to be successful, the first condi-
tion is an accurate knowledge of the ground-state
wave function of H? and He?. Alternatively, such ex-
periments may themselves throw valuable light on the
structure of these nuclei if the neutron form factor is
otherwise assumed known. Indeed, such a point of
view was advocated by Schiff* in a comprehensive
analysis of the electromagnetic form factors of H? and
He?. This analysis, which is characterized by fairly
general formulas for the form factors in terms of certain
“body form factors” Fz and Fy, associated with the
“like” nucleon and “odd” nucleon, respectively, showed
how the percentage of the S state of [2,1] symmetry in
the ground-state wave function (called S’), could be
estimated from a difference between the observed
charge form factors. While the percentage of this S’

1H, Collard, R. Hofstadter, A. Johansson, R. Parks, M.
Ryneveld, A. Walker, M. R. Yearian, R. B. Day, and R. T.
Wagner, Phys. Rev. Letters 11, 132 (1963).

21, 1. Schiff, H. Collard, R. Hofstadter, A. Johansson, and
M. R. Yearian, Phys. Rev. Letters 11, 387 (1963).

3R. Hofstadter, C. de Vries, and R. Herman, Phys. Rev.
Letters 6, 290 (1961); R. Hofstadter and R. Herman, sbsd. 6, 293
1961).

( 4 L.) I. Schiff, Phys. Rev. 133, B802 (1964).
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state in Schiff’s earlier analysis was somewhat higher
(~4%,) than is compatible with data on the Gamow-
Teller matrix elements for H?® decay,® with the rate for
thermal-neutron capture in deuterium,® or with the
inelastic scattering of electrons from H3,7 it is probably
quite sensitive to the assumed (variational) shape of the
three-body wave function, and also to the details of the
neutron charge form factor. In addition, the effects of
Coulomb repulsion in He?? the possibility of small ad-
mixtures of the isobaric =3 state,® and the uncer-
tainties on the exchange-moment contributions!? could
further obscure the determination of the S’ state.
Indeed, with so many effects on hand, an “experimental
determination” of the ground-state wave function from
electron-scattering data, may well have lost its earlier
appeal 1!

We would like to present here an alternative approach
to the form-factor problem based on an accurate
theoretical determination of the triton wave function by
solving the three-body Schrodinger equation in terms of
two-body potentials, instead of assuming a variational
form for this quantity. As is now well-known, such an
approach is possible with the help of separable po-
tentials which allow an exact determination of the

5 R. J. Blin-Stoyle, Phys. Rev. Letters 13, 55 (1964).

6T. K. Radha and N. T. Meister, Phys. Rev. 136, B388
(1964); N. T. Meister, T. K. Radha, and L. I. Schiff, Phys. Rev.
Letters 12, 509 (1964).

7T. A. Griffy and R. J. Oakes, Phys. Rev. 135, B1161 (1964).
(1;6%5 H. Dalitz and T. W. Thacker, Phys. Rev. Letters 15, 204

9 T. A. Griffy, Phys. Letters 11, 155 (1964).

1oD. A. Kreuger and A. Goldberg, Phys. Rev. 135, B934
(1964); A. Q. Sarker, Phys. Rev. Letters 13, 375 (1964); Nuovo
Cimento 36, 392 (1965); 36, 410 (1965).

11 See, e.g.,, H. Collard, R. Hofstadter, E. B. Hughes, A
Johansson, M. R. Yearian, R. B. Day, and R. T. Wagner, Phys.
Rev. 138, B57 (1965).
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three-body wave function.!? The only limitation lies in
the choice of the potentials. For example, if the N-N
potential is approximated by merely the two effective
S-wave terms of different strengths (for the singlet and
triplet forces, respectively), it gives a rather poor
approximation to the wave function. On the other hand,
the inclusion of the tensor force in the T'=0 state
significantly improves the wave function, as judged by
the results on the triton binding energy, as well as the
percentage probabilities of various states.!® For further
improvement one also needs the hard-core effects,
symbolized by the change in sign of the 1S, phase shift
around 200 MeV. Unfortunately, the combined effect
of the tensor force as well as the hard core on the triton
wave function is not as yet available to us because of
rather formidable computational difficulties associated
with the appearance of four coupled integral equations
(which must be solved consistently with the require-
ment of reasonably small mesh sizes which are essential
for computational accuracy). The best we have at this
stage is a wave function which takes account of a central
plus a tensor force of the Yamaguchi form in the triplet
state and a central S-wave force in the singlet state.13:14
Such a combination yields an S’ state of the order of
0.8-1.0%, which seems to be in general agreement
with the data on inelastic-electron scattering on H3 and
He?,” as well as thermal neutron capture on deuterium.$
The D-state probability works out at 3-5%, depending
upon the potential parameters chosen, the lower value
corresponding to Naqvi’s determination. The P-state
probabilities are almost completely negligible. These re-
sults on P- and D-state probabilities seem to be in
general agreement with the analysis of Gibson and
Schiff.1s

These figures on the percentage probabilities which
have the advantage of dynamical determination from
fairly realistic two-body potentials (without the usual
uncertainties accompanying variational treatments),
also appear to be quite reasonable from a comparison of
contemporary analysis of three-body data.5—8 If, there-
fore, these figures are accepted as such, they give a
complete determination of the two-body form factors
F, and F;. This determination in turn can be incor-
porated in the general analysis of Ref. 4 to estimate how
H3 and He? form factors depend upon other (unknown)
factors. For example, the results for Fgs and Fy.s could
be quite sensitive to the neutron charge form factor
(F.®) for which the experimental data are still poor.!!
Thus the calculation of Fg* and Fre with “exact” three-
body wave functions could provide a useful probe into
F., or at least serve to bring out the sensitivity to this
quantity. This is mainly the point of view that is

12 A, N. Mitra, Nucl. Phys. 32, 529 (1962); C. Lovelace, Phys.
Rev. 135, B1225 (1964).
( 13 5% S. Bhakar and A. N. Mitra, Phys. Rev. Letters 14, 143
1965).

14 B, S. Bhakar, Nucl. Phys. 46, 572 (1963).

16 B, F. Gibson and L. I. Schiff, Phys. Rev. 138, B26 (1965);
B. F. Gibson, 7bid. 139, B1153 (1965).
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adopted in this paper for the calculation of Fgs and
F He?®.

In Sec. 2, we collect for convenience the basic formulas
of Ref. 14 in terms of which the three-body wave func-
tions are defined, both for effective S-wave potentials as
well as for the tensor forces. The probabilities Py, for
various L states are defined in Sec. 3 and explicit formu-
las given for their numerical evaluation. In Sec. 4, the
charge and magnetic form factors of H? and He?® are
expressed in terms of body form factors, on the lines of
Schiff’s analysis.* These body form factors are in turn
expressed in terms of the three-body wave function,
defined earlier in Sec. 2. Explicit formulas for the
S-wave and tensor-force cases are given separately in
Sec. 5. A suitable parametrization of the spectator func-
tions which enables the various form-factor integrals
to be evaluated by the Feynman method, is described
in Sec. 6, together with the results of numerical evalua-
tion of body form factors for several sets of potential
parameters considered. The broad procedure used for
the evaluation of the integrals is described in the Appen-
dix. Finally, Sec. 7 gives a discussion of the results,
with particular reference to the sizes of H? and He? and
the role of the neutron charge form factor in the analysis.
A brief comparison with the results of contemporary
investigations is also included.

The main conclusions are that while the tensor force
appreciably increases the size of the triton, over the
results of pure S-wave calculations, it still falls short
(by $10%) of the experimental determination for this
quantity, a gap which could probably be bridged by
hard-core effects. The difference between the charge
radii of H® and He? depends rather sensitively on the
slope assumed for F,, a positive slope being clearly
favored, in conformity with its determination from
deuteron-scattering results.

2. STRUCTURE OF THE THREE-BODY
WAVE FUNCTION

We collect here the essential features of the three-
body wave function obtained with tensor forces given
some time ago by one of us.* The properly antisym-
metrized wave function ¥ is expressed as

¥=1/V2)(4s"—A4"F). 21

Here ({',¢"") are the two isospin functions which for
H? are

§I= (1/\0)“1(%21)3— u3‘vz) :

== (1/V3)(z1 )i,
and #, v are the states of 7,= =1, respectively. For He3?
the corresponding ¢/, ¢’ have # and v interchanged. The
quantities (4,4”) are the corresponding space-spin
functions. We use a separable potential of the type
—M{®|V|p)=Nug@)g®)Ps P~

s f(p) f(P) P P4,

(2.2)

(2.3)
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where P,%(ij) are the triplet- and singlet-spin projec-
tion operators and P.*(i5) the corresponding isospin
operators having the following representation in terms
of the permutation operators (i5)s,-:

Po,-ri:%[l:t(ij)a.‘r]- (24)

The function g(p) is in turn taken (a) as a pure S-wave
function representing an effective central force, and
(b) as a function of Yamaguchi form?®

g0)=C(p)+872T(p)Sn:(P),

for a combination of central and tensor forces. Using
these forms of the potentials, and the definitions

(2.5)

—Pk=P¢+Pj, 2pij=Pi""Piy (26)
D(E)=3(Py*+ Py+P?)+ar?, 2.7)

and
ar’=ME;z, (2.8)

(4’,4"") have the following structures:

A’ X’
(Oronll) oo
where
02 [e(pi)PoHG (P
)P GHGPY], (210)

and (X',X”) are the two spin-} functions of (2,1)
symmetry, viz.,

X'=(1/V2)a1(asBs—asBe) ,

X”=—(1/\/3)(()'1-(73)X’. (211)

For completeness we list the representations of P,*(ij)
in the (X’,X"') basis, viz., Eq. (2.4) and

1/2
4+V3/2

-1 0
(23)a'=( ) .
0 1

For an S-wave triplet force, F(Ps) is a single scalar
function F(P;), but for a tensor force of the type
(2.5), it has the structure!*

Fij(Py)=F1(Py)+8712F5(P1)S:(Pr).

)

:!:\/3/2)

ang <13>U=<
—1/2

(2.12)

(2.13)

The coupled integral equations satisfied by the quanti-
ties (F,G) for the scalar case and (F1,F1,G) for the tensor
case are given in Ref. 14.

16'Y, Yamaguchi, Phys. Rev. 95, 1628 (1954); 95, 1635 (1954).
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3. PROBABILITIES OF VARIOUS ORBITAL
STATES

The probabilities of various orbital states must be
determined in terms of the spatial part of the wave
function. Denoting the spatial parts of various sym-
metries by ¢/’ ¥*), these quantities are easily
identified from the results of Sec. 2. For the pure
S-wave case, these are simply

Y'=D"YE)(Art+Art+45), (3.1)

¥'=DY(E)}V3(B;—B,), (3.2)

y"'=D"YE)(—Bi+3Bxt+3B5), 3.3)

Ye=0, (3.4)
where (with i, 7, k=1, 2, 3)

Ar=g:)F(Pr)+ f(p:)G(Ps), (3.5)

Bi=g(p:i)F (Pr)— f(pis)G(Pr) - (3.6)

There are thus only two types of amplitudes-symmetric
(S) and mixed-symmetric (S’). With an over-all
normalization to unity, viz.,

@+ I+ 1) =1, (3.7
the two S-state probabilities Py and Py’ are simply

given by
Po= (¢, 3.8)
Py=20'|¥), 3.9

noting that the two (2,1) states make equal contribution
to Py.17

For the case of tensor forces, the analysis is somewhat
more involved because of the presence of several P and
D states. Formally, we can, of course, define the quanti-
ties A, and By as in Egs. (3.5) and (3.6), but now the
functions Fy;(P) and g;(p) would still involve the spin
operators o; and ¢;. To identify the various states in
this case, we note that after the effects of these addi-
tional spin operators have been taken into account, the
resultant terms in the wave function can be arranged
according to spin-cum-angular structures. Thus. the
terms associated with

X' and X'=-—(01/V3)(e1 e3)X’ (3.10)

clearly represent the 2Sy/s contributions, which can be
further broken up into the symmetric and mixed-
symmetric parts; viz., ¢s* and (¢ s',¢s”), as for the case
of pure S-wave interaction. The terms involving

i(os-Q)X’, (o1 QX', (o3%01)-QX’,

where

(3.11)

(3.12)

are the various combinations of 2Py;; and “Py; states,

Q=pysxPi=ps x Po=p1o x P;

17B. S. Bhakar, Ph.D. thesis, University of Delhi, 1965
(unpublished).
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As it is not of much physical interest to classify the P
states in detail, it is convenient to lump them together
as an effective P-state contribution ¥p to the wave
function. Finally, there are three different “Dy;s terms
associated with the quartet spin function (in tensor
representation)

(3.13)

as explained, e.g., in Sachs’s book.!8 Again, since it is
perhaps unnecessary to classify them in further detail,
these will be lumped together under the single head of a
D-state contribution ¥p to the wave function. With an
over-all normalization of the wave function to unity,
the probabilities Py, of S, S/, P, and D states are re-
spectively given by!?

$onostonos—38u(or-a3) X,

Po=s'|¥s*), (3.14)
Po'=s |¥s )+ Ws" s, (3.15)
Py={yr|¢p), (3.16)
Py={Un|¥p), (3.17)

where
Pot+Py+Pi+Po=1. (3.18)

4. THE CHARGE AND MAGNETIC
FORM FACTORS

In this section, we closely follow the procedure of
Schiff4 in his corresponding analysis of the form factors.
The charge and magnetic form factors are defined as the
three-dimensional Fourier transforms of the expecta-
tion values of the corresponding density functions in
the H? and He? states. Assuming that the three nucleons
contribute additively, and ignoring the contributions
from various exchange moments, the density functions
are

3 3
pc= lec(r,r;) y PM= .EIPM(I,H) ) (4.1)
where
pc(f,l'i) = %(1+ Tiz)fchp(r_ ri)
+i(l—7) fan(t—r1), (4.2)
pu(0,r) =3(147:) 0 iat p frmag? (T —17)
+%(1 - Tiz)o'izﬂnfmagn (l‘-— I'i) . (43)

pp and p, are the static magnetic moments of the pro-
ton and neutron, respectively (in nuclear magneton
units), and r; is the position coordinate of the ith
nucleon. The functions f(r—r;) are the coordinate repre-
sentations for the various nucleon (charge and mag-
netic) form factors F(k), normalized, respectively, to

Fu?(0)=1, Fu™(0)=0, FppP(0)=Fpn,"(0)=1.
18R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, 1953). See also, L.
Cohen and J. B. Willis, Nucl. Phys. 32, 114 (1962).
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We now indicate the broad procedure for the evalua-
tion of the charge form factor of H?, which is defined as

Fal ()= X B, (4)
where -
S0P )= [ explkn vt esrurdooltr)
Xms(ry,rs,t3) Jdrdridredrs, (4.5)

and the multiplying 6 function on the left-hand side
representing over-all conservation of momentum, antici-
pates its appearance on the right-hand side as well, after
certain spatial integrations have been carried out. A
corresponding expression holds for the He? charge form
factor with ¥g:s replaced by yuet, except for a factor of 2
on the left-hand side of (4.5) to normalize FH<*(0)
to unity.

For the calculation of Fy(k), the transformation
r—r;=17, reduces it to

Fi(k)=Fu?(R)F1t(k)+Fo"Fi (k) (4.6)

where

S(K)Fi*(k)= / exp(ik- r)yust (ry,rs,13)

1471,
X 2 lI/H"(l'l,l’z,.rg)dl'ldl‘zdrg . (47)

The remaining coordinates in Fi%(k) are most easily

integrated out through the transformations
n=R—3e1,
r=R+3r55+301, 13=R—3rut3e1,

and then expressing ¥m* in momentum space. Taking
due care of the & function 8(K) representing over-all
momentum conservation, this finally gives

(4.8)

Fit (k)= / Yu (pos, P1+3k)

1:|:le
XT¢H3(923, P.—3k)dpasdps, (4.9)

where Yr3(p23,P1) is the complete triton wave function,
as given in Sec. 2, in the over-all center-of-mass frame
Pi+Pot-Ps=0, dut expressed entively in terms of the
two momentum variables (pss,P1), by virtue of the
identities

P3ai=— (%Pl‘l"%p%) y P2= %Pl—%p%) ’ (410)
P2= —%P1+p23 y P3= - (%P1+p23) . (4'11)

The wave function in (4.9) is normalized according to

/ Yuot (Dos, P )Y me(pos, Pr)dposdPi=1.  (4.12)

Similar definitions hold for Fot(k) and Fy*(k),
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To eliminate the isospin factors, the following 2X2
matrix representations for 7., in the states ({',{"") may
be employed:

m=(i)<; _(1)/3),

m=(i>(1 /(18 12/ f) (4.13)
e )

where the sign (&) in front of the matrices are appro-
priate for the cases of He® and H?, respectively. This
leads to the results

Frt(k)=3(4"]4") ¢,
Fi(k)=3%4"|A") as,+35(4" | A") a1y

where (4’,A") are as defined in Sec. 2, but each ex-
pressed entirely in terms of P; and pss, and the nota-
tion (4| A4)es,1y is an abbreviation for

(4.14)
(4.15)

Z dPldp23<A ] A > .

spin

(4.16)

Similar expressions are written down for Fy*(%) and
F3*(k), using the cyclic permutations (ps,Ps) and
(p12,P3), respectively, of the momentum variables. These
expressions finally allow us to obtain the charge form
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factor for H® in the form

FehH3= 2F i "F 1°++Fean?Fo°, (417)
where
Fro=15(A4"|A") 23,1)+5(4" | A") 23,1
+5/24(A"| A") 15,0+ 34" | A" ) 3.2
+5/24¢A" | A ) 2,0+ 34" |4 ) a2y,  (4.18)

Fo=3(A"|A") as,n+15(A4"| A") 3,2+ 34" | 4" ) 13,2
+15(4' A e+ 14" |4 ) 2,5, (4.19)

thus -explicitly defining the charge body form factors
for H? in terms of various elements of the three-body
wave function. For He?, the corresponding result is

ZFchH°3= 2F wPF Lo+ FenFo°. (4.20)

As for the magnetic-moment form factors, the cal-
culations are almost identical, except for the appearance
of spin factors o,,. However, since their matrix elements
follow identical rules to those of 7, the representation
(4.13) will hold with respect to the spins states (X’,x"’),
except that the sign (&) in front of the matrices is now
unnecessary. The results for the magnetic form factors
are expressible as

#H’Fmagm’: ,U«meagpFOm
+§I‘nFmagn[F0m—FLm] ’

= ﬂnFmagnFOm
+3upFme?[Fom—F1"], (4.22)

where the magnetic body form factors Fr™ and Fo™
are given by the explicit formulas

(4.21)

3
Ml%[e”l:"magHe

1 3 13 1
FLM=E<A, | 0’1z|A/>(23,1)_;<A” | ‘lefA"><2s,1>‘£(A' o2 | A/><13.2)—§<A”| o2s| A") 13,2

5 13 1 5
+Z\73<A/I‘TZZIA”>(13.2)“;1<A'IVszlA')u&a)“‘S(ANl‘T?rzlA”)(H,?»)“RM'I‘TazlA”>(12.3), (4.23)

1 1 1 1
Fo"‘=§<A o] A')<zs,1>+E(A’ o2 A’)<13,2>+2<A " UZzlA”)us.z)'f-z—v%(A' lo2:| 4" 13,2

1 1 1
+E<A'!03z|A'><12,s>+;<A"|¢3z|A")(lz.a>—E\73(A'ldaz|A”)(lz.m- (4.24)

It may be noted that we have four different body form
factors, as against two in Schiff’s treatment,* even for
the pure S-wave case, The reason lies simply in our in-
clusion of the terms involving the squares of the S’
amplitude (which Schiff neglects). We recognize, of
course, that the S’? terms are quite negligible. The only
reason for retaining them in our treatment is that their
algebraic separation would have been more troublesome.
As we shall see, however, their smallness will show up in
terms of approximate equality of the quantities
(FymFr?) and (Fom,Fo').

5. INTEGRAL FORMULAS FOR THE BODY
FORM FACTORS

The body form factors Fp and Fj obtained in the
last section are all expressible as linear combinations of
several integrals, each involving a product of two dis-
tinct pieces of the initial and final wave functions. As
Egs. (2.9) and (2.10) show, the three-body wave func-
tion is a sum of three different types of terms, denoted
symbolically by

Y1025, P1),  ¥a(psr,P2), ¥s(p12,Ps), (5.1)
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which label the appearance of various momentum com-
binations. The evaluation of Fy(k) is most easily
achieved in terms of pss(=p) and Py(=q), as shown in
Sec. 4, since the other two momentum pairs can also be
expressed via (4.10) and (4.11), in terms of (p,q). The
four basic integrals are then of the following types:

I,=(1,1)= /%J(st, P1+4-3k)¢1(pas, Pi—3k), (5.2)

L=(2,2)= f 4GP+ 3pa-+ 1k, 3Pi—pas-t3K)

Xa(§P1+3pes— ik, $P1i—pus—3k), (5.3)

L=2,3)= f 4GP+ hpaa-1K, 3Pi—pra-3K)

X ¢3(3P1—3pos— ik, 3P1+ps—3sk), (5.4)

L(gf)= f dpdag(#) () F(a+3K)Ga—30D(p, 3K D(p, a—3K),
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L=(1,2)= f Vi (pas, Pr-3K)

X ¢a(3Pr-+3pu—1ik, $P1—pu—ik), (5.5)

where y; and ¢; represent symbolically the different
portions of the initial and final wave functions, re-
spectively. It is clear that integrals like (1,3) and (3,3)
are trivially expressible in terms of (1,2) and (2,2), re-
spectively. For the quantities Fo(k) and Fs(k), an
identical procedure is available with appropriate cyclic
permutations of the momentum pair (pzs,P1).

A further problem arises because each of the initial
and final wave functions involves two types of po-
tential factors, viz. g(p) and f(p), with associated form
factors F(P) and G(P). This necessitates a further
classification of the integrals I; to I in (5.2) to (5.5),
so as to indicate the precise potential factors involved in
each associated pair (¥i,¢;) of the components of the
wave functions.

In the pure S-wave case, we illustrate this classifica-
tion by writing these integrals as I(gf), where ¢; in-
volves g(p) and ¢; involves f(p). Thus

In(gf)= / dpdag(kp+ia+ik) fGp+ia— k) F(p—39—$k)G(p—3q+5k)

Ii(ef) = f dpdag(ip+39-+1K) (p—2a-H 1K) F (o—ba— ARG (p-+a—3K)

XD '(3p+

L(gf)= f dpdag(p) [(3p+-3a—HF (q+3K)G(p—ba-+3K)D(p, a-+3K)D-(p-+ a1k, p—da-+-3k),

where

(5.6)

XD '(3p+3q+1k, p—3q—3k)D'(3p+2q—ik, p—3q+3k), (5.7)
$a+1k, p—3q— k) D'(Gp—%a+1k, p+3a—gk), (5.8)

(5.9)

D(p,9)=p*+3¢*+ar. (5.10)

The other combinations like 7(gg), I(ff), etc., are easily obtained from the above formulas. This gives, for the body

form factors in the S-wave case, the following results:

= 3§[511(g)+311(ff)+712(gg)+9I2(ff)+1s(ge)+3Is(ff)

+12I5(gf)+51.(gg)+31u(ff)+914(gf)+151:(fg) ],
Foe=4[11(gg)+3I:(f/)+5I:(g8)+31o(ff)+2Is(gg)+61s(gf)+14(gg)+31(ff)+9(gf)+31:(f) ],

(5.11)
(5.12)

= 4[311(gg)+1:(ff)—215(gg)+10Ix(gf)+515(gg) +715(ff)

Fom=3[4L:(ff)+41(ge)+41:(gf)+51:(gg)+s(ff)+21a(gf)+4L(ff)+1214(gf) ]

In the case of tensor forces, the formulas are much
more involved. However, certain simplifications are
possible, if due regard is paid to the physical magnitudes

(5.13)
(5.14)

—4I4(gf)+314(g)+1.(f)+314(g/)+91(fg)],

of the various quantities. Thus the central and tensor
terms in the triplet potential g(p), denoted by C and T,
respectively, obey the condition |T|<«|C|~|f|. Like-
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F1c. 1. The spectator
functions (F,G) with set I
and (F1,F,,G) with set IIT,
as functions of momentum
P in units of e, the deuteron—
binding-energy parameter.
Thecurvesareallnormalized
to G(0)=1.
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wise, the “central” and “tensor” parts of the triplet
spectator function F(P), denoted, respectively, by F;
and Fs, satisfy the inequality |Fs|<<|F1| ~ |G|, antici-
pating the numerical results to be given in the next
section. Indeed, the numerical results bring out the
following inequalities:

y=|F.|/|Fi|<x=|T|/|C|«K1. (5.15)

These inequalities help in distinguishing between the
orders of magnitude of the various terms in the expres-
sions for the body form factors. Thus, while the principal
terms in the integrals (5.2)—(5.9) would involve factors
like

CCFiF1, CfF:G, ffGG, (5.16)

the magnitudes of various smaller terms compared with
(5.16) are of the following (descending) orders:

%, 3, €%, xy, £%y, y2, xy?, a%y?. (5.17)

However, the inequalities (5.15) show that only the
terms of orders x, ¥, #%, ¥y need be taken into account,
without sacrificing any physical accuracy. With this
approximation, the body form factors in this case are
formally given by Egs. (5.11)-(5.14), except for certain
modifications in the meaning of various integrals, as

31.0 12,0

P—

indicated below (@=1, 2, 3, 4):

L(ff) = I(f1), (5.18)
I.(fs,8f.88) — 1/ (fg,8f,88) (5.19)

for the charge form factors, and
I.(fg,81,88) — 1" (fg,81,88) (5.20)

for the magnetic-moment form factors. In these modi-
fied forms, the principal terms in I,’ and I,” are
identical in structure to the corresponding terms 7, in
the S-wave case. However, these terms now contain
additional contributions of orders #, y, x%, xy, which are
admissible within our approximation, under all the
heads a=1, 2, 3, 4. The actual expressions, however, are
too lengthy to be reproduced here.

6. NUMERICAL RESULTS FOR FORM FACTORS

The spectator functions F and G were evaluated cor-
responding to the following shapes of the potentials:

F@®)=@*+85)7, (6.1)
gp)=(p*+BH7, 6.2)
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FiG. 2. The spectator F(ggtu)
functions (F,G) with
set II and (F1,F2,G) 1.0
with set IV, as func-
tions of a. The curves
are all normalized to
G0)=1.
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(for the tensor case):
Cp)=p*+B, (6.3)
T(p)=—1p*(p*+v2) 2. (6.4)

Several sets of the triplet and singlet parameters as
given by Yamaguchi,'® and subsequently in improved
form by Naqvi,'® which were used for the calculations
are as shown in Table I. The actual curves obtained for
the spectator function with Yamaguchi’s parameters
(sets I and III) and the corresponding curves with
Naqvi’s parameters (sets IT and IV) are given in Fig. 1
and Fig. 2, respectively.

It is seen from these curves that even near the maxi-
mum of Fy, it is about 10%, of the corresponding value
of F; and only 2%, of the maximum value of F; (which
occurs at P=0). The singlet spectator function G, as
expected, has a shape and magnitude similar to F or F;.

For the calculation of the integrals, each of which
involves two such spectator functions, it is most con-
venient to use the Feynman method of integration,
since all the other factors (potential and denominator
functions) have the structure of “propagators.” For
this purpose, the spectator functions must also be ex-
plicitly parametrized to such forms. Indeed, it is found
that for the s-wave case, each of F(P) and G(P) can be
accurately fitted by the general form

A 712' "Y22
| 69
Pty LPHys Py

19 J. H. Naqvi, Nucl. Phys. 36, 578 (1962).

P.———»-

where A, B, v, 71, and v, are suitable constants. Again
for the tensor case, F1(P) and G(P) are equally well
represented by the above form, with suitably adjusted
constants. However, Fa(P) needs the following alterna-
tive representation:

Fo(P)=CP2 P> 5,2 1(P245:2)~1(P2+465%)~L.  (6.6)

While the fit (6.6) for F, is not as good as (6.5) for
Fy, F, G, it should be recognized that F, itself is appreci-
ably smaller than F; or G, so that the over-all effect of
the approximation is considerably weighted down.
Typical fits for F1(P) and Fs(P) are shown in Table II.
Table IIT gives the values of the different parameters
obtained for all the potentials listed in Table I.

With these functional forms, the various integrals
can be evaluated in a semi-analytic manner for which
the approximation techniques employed are briefly
described in the Appendix. The body form factors which
are now evaluated with the help of these integrals

TasLe I. The potential parameters of various central and
tensor forces used for the calculations. The Yamaguchi (Ref. 16)
and Naqvi (Ref. 19) parameters are distinguished by the suffixes
Y and N, respectively. S represents the 1S, potential and Ceff
the effective 35 force. « is the deuteron binding-energy parameter.
See text for other notation.

Set potential  Bs/a  Bifa  yi/ 4 Ais/a® Am/ed
I Cy*t+4Sy 6.255. 6.255 23.4306: 33.29
II Cy+Sw 5.8 5.8 oo oo 189 229
I (C+T)y+Sy 6.255 5.759 6.771 1.784 23.4306 20.0378
5.8 0.9519 . 18.9 22.9

IV. (C+T)n+Sy 5.8 5.8 .
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F1c. 3. Curves for the body form factors Fo¢, Fo™, Fr°, Fi™ for the charge and magnetic distributions as functions of the square of the
momentum transfer (k%) in units of F~2 The curves (a), (b), (c), and (d) refer to the potential parameters corresponding to sets I, II,

III, and IV, respectively.

according to Egs. (5.11)-(5.14), are given in Figs.
3(a) to 3(d), for the different potentials used. The radii
corresponding to these form factors (which are evalu-
ated by numerical interpolation, using third-degree
polynomials in the variable %2, in the region of low mo-
mentum transfers) are listed in Table IV.

Finally, the form factors of H? and He? are evaluated
with the help of Egs. (4.17), (4.20)—(4.22) using known
values of the nucleon form factors as given by de Vries

et al.?0 While we omit the actual curves for these quanti-
ties, it may be of interest to reproduce in Table V the
radii of these nuclei obtained with the help of Table IV
and the values for the nucleon radii as given in Ref. 20.2!

20 C. de Vries, R. Hofstadter, A. Johansson, and R. Herman,
Phys. Rev. 134, B848 (1964).

21 Another set of data by de Vries ef al. used a smaller magnitude
for a»2(ch), but the fit to the charge radii of H3 and He? with this
set is even poorer [C. de Vries, R. Hofstadter, and R. Herman,
Phys. Rev. Letters 8, 381 (1962)7].
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TasLE II. A typical fit to the central and tensor spectator functions F1(P) and F»(P), corresponding to set III of Table I, by the
parametric forms (6.5) and (6.6), respectively. The momentum is in the units of the deuteron binding-energy parameter a.

Momentum F\(P) F,\(P) Fy(P) Fy(P)

actual fitted actual fitted
6.24783 X102 1.73336 1.73352 7.5213 1078 6.9074 X107°
0.327732 1.69478 1.69469 2.0200<10~# 1.86318 X103
0.799007 1.51930 1.51851 1.0672 X102 1.0035 X102
1.46637 1.16315 1.16270 2.6879X10™2 2.6220 X102
2.31560 0.753551 0.754416 4.1467X1072 4.1801 X102
3.32861 0.434461 0.434866 4.5933102 4.6657 X102
4.48381 0.235207 0.234494 4.0892102 4.0913 X102
5.75658 0.123704 0.122999 3.1496X 102 3.0874 X102
7.11979 6.4491 1072 6.4516X10™2 2.2074X1072 2.1454 X102
8.54438 3.3792 X102 3.4425X 102 1.4613 X102 1.4401 X107
10.0000 1.7985X10~2 1.8837X102 9.405 X103 9.639 X1073
12.8802 5.523 X107 6.093 X103 3.883 X103 4.594 X1073
15.5162 1.976 X103 2.110 X1073 1.745 X1073 2.509 X10-3
18.5336 6.244 X10* 3.943 X10¢ 7.144 X101 1.359 X10-3
19.9375 3.634 X10~¢ 2.408 X10°® 4.753 X10—¢ 1.047 X1073

7. DISCUSSION AND CONCLUSION

Before we discuss the comparison with experiments
we wish to say a few words about the normalizations.
While F° and Fo° are by definition normalized to unity,
as can be seen from Egs. (4.17) and (4.20), F;™ and
Fo™ need not be so. Indeed, as can be clearly seen from
Eq. (11) of Schiff’s paper,* the inclusion of the 5’2 terms
would have given

Fym=F1—%F,— (5/9)F3, (7.1)
Fom=F1+2F,—(2/9)F;, (7.2)
where
F3= / dr;[2 exp(ik-r1)ve?
+exp(ik-72) (31 21+19)%].  (7.3)

Note that F3 is a positive-definite quantity which does
not vanish at zero momentum transfer. Therefore,
Egs. (7.1) and (7.2) show that F;™ and Fo™ not only
cannot be normalized to unity, but that their values at
k?=0 would be somewhat different from each other,
because of the terms (5/9)F3(0) and 2F3(0), respectively.
Indeed, for the two S-wave cases represented by sets I

and II, the normalized quantities Fy,,™(0) are found to
be the following:

Set I:

F™(0)=1-0.01291, F,™(0)=1—0.00516, (7.4)
Set II:

F™(0)=1—0.00353, Fom(0)=1—0.00141, (7.5)

which brings out the amounts by which these quantities
fall short of unity. The deviations from unity are indeed
in the ratio of 5:2, as required by Egs. (7.1) and (7.2).
For the case of tensor forces, represented by sets III
and IV, there are further corrections to the normaliza-
tion (due to D waves), not merely expressible by the
simple equations like (7.1) and (7.2). Indeed, for the
Yamaguchi tensor case (set III), characterized by a
high D-state probability (~5.3%), the net deviation of
Fo™(0) from unity is as much as 0.07033 and that of
Fr»(0) is 0.03023, which are appreciably larger cor-
rections than shown in (7.4). For the Naqvi potential
set (IV), which yields a smaller D-state probability
(~2.7%,), the corresponding net corrections are 0.01862
and 0.02215, respectively.

Tase III. The various constants (4,B,v,v1,72) and (C,81,62,85) of the parametric fits (6.5) and (6.6) to the
spectator functions (F,F1,G) and Fs, respectively, for the different sets of potentials used.

Spectator
Set  function A B v Y1 Y2 C &1 82 83
I F(P) 12.0509 5.89500 2.41225 5.48621 5.28832
G(P) 8.67804 3.97000 2.94518 6.11353 5.91494
1I F(P) 6.22489 3.23500 2.05477 5.27229 5.07600
G(P) 5.19530 2.81000 2.27841 5.58283 5.39815
IIT F\(P) 8.19268 3.54200 2.17301 4.99079 4.72709
G(P) 7.21425 3.29000 2.68519 5.68163 5.46496
Fy(P) e cee e cen 205.000 6.94000 36.5000 47.5000
v F\(P) 8.17284 8.83400 2.03419 4.69662 4.58371
G(P) 6.28318 3.44000 2.50582 5.44632 5.25880 e e
Fy(P) e e e e e 154.000 4.95000 33.9000 44,5000
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TaBLE IV. The radii (in fermis) of different body form factors,
az(ch), as(eh), ar.(mag), ao(mag), for the various sets of Table I.

Set ar(ch) ao(ch) ar(mag) ao(mag)
I 1.284 1.244 1.297 1.215
II 1.537 1.512 1.545 1.495
III 1.413 1.370 1.313 1.340
1.454 1.421 1.419

v 1.502

For a comparison with experiment, the important
features of the H?® and He?® form factors are, (1) the
actual magnitudes of the various radii, and (2) an
appreciable difference between the charge radii of He?
and H3, as may be seen from the following experimental
values!!:

4o (%) = 1.702:0.05 F= tpnag(H?),
a(He?)=1.8740.05F, @maz(He?)=1.744+0.1F.

As for the magnitudes of the radii, pure S-wave forces
yield rather small values, as may be seen from set I of
Table V for the effective S-wave Yamaguchi force. The
results with set II, which represents merely the S-wave
part of the total triplet (central plus tensor) force, are
included in Table V just for an estimate of the tensor
force contribution to the sizes of He? and H3. The larger
values of the radii compared with set IV indicate that
the tensor force, while not so important as a central
force in the binding of a three-body system, has never-
theless an appreciable role to play in determining the
size of the triton.

A substantial improvement in the radii of the body
form factors Fo and F, is achieved with the tensor force,
as may be seen from the results of sets III and IV in
Table IV. Here again, as was found for the binding
energy of H% ¥ the Naqvi parameters (set IV) yield
definitely better results than Yamaguchi’s. The effect
of this improvement in Fz and Fy reflects itself in a
corresponding improvement in the actual radii (charge
and magnetic) of H? and He?, as calculated in Table V.22
The results with set IV are particularly encouraging, in
that they fall short of the experimental figures by not
more than 109, even in the “worst case” of the He3
charge radius. To explain a discrepancy of this order of
magnitude, the most natural candidate should be the
effects of the hard core. Unfortunately, no concrete

(7.6)

TaBLE V. The charge and magnetic radii (in fermis), an.3(ch),
am’(ch), aget(mag), ams(mag), for the various sets of Table I,
obtained from the data of de Vries et al. (Ref. 20) for the nucleon
charge and magnetic distributions.

Set ages(ch) ams(ch) ane*(mag) am*(mag)
I 1.520 1.421 1.538 1.527
I 1.739 1.662 1.754 1.752
11T 1.631 1.533 1.555 1.589
v 1.708 1.608 1.646 1.667

22 The results of set II in Table V can not be discussed for
physical comparison since it is an “incomplete” potential, used
only for assessing the importance of the tensor force.

GUPTA, BHAKAR, AND MITRA

153

data are as yet available with both tensor and hard-core
effects taken into account in a realistic manner. How-
ever, a model calculation by Tabakin? had shown that
the hard core could decrease the binding energy of H?
by numbers ranging between 0.5 and 0.9 MeV, depend-
ing on the model chosen. This reduction, being about
5 to 10% in the binding energy of H?, should result
in a corresponding increase in the sizes of H® and He?, as
a crude argument based on the asymptotic properties
of the three-body wave functions would suggest.?* This
correction should perhaps be taken in conjunction with
relativistic corrections,? as in the case of the binding
energy of H3.26 Of course, this argument is nosubstitute
for an exact evaluation which, while extremely involved
would still be of great interest from the point of view of
understanding detailed three-body effects with realistic
two-body forces.

We recall in this connection, the recent results of
Amado?” for the radii of Fp and Fy using pure S-wave
forces. While he of course recognifies the importance of
hard-core effects, his values of ¢; and ap are much too
large to be expected from any realistic S-wave force. We
have traced this important discrepancy with our re-
sults to his large S probability (~7%) which does not
conform to any reasonable physical requirements for
this parameter.”~7 A smaller S’ state should clearly
have given a smaller radius, since a correspondingly
larger probability for the totally symmetric state would
have been more effective in bringing three nucleons
together. We therefore feel that our poor S-wave results
for the radii are at least realistic (with S’ probability
~19%) and that there is no escape from the tensor force
to get the right magnitudes.

As for the difference in charge radii of He? and H3,
which represents another important experimental
quantity, we note that it depends strongly on what is
assumed about the neutron charge distribution, ac-
cording to the formula

age(ch)— ams?(ch) = ar?(ch)— ap?(ch)—$a.%(ch), (7.7)

which can be easily derived from Egs. (4.17) and (4.20).
Now while Table IV shows that az2(ch)>ap*(ch),? as

28 F, Tabakin, Phys. Rev. 137, B75 (1965).

24 Tt is known that for the deuteron problem, the asymptotic
wave function (which gives excellent results for its size), depends
only on its (small) binding energy. For the present three-body
case, the exact form of the asymptotic wave function is no doubt
much more complicated, yet the square root of the binding energy
is still appreciably lower than the inverse range parameters of the
various forces. This would imply that the size should be governed
more strongly by the binding-energy parameter than by the in-
verse range parameters of the forces. Therefore, to the extent that
Tabakin’s estimate of the hard-core effect gives 5-10%, reduction
in the binding energy, the effect seems to be enough to increase
the radii by the order of magnitude required.

2% G. B. West, Phys. Rev. 139, B1246 (1965).

26V, K. Gupta, B. S. Bhakar, and A. N. Mitra, Phys. Rev.
Letters 15, 974 (1965).

- 2 R. D. Amado, Phys. Rev. 141, 902 (1966).

28 Incidentally, the result az2>ao? shows a fortiori that the sign
of the S’ amplitude with respect to the S amplitude is obviously
the “correct” one according to Schiff’s analysis (Ref. 4).
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required by the experimental value (0.607 F?) of the
left-hand side of (7.7), the excess ar2(ch)—ao?%(ch) is not
enough to explain the latter. We must, in other words,
invoke a negative value of a.2(ch) (i.e., a positive slope
for the neutron charge distribution). This conclusion
agrees with the results of Levinger and Srivastava?® for
the three-nucleon form factors using a variational wave
function. We note further that a positive slope for the
neutron charge form factor is also indicated by the
nucleon form-factor analysis of de Vries et al.,° in terms
of Clementel-Villi-type formulas,® in relation to the
data for inelastic electron-deuteron scattering.® The
data in Table V are based on a,2(ch)=—0.123 F?, but
apparently this explains only a part (~0.10 F) of the
experimental difference (0.17 F) between ans(ch) and
am*(ch). To explain the full difference, we formally re-
quire @,%(ch)=-—0.30 F, which, however, would be
rather too large to account for the inelastic electron-
deuteron scattering data.

It would perhaps be more reasonable to ascribe the
remaining discrepancy of 0.07 F between the two
charge radii to other neglected effects. Of these, the
hard core which has already been mentioned in con-
nection with the actual sizes of these nuclei, could well
play a differential role with respect to a¢; and ao. The
other possibilities are Coulomb corrections for He?,
various exchange moment contributions, and a small
admixture of T'=$ states.? It is, however, premature to
talk about these effects in any quantitative terms. As for
three-body forces, we believe that while these could
exist in principle, they should have a much lower
priority for consideration (in view of the success
already achieved with two-body forces) than the other
effects mentioned in this paragraph.

To summarize, we have found that the inclusion of
tensor forces gives a significant improvement over the
S-wave results for the three-body radii, and leaves a
fairly small margin between theory and experiment. It
is argued that hard-core effects could be a promising
candidate for explaining the gap. Further, the experi-
mental difference between the charge radii of He® and
H3 requires a positive slope for the neutron charge
distribution, again in agreement with the analysis of
deuteron data.
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APPENDIX

We describe first the evaluation of the integrals in the
S-wave case. The integrals I, in Egs. (5.6)-(5.9) involve

( 29 J5 S. Levinger and B. K. Srivastava, Phys. Rev. 137, B426,
1965).
30 E. Clementel and C. Villi, Nuovo Cimento 4, 1207 (1956).
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the potential shapes (6.1) and (6.2) and the form (6.5)
for the spectator functions. Each integral involves
three pairs of like factors which we shall refer to as
‘“potential”, “spectator,” and ‘“denominator,” respec-
tively. Our first task is to combine the numbers of each
pair by a “Feynman variable,” according to

1 1
—=/ dulau+b(1—u) ]2, (A1)
ab 0
and express it in the approximate form
1 4 (a—b)?
N P ] (42)
@b (a+b)L | (atbd)

where the expansion (A2) provides the necessary back-
ground to the approximations used for the problem.
Since like pairs are being combined, their differences are
expected to be small compared with their sums, the first
nonvanishing correction providing an estimate of the
error involved in neglecting the higher order corrections.
The differences (¢—b) are of two types, arising from
(i) small differences between the parameters 8,2 and
B:2 in the potentials, and (ii) certain angular correlations
between the momenta p, q, k, which would usually
appear with opposite signs in a particular pair of like
functions. In any case, the analytical structures of the
sums (¢-+b) can be made much simpler (by using such
considerations) than those of ¢ or 4 individually. In this
manner we are left with expressions whose principal
terms have the structures

(@14-81)"2(a2+-b2)2(as+05)2, (A3)

and the correction terms involve merely higher (nega-
tive) powers of one or more of the factors (a;+5;).
Since higher powers of the same quantity do not involve
additional “Feynmann variables,” it is enough to dis-
cuss the evaluation of the principal terms only.

We illustrate this procedure in some detail with
special reference to two specific integrals, say, I; and
I3 in the S-wave case. A typical I; integral has the form

L*+B8:) (0°+6:) I [{ (a+5K)*+7.%)
X{@= 301 L+ a0 ar)
X{p*t+i—3k) +ar} I, (A4)
where the groupings of the three pairs have been ex-
plicitly shown. It is clear from these expressions that

the quantities (e;+5;) and (@,—b;) are of the forms
indicated below:

294 (812+B:%), B12—B4?,
2(¢*+ BN+ (v, (i—v)+i(q-k),
2943 (g + 55D+ 200, (q-k).

Since in all the cases discussed in the text, 8;2 and Bs?
differ little from’ each other, and ;2 and v,? do like-
wise, an expansion like (A2) should be physically quite
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justified. The angular terms like (q-k) lend themselves
to even better justification for expansion, since the
variables p and q are eventually going to be integrated
out, so that only the isotropic parts of their even powers
would survive. For the 7; integral, we are therefore left
with an expression of the form

/ / dpda[ P+ (e T L3+ (1) T
X (P2 ar?)

plus “correction terms’ involving similar integrals but
with higher powers for the various factors. This integral
can be analytically evaluated in one of the variables p
or q, but the other needs numerical evaluation for dif-
ferent values of %2 of physical interest.

For an estimate of the accuracy of this procedure, the
second-order corrections to the principal terms were
examined in detail for several I, integrals, and found
to provide about 10-159%, effects for the highest values
considered for k2 (viz. ~6 F~?). Since these corrections
were explicitly taken into account, the higher order
effects (e.g., fourth order) are not expected to exceed
5% at the highest k2, which represents the degree of
accuracy of our calculation.

For the integral I3, the structure of the principal
term, after appropriate expansion in the differences
(a,-—bi), is

(AS)

/ f dpdaC3p+(9/16) g+ (/1)1 (p- W)+ (B9 T
P +3g+ (112 ar T
P H1g (/360K =3 (- K+ (1) T2

Since in this case these factors still involve the angles

(A6)
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through (p-k), a further translation in p is necessary
after combining the three factors by two Feynman
variables, say (#,7). The resultant integral in p and q is
then of the form

120/ u(l—u)du/ 3(1—2)dv

X f f dpda[Ap*+ B-CT, (A7)

where A, B, C are now functions of %, v, and k2. The
evaluation of the p and q integrations then yields a two-
dimensional integral of the form

1 1
/ u(l—u)du/ v¥(1—u)du A32B~32C—3, (A8)
0 0

which is most conveniently evaluated numerically for
several input values of k% The correction terms are also
of the form (A7), except for (i) the replacement
6 — 6+ 2n (n integral) in the exponent of the integrand,
(ii) suitable additional factors in %, (1—u), v, (1—0), in
the numerators arising from Feynman parametriza-
tions, and (iii) certain angular functions in the numera-
tor (which present no difficulty). The integrals I, and
I, are evaluated in manners identical to the I; and I,
cases, respectively.

For the tensor case, the procedure is quite similar,
except that the structure of some of the principal terms,
e.g., those which involve the potential T(p), are like the
correction terms in the S-wave case. Here again, the
“second-order corrections” to the integrals have been
taken into account in complete details, to the same order
of accuracy as in the S-wave case.



