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Electromagnetic Form Factors of H' and He' with Realistic Potentials
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The charge and magnetic form factors of H' and Hel have been calculated on the lines of Schi8's analysis
for the problem. The three-body wave functions used for this purpose are the ones which had earlier been
derived in an exact fashion by the authors, using separable potentials involving central as well as tensor
forces. These wave functions are all characterized by a small S'-state probability ( 1%).The calculations of
the form factors and their corresponding radii have been carried out (a} for pure s-wave forces, and (b} for
tensor forces, using the potential parameters of both Yamaguchi and Naqvi. It has been found that, whereas
the agreement with experiment for pure s-wave forces is poor, the inclusion of tensor forces improves the
results considerably, so that they fall short of experimental values by not more than about 10/o, which is
fully within the scope of hard-core effects. To account for the appreciabie difference ( 0.1'I F) between the
charge radii of He' and H', we require a positive value for the slope of neutron charge distribution, which
is in agreement with the recent analysis from inelastic electron-deuteron scattering. A reasonable value for
this slope, deduced from deuteron-scattering data, however, accounts for only about 0.1 F of this difference
in the two radii. The remaining di6erence of about 0.07 F could probably be ascribed to hard-core sects,
electromagnetic violations of charge independence, and sects of exchange moments.

1. INTRODUCTION

HE experiments on elastic electron scattering
from H' and He' by Hofstadter and collaborators'

opened up a new possibility for probing into the charge
structure of the neutron, ' the estimation of which had
hitherto been conhned only to deuteron-scattering ex-

periments. ' While theoretically the deuteron is a simpler
structure, scattering from the triton and He' provides an
independent determination of the neutron form factor,
which could be checked against the corresponding
deuteron-scattering data.

For such a program to be successful, the Qrst condi-

tion is an accurate knowledge of the ground-state
wave function of H' and He'. Alternatively, such ex-

periments may themselves throw valuable light on the
structure of these nuclei if the neutron form factor is
otherwise assumed known. Indeed, such a point of
view was advocated by Schiff4 in a comprehensive
analysis of the electromagnetic form factors of H' and
He'. This analysis, which is characterized by fairly
general formulas for' the form factors in terms of certain
"body form factors" Ill, and Iio, associated with the
"like" nucleon and "odd" nucleon, respectively, showed

how the percentage of the 5 state of [2,1$ symmetry in
the ground-state wave function (called 8'), could be
estimated from a difference between the observed

charge form factors. While the percentage of this S'

x H. Collard R. Hofstadter, A. Johansson, R. Parks, M.
Ryneveld, A. Walker, M. R. Yearian, R. B. Day, and R. T.
Wagner, Phys. Rev. Letters 11, 132 (1963).

2L. I. Schiff, H. Collard, R. Hofstadter, A. Johansson, and
M. R. Yearian, Phys. Rev. Letters 11, 387 (1963).

3R. Hofstadter, C. de Vries, and R. Herman, Phys. Rev.
Letters 6, 290 (1961);R. Hofstadter and R. Herman, ibid. 6, 293
(1961).

4 L. I. Schi8, Phys. Rev. 133, 8802 (1964).

state in Schiff's earlier analysis was somewhat higher
( 4/o) than is compatible with data on the Gamow-
Teller matrix elements for H' decay, ' with the rate for
thermal-neutron capture in deuterium, or with the
inelastic scattering of electrons from H', ~ it is probably
quite sensitive to the assumed (variational) shape ot the
three-body wave function, and also to the details of the
neutron charge form factor. In addition, the effects of
Coulomb repulsion in He', ' the possibility of small ad-
mixtures of the isobaric T=23 state, ' and the uncer-
tainties on the exchange-moment contributions'0 could
further obscure the determination of the 5' state.
Indeed, with so many effects on hand, an "experimental
determination" of the ground-state wave function from
electron-scattering data, may well have lost its earlier
appeal. "

We would like to present here an alternative approach
to the form-factor problem based on an accurate
theoretical determination of the triton wave function by
solving the three-body Schrodinger equation in terms of
two-body potentials, instead of assuming a variational
form for this quantity. As is now well-known, such an
approach is possible with the help of separable po-
tentials which allow an exact determination of the

' R. J. Blin-Stoyle, Phys. Rev. Letters 13, 55 (1964).'T. K. Radha and N. T. Meister, Phys. Rev. 136, 8388
(1964};N. T. Meister, T. K. Radha, and L. I. SchiG, Phys. Rev.
Letters 12, 509 (1964).

7 T. A. Gri6y and R. J. Oakes, Phys. Rev. 135, 81161 (1964).
8 R. H. Dalitz and T. W. Thacker, Phys. Rev. Letters 15, 204

{1965}.' T. A. Griffy, Phys. Letters 11, 155 (1964)."D. A. Kreuger and A. Goldberg, Phys. Rev. 135, 8934
(1964);A. Q. Sarker, Phys. Rev. Letters 13, 375 (1964); Nuovo
Cimento 36, 392 (1965); 36, 410 (1965).

~' See, e.g., H. Collard, R. Hofstadter, K. B. Hughes, A
Johansson, M. R. Yearian, R. B. Day, and R. T. Wagner, Phys.
Rev. 138, 857 (1965).
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three-body wave function. "The only limitation lies in
the choice of the potentials. For example if the S-X
potential is approximated by merely the two effective
S-wave terms of different strengths (for the singlet and
triplet forces, respectively), it gives a rather poor
approximation to the wave function. On the other hand,
the inclusion of the tensor force in the T=0 state
significantly improves the wave function, as judged by
the results on the triton binding energy, as well as the
percentage probabilities of various states. "For further
improvement one also needs the hard-core effects,
symbolized by the change in sign of the 'So phase shift
around 200 MeV. Unfortunately, the combined effect
of the tensor force as well as the hard core on the triton
wave function is not as yet available to us because of
rather formidable computational difficulties associated
with the appearance of four coupled integral equations
(which must be solved consistently with the require-
ment of reasonably small mesh sizes which are essential
for computational accuracy) ~ The best we have at this
stage is a wave function which takes account of a central
plus a tensor force of the Yamaguchi form in the triplet
state and. a central S-wave force in the singlet state. "'4
Such a combination yields an S' state of the order of
0.8—1.0%%uq, which seems to be in general agreement
with the data on inelastic-electron scattering on H' and
He', ' as well as thermal neutron capture on deuterium. '
The D-state probability works out at 3—

S%%uo, depending
upon the potential parameters chosen, the lower value
corresponding to Naqvi's determination. The P-state
probabilities are almost completely negligible. These re-
sults on P- and D-state probabilities seem to be in
general agreement with the analysis of Gibson and
Schi6."

These figures on the percentage probabilities which
have the advantage of dynamical determination from
fairly realistic two-body potentials (without the usual
uncertainties accompanying variational treatments),
also appear to be quite reasonable from a comparison of
contemporary analysis of three-body data. ' ' If, there-
fore, these figures are accepted as such, they give a
complete determination of the two-body form factors
Fo and F~. This determination in turn can be incor-
porated in the general analysis of Ref. 4 to estimate how
Hs and Hei form factors depend upon other (unknown)
factors. For example, the results for FH3 and FH, 3 could
be quite sensitive to the neutron charge form factor
(F„'") for which the experimental data are still poor. "
Thus the calculation of FHS and PH, s with "exact" three-
body wave functions could provide a useful probe into
F„'",or at least serve to bring out the sensitivity to this
quantity. This is mainly the point of view that is

"A. N. Mitra, Nucl. Phys. 32, 529 (1962); C. Lovelace, Phys.
Rev. 135, 81225 (1964).

'3 B. S. Bhakar and A. N. Mitra, Phys. Rev. Letters 14, 143
(1965)."B.S. Bhakar, Nucl. Phys. 46, 572 (1963)."B.F. Gibson and L. I. Schi6, Phys. Rev. 138, 826 (1965);
B.F. Gibson, ibid. 139, 81153 (1965).

adopted in this paper for the calculation of PH~ and
~H.

In Sec. 2, we collect for convenience the basic formulas
of Ref. 14 in terms of which the three-body wave func-
tions are defined, both for effective S-wave potentials as
well as for the tensor forces. The probabilities P~ for
various L states are defined in Sec. 3 and explicit formu-
las given for their numerical evaluation. In Sec. 4, the
charge and magnetic form factors of H' and He' are
expressed in terms of body form factors, on the lines of
Schiff's analysis. 4 These body form factors are in turn
expressed in terms of the three-body wave function,
defined earlier in Sec. 2. Explicit formulas for the
S-wave and tensor-force cases are given separately in
Sec. 5. A suitable parametrization of the spectator func-
tions which enables the various form-factor integrals
to be evaluated by the Feynman method, is described
in Sec. 6, together with the results of numerical evalua-
tion of body form factors for several sets of potential
parameters considered. The broad procedure used for
the evaluation of the integrals is described in the Appen-
dix. Finally, Sec. 1 gives a discussion of the results,
with particular reference to the sizes of H' and He' and
the role of the neutron charge form factor in the analysis.
A brief comparison with the results of contemporary
investigations is also included.

The main conclusions are that while the tensor force
appreciably increases the size of the triton, over the
results of pure S-wave calculations, it still falls short
(by &10%%uo) of the exper™ental determination for this
quantity, a gap which could probably be bridged by
hard-core effects. The difference between the charge
radii of H' and He' depends rather sensitively on the
slope assumed for F„'", a positive slope being clearly
favored, in conformity with its determination from
deuteron-scattering results.

2. STRUCTURE OF THE THREE-BODY
WAVE FUNCTION

%e collect here the essential features of the three-
body wave function obtained with tensor forces given
some time ago by one of us. ' The properly antisym-
metrized wave function 4 is expressed as

4'= (1/v2)(A'f" A "f'). — (2.1)

Here (f'f'") are the two isospin functions which for
H' are

f'= (1/v2)u, (ego,—N,u,),
(2.2)f"=—(1/~3)( ')f',

and I, e are the states of r,= %~, respectively. For He'
the corresponding f', i"have I and n interchanged. The
quantities (A', A") are the corresponding space-spin
functions. Ke use a separable potential of the type

—~(p I ~l p') =&~@(p)a(p')F.+F;
+~»f(P)f(P')F. ~' (2 3)
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where P,+(ij) are the triplet- and singlet-spin projec-
tion operators and P,+(ij) the corresponding isospin
operators having the following representation in terms
of the permutation operators (ij) „:

3. PROBABILITIES OF VARIOUS ORBITAL
STATES

(2 4)P-,.'=-', L1~( j)...3
The function g(p) is in turn taken (a) as a pure S-wave
function representing an effective central force, and

(b) as a function of Yamaguchi form"
(3 1)

(3.2)

(3 3)

(3.4)

p'= D'(B)(-Ay+Ay+AS),

P'= D '(E)-'v3(Bg —Bg),

4"=D '(~)(—Bi+2B2+2BS),

g(y) =c(p)+8 "'~(p)s»(r) (2.5)

for a combination of central and tensor forces. Using
these forms of the potentials, and the definitions

a 0
(2 6)

where (withi, j, 0=1, 2, 3)
—Pa=P;+P;, 2y;, =P,—P;,

D(E)= g(P12+P22+P32)+~T2 (2 &) (3.5)

(3.6)

A =g(p')F(P )+f(p')G(P.),
B"=g(y*)F(P') —f(p*)G(P.).(2.8)np'= MEg,

The probabilities of various orbital states must be
determined in terms of the spatial part of the wave
function. Denoting the spatial parts of various sym-
metries by (f',P',f",f~), these quantities are easily
identified from the results of Sec. 2. For the pure
S-wave case, these are simply

(A', A") have the following structures:

where

!
=D-i(F)n, !

pA'q )x'
(2.9)

~s= & Lg(p;,)P.+(ij)F' (P.)

+f(p'')P. (ij)G(P')j, (2 1o)

x'= (1/~~)~i(~~43 —~382),
x"=—(1/v3) (eg ea)x'.

(2.11)

For completeness we list the representations of P.+(ij )
in the (x',x") basis, viz. , Eq. (2.4) and

(12)~ (13)0'
1/2 Wv3/2

~v3/2 —1/2
(2.12)

and (x',x") are the two spin--', functions of (2,1)
symmetry, viz. ,

Po= «"Ik'),
Po'=2«'I0')

(3.8)

(3.9)

noting that the two (2,1) states make equal contribution
to Po'."

For the case of tensor forces, the analysis is somewhat
more involved because of the presence of several P and
D states. Formally, we can, of course, define the quanti-
ties Aq and B~ as in Eqs. (3.5) and (3.6), but now the
functions F;,(P) and g;, (y) would still involve the spin
operators o, and o;. To identify the various states in
this case, we note that after the eBects of these addi-
tional spin operators have been taken into account, the
resultant terms in the wave function can be arranged
according to spin-curn-angular structures. Thus the
terms associated with

There are thus only two types of amplitudes-symmetric
(S) and mixed-symmetric (S'). With an over-all
normalization to unity, viz. ,

« I~ &+«'I~'&+«" I~"&=1,

the two S-state probabilities P'0 and Po' are simply
given by

—1 0)
!

(23)~

0 i)
x' and x"=—(1/&)((g, ~,)x' (3 10)

i(e8 Q)x', i(eg Q)x', (esx~,) Qx', (3.11)
F,;(P )=F (P )+8 ' 'F (P )S;,(P ). (2.13)

where

clearly represent the 'S112 contributions, which can be
further broken up into the symmetric and mixed-

For an S-wave triplet force, Fjp~j is a single scalar
symmetric parts; viz. , ps* and (Ps', Ps"), as for the case

function F t P~j, but for a tensor orce o t e type
of pure S-wave interaction. The terms involving

2.5j, it has the structure"

The coupled integral equations satisfied by the quanti-
ties (F,G) for the scalar case and (F',F2,G) for the tensor
case are given in Ref. 14.

Q=p23XP1 ——p31 XP2=p» X P3 (3 12)

are the various combinations of 'P1~2 and 'P1~~2 states,

'~ B. S. Bhakar, Ph. D. thesis, University of Delhi, 1965
"Y.Yamaguchi, Phys. Rev. 95, 1628 (1954); 95, 1635 (1954). (unpublished).
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.As it is not of much physical interest to classify the P
states in detail, it is convenient to lump them together
as an effective F-state contribution zlvp to the wave
function. Finally, there are three different 4Di~2 terms
associated with the quartet spin function (in tensor
representation)

2LOlSOsv+OivO38 —8'Bvv(381' Vrs)]X v (3 13)

F,1,"'(k)=Q F,(k),

where

b(K)F '(k) = eXp(ilr ' r) [PHzt(rl rs, rs) pC(r, r;)

(4 4)

Ke now indicate the broad procedure for the evalua-
tion of the charge form factor of H', which is dehned as

as explained, e.g., in Sachs's book. "Again, since it is
perhaps unnecessary to classify them in further detail,
these will be lumped together under the single head of a
D-state contribution 1Pil to the wave function. With an
over-all normalization of the wave function to unity,
the probabilities PI, of 5, 5', P, and D states are re-
spectively given by'~

X1pH (rl, rs, rs)]drdrldrsdrs, (4.5)

F.=8"l~'),
F.'= &a'l~. '&+&~."l~."&,

F =«.I~.&,

F2= @nlrb~&

F8+F8'+F1+F2=1

4. THE CHARGE AND MAGNETIC
FORM FACTORS

(3.14)

(3.15)

(3.16)

(4.6)Fl(k) =F,l v(k)F1+(k)+F,h"Fl—(k),
where

(3.17)
~here

b(K)F1+(k)= exp(ik rl)tPilzt(rl, rs, r3)
3.j.8

1+T].z
X g H (rl, rs, rs)drldrsdrs (4.7. )

2

and the multiplying 5 function on the left-hand side
representing over-all conservation of momentum, antici-
pates its appearance on the right-hand side as well, after
certain spatial integrations have been carried out. A
corresponding expression holds for the He' charge form
factor with pnz replaced by lt H, z, except for a factor of 2
on the left-hand side of (4.5) to normalize F,l, "(0)
to unity.

For the calculation of Fl(k), the transformation
r—ri ——z~ reduces it to

In this section, we closely follow the procedure of
Schi64 in his corresponding analysis of the form factors.
The charge and magnetic form factors are defined as the
three-dimensional Fourier transforms of the expecta-
tion values of the corresponding density functions in
the H' and He' states. Assuming that the three nucleons
contribute additively, and ignoring the contributions
from various exchange moments, the density functions
are

The remaining coordinates in Fl"(k) are most easily
integrated out through the transformations

fy= R—3py
2

r2 R+2r23+ syl r3 R sr23+ 3P1

and then expressing ltlrz in momentum space. Taking
due care of the 3 function b(K) representing over-all
momentum conservation, this finally gives

3 3

to=Zoo(r, r~), o~=Z p~(r, r'), (4.1)
Fi+(k) = lt I '(P23, Pl+311)

vrhere

pc(r r')=2(1+r')f 1 "(r r)—
+l(1- '*)f""(r-r'), (4.2)

Psr(rvr)=2(1+riz)Ovztlyfmas (r ri)—
+ ', (1 r;,)o;,tl„f .-, (r——r,). (4.3)

p„and p,„are the static magnetic moments of the pro-
ton and neutron, respectively (in nuclear magneton
units), and r; is the position coordinate of the ith
nucleon. The functions f(r—r,) are the coordinate repre-
sentations for the various nucleon (charge and mag-
netic) form factors F(k), normalized, respectively, to

F,1,v(0)= 1, F,h"(0) =0, F v(0) =F "(0)= 1 .
"R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing

Company, Inc. , Reading, Massachusetts, 1953). See also, I..
Cohen and J. B. Willis, Nucl. Phys. 32v 114 (1962).

i+~&,
X lt'Hz(yssv Pl sir)dy28dyl v (4 9)

2

where /Hz(p23, P1) is the complete triton wave function, "
as given in Sec. 2, in the over-all center-of-mass frame
Pl+Ps+Ps ——0, but expressed entirety in terms of the

two momentlm variables (P23,P1), by virtue of the
identities

P = —(-'P+-'P ), P =(-'P —-'P ) (41o)

Ps 2Pl+P23 v P8 (-;Pi+p28) ~ (4.11)

The wave function in (4.9) is normalized according to

tpHz (p28v Pi)lt Hz(p28, P1)dy23dPi= 1. (4.12)

Similar definitions hold for F2"(k}'and Fs+(k},
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Fah"'= 2Fah"Fz, '+Fch"Fo'
where

To eliminate the isospin factors, the following 2&2 factor for H' in the form
matrix representations for r;, in the states (l', 1 ") may
be employed:

(4.17)

(4.13)

( 0 —1/v3
r3.=(+)I(—1/v3 2/3 )

F,+(k)=3&A IA )(»,» ~ (4.14)

F1 (k) = (') &A'I A'&(23, 1)+2&A"
I
A")(»,» ~ (4 13)

where (A',A") are as deined in Sec. 2, but each ex-

pressed entirely in terms of P~ and y23, and the nota-
tion (A IA)&23» is an abbreviation for

where the sign (&) in front of the matrices are appro-
priate for the cases of' He' and H', respectively. This
leads to the results

Fz, = 12(A I
A )(23,»+3&A I

A &(23 1&

+3/24&A IA &(13.2)+3(A IA ')(13,2)

+5/24(A'I A')(12,3)+3(A IA )(12,3) 1 (4.18)

Fo'= —',(A'I A') &»,»+ 1', (A'I A') (13,»+-,'(A"
I
A")(13,2)

+12&A I
A )(»,3)+3&A IA )(».3), (4 19)

thus explicitly de6ning the charge body form factors
for H' in terms of various elements of the three-body
wave function. For He', the corresponding result is

2F0&, "——2F,&,2'Fz'+F, h"Fo'. (4.20)

As for the magnetic-moment form factors, the cal-
culations are almost identical, except for the appearance
of spin factors 0;,. However, since their matrix elements
follow identical rules to those of r;„ the representation
(4.13) will hold with respect to the spins states (X',X"),
except that the sign (+) in front of the matrices is now
unnecessary. The results for the magnetic form factors
are expressible as

dP,dp23&A I A).
SPin

(4.16)
H3

&3H Fmag &3+msg Fo
+~&3 F „"P'o —Fr."j, (421)

Similar expressions are written down for F2+(k) and

F3+(k), using the cyclic permutations (p», P2) and

(p12,P3), respectively, of the momentum variables. These
expressions finally allow us to obtain the charge form

He3+He'~mug =pnpmeg ~0
+3& F ~"I:Fo" Fr, j, —(4.22)

where the magnetic body form factors Fl, and Iio
are given by the explicit formulas

Fz-=—&A I«.IA'&(23, » —-&A I«*IA '&(», » ——
&A 1~2.IA'&(13,»—&A" I~2. IA"&(»,»

12 4 24 8

+ &A'I~2*IA'&(13.2)
——

&A 1~3 IA'&(12.3)—-&A"I« IA"&&».» — &A'I« IA"&(».3) (423)
4V3 24 8 4

FP =-(A'jr&&IA )(23,1)+ &A' nI~2IA) (» 2)+(A" jn2gjA )(132)+ (A js23IA )(»2)
3

'
12

'
4

'
2&3

1
+—(A'I03, IA')&12, 3&+-(A"lag, jA")(»,3)— (A'j(r3, IA")(12 3). (4.2 )

243

It may be noted that we have four different body form
factors, as against two in SchiA's treatment, 4 even for
the pure S-wave case, The reason lies simply in our in-
clusion of the terms involving the squares of the S'
amplitude (which Schiff neglects). We recognize, of
course, that the 5'2 terms are quite negligible. The only
reason for retaining them in our treatment is that their
algebraic separation would have been more troublesome.
As we shall see, however, their smallness will show up in
terms of approximate equality of the quantities
(F mF c) and (F mF e)

S. INTEGRAL FORMULAS FOR THE BODY
FORM FACTORS

The body form factors Iio and FI. obtained in the
last section are all expressible as linear combinations of
several integrals, each involving a product of two dis-
tinct pieces of the initial and 6nal wave functions. As
Eqs. (2.9) and (2.10) show, the three-body wave func-
tion is a sum of three different types of terms, denoted
symbolically by

pl(p23)lP1) p 0'2(p31)P2) p &4/3(p12yP3) y
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which label the appearance of various momentum com-
binations. The evaluation of F&(k) is most easily
achieved in terms of yss(—=y) and P~(—=q), as shown in
Sec. 4, since the other two momentum pairs can also be
expressed via (4.10) and (4.11), in terms of (y,q). The
four basic integrals are then of the following types:

(5.2)

Is= (2,2)= —/st(4Pr+syss+~k, -'sPq —yss+-,'k)

XA(4Ps+syss ——,'k, sPs —yss ——,'k), (5.3)

Is=(»3) = |ts'(4Pi+sy»+~k, sPi —yss+sk)

Xbs(-'P~ —-'y» —-', k, sPi+y» ——,'k), (5.4)

I4=—(1,2) = fP(yss) Ps+sk)

X4's(4P&+sy» sky sP1 yss sk) ~ (5 5)

where iP, and P; represent symbolically the different
portions of the initial and Gnal wave functions, re-
spectively. It is clear that integrals like (1,3) and (3,3)
are trivially expressible in terms of (1,2) and (2,2), re-
spectively. For the quantities Fs(k) and Fs(k), an
identical procedure is available with appropriate cycHc
permutations of the momentum pair (y», Ps).

A further problem arises because each of the initial
and 6nal wave functions involves two types of po-
tential factors, viz. g(y) and f(p), with associated form
factors F(P) and G(F). This necessitates a further
classification of the integrals Iq to I4 in (5.2) to (5.5),
so as to indicate the precise potential factors involved in
each associated pair (f;,g;) of the components of the
wave functions.

In the pure S-wave case, we illustrate this classi6ca-
tion by writing these integrals as I(gf), where f; in-
volves g(p) and P; involves f(p) Thus.

I&(gf)= dydqg(p)f(p)F(q+sk)G(q —-', k)D '(p, q+sk)D '(p, q—sk), (5 6)

Is(gf)= dydqg(-', y+s4q+-,'k) f(-,'y+-,'q ——,'k)F(y ——',q——,'k)G(y ——,'q+-,'k)

XD '(sy+4q+4k y —sq —sk)D '(sy+-'q —4k y sq+—sk) ~ (5 7)

I (gf) = dydqg(ly+lq+lk)f(ly —lq+lk)F(y —lq —lk)G(y+-'q —lk)

XD '(-'y+ 'q+ 'k -y '-q —'-k)—D-'( 'y '-q+—'-k y-+-'q —-'k) (5.8)

I4(gf)= dydqg(P)f(sy+-'q —-'k)F(q+sk)G(y —sq+sk)D '(p, q+sk)D '(sy+-'q —-'k y —sq+sk)

where

(5.9)

(5.10)

The other combinations like I(gg), I(ff), etc., are easily obtained from the above formulas. This gives, for the body
form factors in the S-wave case, the following results:

Fr, ' ,' [SIg(gg)+3Ir(f——f)—+7Is(gg)+9Is(ff)+ Is(gg)+3Is(ff)
+12Is(gf)+SI4(gg)+3I4(ff)+9I4(gf)+15I4(fg)], (5.11)

Fo —g[Ig(gg)+3I1(ff)+SIs(gg)+3Is(ff)+2Is(gg)+6Is(gf)+I4(gg)+3I4(ff)+9I4(gf)+3I4(fg)], (5.12)

Fr, = 4s L3I,(gg)+I,(ff) 2Is(gg)+10Is(g f)+S—Is(gg)+7Is(ff)
-4Is(gf)+3I4(gg)+I4(ff)+3I4(gf)+9I4(fg) j, (5.13)

Fo" ,'t 4I,(ff)+4I,(gg)——+—4I,(gf)+5I,(gg)+Is(ff)+2Is(g f)+4I4(ff)+12I4(gf)j. (5.14)

In the case of tensor forces, the formulas are much of the various quantities. Thus the central and tensor
more involved. However, certain simplifications are terms in the triplet potential g(y), denoted, by C and T,
possible, if due regard is paid to the physical magnitudes respectively, obey the condition [ T[(([C[ ) f[.Like-
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FIG. 1. The spectator
functions (F,G) with set I
and (FI,F2,G) with set III,
as functions of momentum
P in units ofa, the deuteron-
binding-energy parameter.
The curves are allnormalized
to G(0) = j..

Qp 8,0 12.0

wise, the "central" and "tensor" parts of the triplet
spectator function F(P), denoted, respectively, by F&
and F2, satisfy the inequality LF2[(()F~[ ~G~, antici-
pating the numerical results to be given in the next
section. Indeed, the numerical results bring out the
following inequalities:

y= IF2I/IF~I«*= I2'I/lcl«1 (5»)

indicated below, (n= 1, 2, 5, 4):

for the charge form factors, and

(5.18)

(5.19)

CCFgFy, CfFyG, ffGG, (5.16)

the magnitudes of various smaller terms compared with
(5.16) are of the following (descending) orders:

These inequalities help in distinguishing between the
orders of magnitude of the various terms in the expres-
sions for the body form factors. Thus, while the principal
terms in the integrals (5.2)—(5.9) would involve factors
like

for the magnetic-moment form factors. In these modi-
6ed forms, the principal terms in J ' and I" are
Qentical in structure to the corresponding terms J in
the S-wave case. However, these terms now contain
additional contributions of orders x, y, x, xy, which are
admissible within our approximation, under all the
heads 0.=1,2, 3, 4. The actual expressions, however, are
too lengthy to be reproduced here.

Ã~y x~, gy xy)y sy xy . 5.17
6. NUMERICAL RESULTS FOR FORM FACTORS

However, the inequalities (5.15) show that only the
terms of orders x, y, x', xy need be taken into account,
without sacri6cing any physical accuracy. %ith this
approximation, the body form factors in this case are
formally given by Kqs. (5.11)—(5.14), except for certain
modi6cations in the meaning of various integrals, . as

The spectator functions F and G were evaluated cor-
responding to the following shapes of the potentials:

(6 1)

(6.2)
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Fzo. 2. The spectator
functions {F,G) with
set II and (FI,F2,G)
with set IV, as func-
tions of a. The curves
are all normalized to
G(0) =1.

).0

0.5

' 12.0

(for the tensor case): where A, 8, y, y~, and y2 are suitable constants. Again
for the tensor case, Fi(p) and G(p) are equally well
represented by the above form, with suitably adjusted
constants. However, F2(P) needs the following alterna-
tive representation:

(6.3)

(6.4)

C(P)=(P2+P ') '

&(P)= —~P2(P2+V ') '

Several sets of the triplet and singlet parameters as
given by Yamaguchi, " and subsequently in improved
form by Naqvi, ' which were used for the calculations
are as shown in Table I. The actual curves obtained for
the spectator function with Yamaguchi's parameters
(sets I and III) and the corresponding curves with
Naqvi's parameters (sets II and IV) are given in Fig. 1
and Fig. 2, respectively.

It is seen from these curves that even near the maxi-
mum of F2, it is about 10% of the corresponding value
of Fi and only 2% of the maximum value of Fi (which
occurs at P=O). The singlet spectator function G, as
expected, has a shape and magnitude siInilar to F or Ii ~.

For the calculation of the integrals, each of which
involves two such spectator functions, it is most con-
venient to use the Feynman method of integration,
since all the other factors (potential and denominator
functions) have the structure of "propagators. " For
this purpose, the spectator functions must also be ex-
plicitly parametrized to such forms. Indeed, it is found
that for the s-wave case, each of F(P) and G(P) can be
accurately 6tted by the general form

F (P) —CP2(P2+g 2)—1(P2+g 2)—1(P2+g 2)
—1 (6 6)

While the fit (6.6) for F2 is not as good as (6.5) for
P~, F, G, it should be recognized that F2 itself is appreci-
ably smaller than Ii& or G, so that the over-all eGect of
the approximation is considerably weighted down.
Typical fits for Fi(P) and F2(p) are shown in Table II.
Table III gives the values of the di6erent parameters
obtained for all the potentials listed in Table I.

With these functional forms, the various integrals
can be evaluated in a semi-analytic manner for which
the approximation techniques employed are briefly
described in the Appendix. The body form factors which
are now evaluated with the help of these integrals

TAsr, z I. The potential parameters of various central and
tensor forces used for the calculations. The Yamaguchi (Ref. 16)
and Naqvi (Ref. 19) parameters are distinguished by the sufFixes
F and E, respectively. S represents the 'So potential and C'"
the effective 'S1 force. n is the deuteron binding-energy parameter.
See text for other notation.

p2+~2 p2+7 2 P2+~ 2

"J.H. Naqvi, Nucl. Phys. 36, 578 (1962).

Set potential ps/~ p~/a p&/a t ) ]3/0.3 p 31/n3

I Cy'"+Sy 6.255 6.255 ~ ~ ~ ~ ~ ~ 23.4306. 33.29
(6 S) II CN+Szr 5.8 5.8 ~ ~ ~ ~ ~ ~ 18.9 22.9

III' (C+T)y +Sy 6.255 5.759 6.771 1.784 23.4306 20.0378
IV. {C+T)N+Sg 5.8 5.8 5.8 0.9519 18.9 22.9
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Fxo. 3. Curves for the body form factors Fo', Fo, FI,', FL, for the charge and magnetic distributions as functions of the square of the
momentum transfer (k') in units of F '. The curves (a), (b), (c), and (d) refer to the potential parameters corresponding to sets
III, and IV, respectively.

according to Eqs. (5.11)—(5.14), are given in Figs.
3(a) to 3(d), for the diferent potentials used. The radii
corresponding to these form factors (which are evalu-
ated by numerical interpolation, using third-degree
polynomials in the variable k', in the region of low mo-
mentum transfers) are listed in Table IV.

Finally, the form factors of H' and He' are evaluated
with the help of Eqs. (4.17), (4.20)—(4.22) using known
values of the nucleon form factors as given by de Vries

et ul. ' 7Vhile we omit the actual curves for these quanti-
ties, it may be of interest to reproduce in Table V the
radii of these nuclei obtained with the help of Table IV
and the values for the nucleon radii as given in Ref. 20."
IC. de Vries, R. Hofstadter, A. Johansson, and R. Herman,

Phys. Rev. 134, 8848 (1964).
2' Another set of data by de Vries et al. used a smaller magnitude

for u„'(ch), but the fit to the charge radii of H' and He' with this
set is even poorer LC. de Vries, R. Hofstadter, and R. Herman,
Phys. Rev. Letters 8, 381 (j.962)].
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TmLE IL A typical Gt to the central and tensor spectator functions Fr(P) and Fs(P), corresponding to set III of Table I, by the
parametric forms (6.5) and (6.6), respectively. The momentum is in the units of the deuteron binding-energy parameter u.

Momentum
P

6.24783X io '
0.327732
0.799007
1.46637
2.31560
3.32861
4.48381
5./5658
/. 11979
8.54438
10.0000
12.8802
15.5162
18.5336
19.9375

F (P)
actual

1.73336
1.69478
1.51930
1.16315
0.753551
0.434461
0.235207
0.123704
6 4491X10 '
3.3792Xio '
1 /985Xio '
S.S23 X 10-3
1.976 X10 '
6.244 X10 4

3634 Xio 4

FI(P)
Qtted

i./3352
1.69469
1.51851
1.16270
0.754416
0.434866
0.234494
0.122999
6.4516X10 '
34425X10 2

1.8837X io-2
6093 Xio '
2110 Xio '
3943 X10 4

2408 X10 '

F2(p)
actual

/. 5213Xio '
2.0200X10 '
1.0672 XLO '
2 6879X10 '
4.1467Xio '
4 5933X10 ~

4.0892 X10 '
3.1496X10 '
2.2074X10 '
1 4613Xio 2

9.405 X1O-
3.883 X10 3

1 745 X10 '
7144 Xio 4

4.753 Xio 4

F,(P)
Gtted

6.9074 X10 '
1.86318X10 '
10035 X10 ~

26220 Xio 2

4.1801 X10 '
4.6657 Xio '
4.0913 X10 '
3.0874 xio-2
2.1454 Xio-2
1.4401 Xio '
9.639 X10 '
4.594 X10 '
2509 Xio '
1.359 X10 '
1.047 X10 3

where

Fr. =Fr ',F (5/9—)F-s, —

Fp" Fr+ ssFs
——(2/9)-Fs,—

(7 1)

(7.2)

Fs= dr;t2 exp(ik rt)es'

+exp(ik rs)(3' 'et+es)'j P 3)

Note that F3 is a positive-definite quantity which does
not vanish at zero momentum transfer. Therefore,
Eqs. (7.1) and (7.2) show that Fr, and Fo" not only
cannot be normalized to unity, but that their values at
k'=0 would be somewhat diGerent from each other,
because of the terms (5/9)Fs(0) and-', Fs(0), respectively.
Indeed, for the two S-wave cases represented by sets I

7. DISCUSSION AND CONCLUSION

Before we discuss the comparison with experiments
we wish to say a few words about the normalizations.
While F&' and Po' are by de6nition normalized to unity,
as can be seen from Eqs. (4.17) and (4.20), Fr, and
Fo need not be so. Indeed, as can be clearly seen from
Eq. (11)of Schiff's paper, ' the inclusion of the S"terms
would have given

and II, the normalized quantities Fz„o (0) are found to
be the following;

Set I:
Fr, (0)= 1—0.01291, Fo (0)= 1—0.00516, (7.4)

Set II:
Fz"(0)= 1—0.00353, Fo"(0)= 1—0.00141, (7.5)

which brings out the amounts by which these quantities
fall short of unity. The deviations from unity are indeed
in the ratio of 5:2, as required by Eqs. (7.1) and (7.2).
For the case of tensor forces, represented by sets III
and IV, there are further corrections to the normaliza-
tion (due to D waves), not merely expressible by the
simple equations like (7.1) and (7.2). Indeed, for the
Yamaguchi tensor case (set III), characterized by a
high D-state probability ( 5.3'Po), the net deviation of
Fo (0) from unity is as much as 0.07033 and that of
F&"(0) is 0.03023, which are appreciably larger cor-
rections than shown in (7.4). For the Naqvi potential
set (IV), which yields a smaller D-state probability
( 2.7%), the corresponding net corrections are 0.01862
and 0.02215, respectively.

Tasrz III. The various constants (A,B,y,y~, ys) and (C,sr, br, ba) of the parametric 6ts (6.5) and (6.6) to the
spectator functions (F,FI,G) and F&, respectively, for the diBerent sets of potentials used.

Spectator
Set function

I F(P)
G(P)

F(P)
G(P)

F,(P)
G(P)
F2(p)

F1(P)
G(P)
F2(P)

12.0509
8.67804

6.22489
5.19530

8.19268
7.21425

8.17284
6.28318

5.89500
3.97000

3.23500
2.81000

3.54200
3.29000

8.83400
3.44000

2.41225
2.94518

2.05477
2.27841

2.17301
2.68519

2.03419
2.50582

5.48621
6.11353

5.27229
5.58283

4.99079
5.68163

4.69662
5.44632

5.28832
5.91494

5.07600
5.39815

4.72709
5.46496

4.58371
5.25880

~ ~ ~

205.000

~ ~ ~

154.000

~ ~ ~

6.94000

~ ~ ~

4.95000

~ ~ ~

36.5000

~ ~ ~

33.9000

~ ~ ~

47.5000

~ ~ ~

44.5000
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TAsxz IV. The radii (in fermis) of diRerent body form factors,
as(eh), +o(ch), ar, (mag), os(mag), for the various sets of Table I.

Set

I
II
III
IV

a, (ch)

1.284
1.537
1.413
1.502

ao(ch)

1.244
1.512
1.370
1.454

al, (mag)

1.297
1.545
1.313
1.421

a0(mag)

1.215
1.495
1.340
1.419

TABLE V. The charge and magnetic radii (in fermis), aH, 3(ch),
aH&(ch), -a@,&(mag), aH&(mag), for the various sets of Table I,
obtained from the data of de Vries et al. (Ref. 20) for the nucleon
charge and magnetic distributions.

Set aH. (d) aH3(ch) aH, 3(mag) aHS(mag)

1.520
1.739
1.631
1.708

1.421
1.662
1.533
1.608

1.538
1.754
1.555
1.646

1.527
1.752
1.589
1.667

"The results of set II in Table V can not be discussed for
physical comparison since it is an "incomplete" potential, used
only for assessing the importance of the tensor force.

For a comparison with experiment, the important
features of the H' and He' form factors are, (1) the
actual magnitudes of the various radii, and (2) an
appreciable difference between the charge radii of He'
and H', as may be seen from the following experimental
values":

a,a(Hs) =1.70+0.05 F=a,s(H'),
(7.6)

a,h(He') =1.87+0.05 F, a „(He') = 1.74+0.1 F.
As for the magnitudes of the radii, pure S-wave forces

yield rather small values, as may be seen from set I of
Table U for the effective S-wave Yamaguchi force. The
results with set II, which represents merely the S-wave
part of the total triplet (central plus tensor) force, are
included in Table V just for an estimate of the tensor
force contribution to the sizes of He' and H'. The larger
values of the radii compared with set IV indicate that
the tensor force, while not so important as a central
force in the binding of a three-body system, has never-
theless an appreciable role to play in determining the
size of the triton.

A substantial improvement in the radii of the body
form factors Fo and FI, is achieved with the tensor force,
as may be seen from the results of sets III and IV in
Table IV. Here again, as was found for the binding
energy of H', " the Naqvi parameters (set IV) yield
definitely better results than Yamaguchi's. The effect
of this improvement in FI, and Fo rejects itself in a
corresponding improvement in the actual radii (charge
and magnetic) of H' and He', as calculated in Table V."
The results with set IV are particularly encouraging, in
that they fall short of the experimental 6gures by not
more than 10%, even in the "worst case" of the He'
charge radius. To explain a discrepancy of this order of
magnitude, the most natural candidate should be the
effects of the hard core. Unfortunately, no concrete

data are as yet available with both tensor and hard-core
effects taken into account in a realistic manner. How-
ever, a model calculation by Tabakin" had shown that
the hard core could decrease the binding energy of H'
by numbers ranging between 0.5 and 0.9 MeV, depend-

ing on the model chosen. This reduction, being about
5 to 10% in the binding energy of H', should result
in a corresponding increase in the sizes of H' and He', as
a crude argument based on the asymptotic properties
of the three-body wave functions would suggest. "This
correction should perhaps be taken in conjunction with
relativistic corrections, " as in the case of the binding
energy of H'."Of course, this argument is no substitute
for am exact evaluation which, while extremely involved
would still be of great interest from the point of view of
understanding detailed three-body effects with realistic
two-body forces.

We recall in this connection, the recent results of
Amado'~ for the radii of F0 and FJ. using pure S-wave
forces. While he of course recognifies the importance of
hard-core effects, his values of aL, and ao are much too
large to be expected from any realistic S-wave force. We
have traced this important discrepancy with our re-
sults to his large S' probability ( 7%) which does not
conform to any reasonable physical requirements for
this parameter. ' A smaller S' state should clearly
have given a smaller radius, since a correspondingly
larger probability for the totally symmetric state would
have been more effective in bringing three nucleons
together. We therefore feel that our poor S-wave results
for the radii are at least realistic (with S' probability

1%) and that there is no escape from the tensor force
to get the right magnitudes.

As for the difference in charge radii of He' and H',
which represents another important experimental
quantity, we note that it depends strongly on what is
assumed about the neutron charge distribution, ac-
cording to the formula

aH, S'(ch) —aH~'(ch) = ar, '(ch) —ao'(ch) —-'a '(ch), (7.7)

which can be easily derived from Kqs. (4.17) and (4.20).
Now while Table IV shows that al, '(ch)) ao'(ch), "as

"F.Tabakin, Phys. Rev. 137, B75 (1965).
'4 It is known that for the deuteron problem, the asymptotic

wave function (which gives excellent results for its size), depends
only on its (small) binding energy. For the present three-body
case, the exact form of the asymptotic wave function is no doubt
much more complicated, yet the square root of the binding energy
is still appreciably lower than the inverse range parameters of the
various forces. This would imply that the size should be governed
more strongly by the binding-energy parameter than by the in-
verse range parameters of the forces. Therefore, to the extent that
Tabakin's estimate of the hard-core eGect gives 5—10% reduction
in the binding energy, the e8ect seems to be enough to increase
the radii by the order of magnitude required.

"G.B.West, Phys. Rev. 139, B1246 (1965).
"V. K. Gupta, B. S. Bhakar, and A. N. Mitra, Phys. Rev.

Letters 15, 974 (1965).
. '7 R. D. Amado, Phys. Rev. 141, 902 (1966).

8 Incidentally, the result aL, &ao' shows a fortiori that the sign
of the S' amplitude with respect to the S amplitude is obviously
the "correct" one according to SchiG's analysis (Ref. 4).
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required by the experimental value (0.607 F') of the
left-hand side of (7.7), the excess a1,2(ch) —ao'(ch) is not
enough to explain the latter. We must, in other words,
invoke a 22egat& e value of a (ch) (i.e., a positive slope
for the neutron charge distribution). This conclusion
agrees with the results of Levinger and Srivastava" for
the three-nucleon form factors using a variational wave
function. We note further that a positive slope for the
neutron charge form factor is also indicated by the
nucleon form-factor analysis of de Vries er, a/. ,2P in terms
of Clementel-Villi —type formulas, 'P in relation to the
data for inelastic electron-deuteron scattering. ' The
data in Table V are based on a„'(ch) = —0.123 F', but
apparently this explains only a part ( 0.10 F) of the
experimental difference (0.17 F) between aH, ~(ch) and
aH~(ch). To explain the full difference, we formally re-
quire a„'(ch)= —0.30 F, which, however, would be
rather too large to account for the inelastic electron-
deuteron scattering data.

It would perhaps be more reasonable to ascribe the
remaining discrepancy of 0.07 F between the two
charge radii to other neglected effects. Of these, the
hard core which has already been mentioned in con-
nection with the actual sizes of these nuclei, could well

play a differential role with respect to uL, and ao. The
other possibilities are Coulomb corrections for He',
various exchange moment contributions, and a small
admixture of T= ~ states. ' It is, however, premature to
talk about these effects in any quantitative terms. As for
three-body forces, we believe that while these could
exist in principle, they should have a much lower
priority for consideration (in view of the success
already achieved with two-body forces) than the other
effects mentioned in this paragraph.

To summarize, we have found that the inclusion of
tensor forces gives a signi6cant improvement over the
S-wave results for the three-body radii, and leaves a
fairly small margin between theory and experiment. It
is argued that hard-core effects could be a promising
candidate for explaining the gap. Further, the experi-
mental difference between the charge radii of He' and
H' requires a positive slope for the neutron charge
distribution, again in agreement with the analysis of
deuteron data.
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APPENDIX

We describe first the evaluation of the integrals in the
S-wave case. The integrals I in Eqs. (5.6)—(5.9) involve

"J.S. Levinger and B. K. Srivastava, Phys. Rev. 137, 8426,
(1965)."E.Clementel and C. Villi, Nuovo Cimento 4, 1207 (1956).

the potential shapes (6.1) and (6.2) and the form (6.5)
for the spectator functions. Each integral involves
three pairs of like factors which we shall refer to as
"potential", "spectator, " and "denominator, " respec-
tively. Our 6rst task is to combine the numbers of each
pair by a "Feynman variable, " according to

j.

du[au+b(1 —u)j ',
ab p

(A1)

and express it in the approximate form

1 4 (a—b)'

, 1+ + . .
ab (a+b)' (a+b)'

(A2)

where the expansion (A2) provides the necessary back-
ground to the approximations used for the problem.
Since like pairs are being combined, their differences are
expected to be-small compared with their sums, the erst
nonvanishing correction providing an estimate of the
error involved in neglecting the higher order corrections.
The differences (a b) ar—e of two types, arising from
(i) small differences between the parameters P,2 and

P& in the potentials, and (ii) certain angular correlations
between the momenta y, q, k, which would usually
appear with oPPosite sigrss in a particular pair of like
functions. In any case, the analytical structures of the
sums (a+b) can be made much simpler (by using such
considerations) than those of a or b individually. In this
manner we are left with expressions whose principal
terms have the structures

(a1+b1) '(a2+b2) '(a2+b2)-', (A3)

and the correction terms involve merely higher (nega-
tive) powers of one or more of the factors (a;+b,).
Since higher powers of the same quantity do not involve
additional "Feynmann variables, " it is enough to dis-
cuss the evaluation of the principal terms only.

We illustrate this procedure in some detail with
special reference to two specific integrals, say, I& and
I3 in the S-wave case. A typical Iq integral has the form

[(p'+p12) (p2+p22)] 1[{(»+1k)2++12}

X {(q 1k)2+'y22}1 1[{P2+2(»+ 2k)2+&T2}

X{p'+l(q-lk)'+ "}3-' (A4)

where the groupings of the three pairs have been ex-
plicitly shown. It is clear from these expressions that
the quantities (a;+b;) and (a,—b,) are of the forms
indicated below:

2p2+ (P12+p22) P12 P22—
2(~'+ k')+(V1'+~"), (V"-7")+-.'(» k),
2P'+-22 (q2+-', k')+2nr', (q k) .

Since in all the cases discussed in the text, p12 and f22
differ little from'each other, and y~' and y2' do like-
wise, an expansion like (A2) should be physically quite
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justified. The angular terms like (q k) lend themselves
to even better justification for expansion, since the
variables y and q are eventually going to be integrated
out, so that only the isotro pic parts of their eveu powers
would survive. For the I~ integral, we are therefore left
with an expression of the form

through (p k), a further translation in p is necessary
after combining the three factors by two Feynman
variables, say (u, v). The resultant integral in p and q is
then of the form

120 u(1 —u)du v'(1 —v)dv

dpdqLp'+(&')-) 'Lq'+ l&'+(v')-) '

X(p2+3q2+ & P2+&T2)-2 (A5)

plus "correction terms" involving similar integrals but
with higher powers for the various factors. This integral
can be analytically evaluated in one of the variables p
or q, but the other needs numerical evaluation for dif-
ferent values of k' of physical interest.

For an estimate of the accuracy of this procedure, the
second-order corrections to the principal terms were
examined in detail for several I~ integrals, and found
to provide about 10-15%%uo effects for the highest values
considered for b' (viz. 6 F-'). Since these corrections
were explicitly taken into account, the higher order
effects (e.g., fourth order) are not expected to exceed
5% at the highest k', which represents the degree of
accuracy of our calculation.

For the integral I3, the structure of the principal
term, after appropriate expansion in the differences
(a; b,), is—

dpdql3p'+(9/16)q'+( /1 )&'+-'(p k)+(0') ) '

X t:p'+-'q'+(1/12)&'+~r') '

XLpm+-'q2+(1/36)p~ —-'(p k)+(pm) )—2 (A6)

Since in this case these factors still involve the angles

X dpdq[A p'+Bq'+C) ', (A7)

where A, B, C are now functions of I, v, and k'. The
evaluation of the y and q integrations then yields a two-
dimensional integral of the form

u(1 —u)du v'(1 u)du—A "'B "'C ', (AS)

which is most conveniently evaluated numerically for
several input values of O'. The correction terms are also
of the form (A7), except for (i) the replacement
6 -+ 6+2n (e integral) in the exponent of the integrand,
(ii) suitable additional factors in u, (1—u), v, (1—v), in
the numerators arising from Feynman parametriza-
tions, and (iii) certain angular functions in the numera-
tor (which present no difficulty). The integrals I& and
I4 are evaluated in manners identical to the Ij and I3
cases, respectively.

For the tensor case, the procedure is quite similar,
except that the structure of some of the principal terms,
e.g., those which involve the potential T(p), are like the
correction terms in the S-wave case. Here again, the
"second-order corrections" to the integrals have been
taken into account in complete details, to the same order
of accuracy as in the S-wave case.


