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Thus, Eq. (AS) is reduced to

( Q2 l j2

(U—Us) f(r)mssdr=B/u=
~

B'~s (A10)
p (2m

which has the form of Eq. (A1).
For the s-shell hypernuclei, the use of Eq. (12) as an

interpolation formula is based on the following observa-
tions: (1) the A. particle can be approximately regarded
as moving in a potential well created by its interaction
with the individual nucleons, with the depth of the well
determined by the strength of the A.-nucleon interaction,
and (2) the condition expressed by Eq. (A9) is fairly well
satished. There is a slight complication arising from the
fact that the shape of the well depends somewhat on the

depth of the A.-nucleon potential, but we do not thinlz
that this can seriously affect the results obtained by
using Eq. (12). In any case, we have taken the extra pre-
caution of always choosing one value of Up~ which
yields a value for 8& close to that determined
experimentally.

There is also another piece of evidence which shows
that a two-parameter interpolation formula is quite
sufFicient for the s-shell hypernuclei. In Ref. 11, we
have used a more careful procedure involving three
values of Upg and a three-parameter interpolation
formula. But, this was later found to be unnecessary,
since a two-parameter formula would have yielded very
nearly the same results as that from a three-parameter
formula, if the values of Up& are chosen properly.
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The role of the two-body force, its exchange mixture, and the spin-orbit force in their effect on the Hartree-
Fock wavefunctions and spectra is investigated. It is shown that the main features of the Hartree-Fock.
single-particle field are determined almost completely by the long-range part of the two-body force. The
solutions for a long-range model are derived for various systems of different neutron excesses, and the ex-
change dependence of the energy "gap" between occupied and unoccupied levels is particularly considered.
The main eGect of the spin-orbit force and the finite range of the two-body force is to mix the orbitals. In
the cases where the energy "gap" is large, the mixing is only of the occupied orbitals among themselves.
Out of this study it emerges that the most natural representation for the Hartree-Fock single-particle
orbitals is that associated with the axially symmetric deformed harmonic oscillator where one takes linear
combinations of degenerate orbitals which are time-reversal eigenstates. This prescription results often in
nonaxially-symmetric nuclei and is consistent with the results found in exact calculations with realistic forces.

I. INTRODUCTION

'N recent years the method of self-consistent de-
-- formed orbitals has been successfully applied to
various nuclear structure problems. In particular, there
now exists a number of papers' ' dealing with the ro-
tational and vibrational aspects of the low-lying spectra
of nuclei in the 1p and 2s, 1d shells. Intershell prob-

+ Supported in part by the U. S. Atomic Energy Commission.
t' On leave from the Weizmann Institute of Science, Rehovoth,

Israel.' I. Kelson, Phys. Rev. 132, 2189 (1963).' I. Kelson and C. A. I,evinson, Phys. Rev. 134, 8269 (1963).' W. H. Bassichis, C. A. Levinson, and I. Kelson, Phys. Rev. 136,
8380 (1964).

4 J. Bar-Touv and I. Kelson, Phys. Rev. 138, B1035 (1965).' J. Bar-Touv and I. Kelson, Phys. Rev. 14$, 599 (1966).

lems' ' such as the 0" spectrum involving 1p holes and
2s, 1d particles as well as the dipole giant resonances
involving the 1P, 2s, 1d, and 2p, 1f shells have also been
treated by the method of deformed orbitals.

The success of the above calculations certainly indi-
cate that the underlying Hartree-Fock (HF) approxi-
mation has considerable validity in light nuclei. It is the
purpose of this paper to discuss the main physical
features of these calculations and to investigate the role
of the two-body force and its exchange mixture and the
spin-orbit force in their effect on the Hartree-Fock wave
functions and spectra. Usually these points are obscured

6 I. Kelson, Phys. Letters 16, 143 (1965}.' W. H. Bassichis and G. Ripka, Phys. Letters 15, 320 (1965).' W. H. Bassichis and F. Scheck, Phys. I.etters 19, 509 (1965).
s W. H. 11assichis and F. Scheck, Phys. Rev. 145, 771 (1966).
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since the results are simply presented as the end point of
a series of computer calculations. In particular, the
appearance of an energy gap in the calculations has been
of critical importance in 6tting the experimental data
and should be understood in its relation to the original
two-body Hamiltonian. In light nuclei around Ne", this

gap is of the order of 7 MeV as measured by the energy
separation of ground and 6rst excited even-parity band
heads in Ne". This gap in the Hartree-Fock single-
particle spectrum probably persists to some extent in
the heavy nuclei and may have quite important conse-
quences there which have not yet been studied. The
standard single-particle spectrum as given by the
Nilsson model does not include this effect.

It has been found that certain nuclei are axially
symmetric and others are not. The symmetry properties
of the wave functions will be discussed and will be
shown to depend on the exchange mixture of the force
and on the constraint of time-reversal invariance.

A key observation of the Copenhagen school is that
the Hartree-Fock 6eld is mainly determined by the
long-range part of the two-body nuclear force. Following
this idea, it is natural to consider an expansion of the
two-body force in inverse powers of the range and to
study the leading terms separately since they should
give the dominant effects in a Hartree-Fock calculation.
When this is done, it is easily seen how the energy gap
arises as a consequence of the exchange mixture and
what is the nature of the Hartree-Fock orbitals. This
long-range calculation almost exactly reproduces the
results of realistic-range Hartree-Fock calculations done
on digital computers. The spin-orbit force is seen to play
a small role when the energy gap in the Hartree-Fock
spectrum is large and one can understand, in this way,
the success of the supermultiplet model in certain cases.
A most important parameter governing the structure
of the nuclear wave functions is the ratio of the spin-
orbit force strength to the magnitude of the energy gap.

The energy gap discussed here arises solely from the
long-range part of the force and the particular exchange
mixture. This "long-range energy gap" can be ap-
proximately predicted for heavy nuclei based on its
known value for light nuclei. It appears that this gap
is of importance in the structure of heavy nuclei where
to a certain extent it opposes the effects of the short-
range part of the force and the well-known gap arising
therefrom.

II. THE HARTREE-FOCK APPROXIMATION

There are two applications of Hartree-Fock theory
under current investigation. One approach is typified by
the work of Kerman and collaborators" and Baranger
and collaborators. "This approach concentrates mainly

' A. K. Kerrnan, J.P. Svenne, and F. M. H. Villars, Phys. Rev.
147, 710 (1966)."K. Y. R. Davies, S. J. Krieger, and M. Baranger (to be
published),

where the states jm are the jj-coupled single-particle
states in the sd shell in a 6xed harmonic-oscillator po-
tential and only the parameters a, ,

" are varied in the
calculation. The Hartree-Fock wave function is simply
the determinant of the occupied orbitals:

O'= Det(hg, Xg, Xg) . (4)

Clearly the wave function remains invariant if one
introduces new orbitals which are linear combinations
of the old occupied orbitals. It is sometimes convenient
to do this in order to gain insight into the structure of
the wave function.

The two-body interaction is of the general form

V;;= V.(r,;)(W+MP, +BP;; HP; ), (5)—
where I', P, I" are the space, spin, and isospin ex-
change operators and V, (r;;) is a Yukawa or Gaussian
potential of definite range and strength.

The one-body interaction is taken to be a standard
shell-model type where

ft =Ho+n~. l s+nP, (6)

where Ho is a harmonic-oscillator Hamiltonian and ca~„

n~ are the strength of the spin-orbit and l' force.
Further details of the calculation can be found in

Ref. (4). In Fig. I is shown the single-particle Hartree-
Fock spectrum for the 4e nuclei. The parameters a;
are given in Ref. (4).

on spherical nuclei where the spin and angular part of
the orbitals is 6xed a priori and only the radial depend-
ences are varied to minimize the total energy. The other
type of approach with which we are concerned here 6xes
the radial dependences a priori and varies the spin and
orbital parts of the wave functions. This method does
not address itself to the problems of nuclear matter, but
rather is more concerned with questions of nuclear
spectra, positions of band heads, moments of inertia,
and coupling schemes.

The most general Hartree-Fock calculations of the
latter kind in the sd shell reported to date are those of
Bar-Touv and Kelson. 4 In this paper, the intrinsic self-
consistent structure of the nucleus is derived from the
many-body Hamiltonian by solving the self-consistent
Hartree-Fock equation:

&nl&IP&=&nl&IP&+2 L&nl I VIP~& —&n~lVilP&l, (I)

I lx)=~, lz),

where In) is a one-particle state, the states IX) are
occupied, and h is the one-body Hartree-Fock Hamil-
tonian. E is the single-body and V the two-body parts of
the Hamiltonian. The most general one-body wave
function is made up of orbitals in the sd shell and is of
the form

IX)= P a, ,„"Ij,m),
m
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FIG. j.. Hartree-Fock single-
particle spectra for 4N nuclei
in the s-d shell. The two-
body force used in deriving
these spectra is normal-range
Yukawa potential with the
Rosenfeld mixture and single-
particle 1 s force of strength
O,i.I=2.8 MeV.
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First let us examine the spectra. The dominant
qualitative features are:

(1) There is a constant energy gap of about 8 MeV
between the topmost occupied level and the bottom-
most unoccupied level.

(2) Qualitatively, the occupied levels are close to-
gether and remain at the same energy while the unoccu-
pied levels cluster about a higher energy.

As has been emphasized before, the energy gap
manifests itself in the nuclear-energy-level spectra and
in the computed moments of inertia through the cranking
formula. The Hartree-Fock wave functions are rigor-
ously stable against single-particle excitations and cor-
rections to the approximation can only occur through
two-particle excitations. However, with an energy
di6erence of about 16 MeV for two-particle excitations,
one sees that the Hartree-Fock wave functions for
4e-type nuclei should be quite stable. (Typical off-
diagonal matrix elements being of the order of an MeV
or so.) Let us now consider the case where there is no
spin-orbit force present. In Fig. 2 is shown the Hartree-
Fock spectrum for a normal-range Rosenfeld mixture
for Mg'4. We see that the occupied levels are essentially
degenerate and the unoccupied levels are also ap-
proximately degenerate and lie at a considerably higher
energy. This phenomenon is quite independent of the
exchange mixture. In the limit of infinite-range forces,
the degeneracies become exact. So we see already that
Hartree-Fock calculations with realistic-range forces
give essentially the type of spectrum found in the
infinite-range limit. The spin-orbit force does split

iL 5

Fro. 2. Mg'4 self-consistent spectrum
for 6nite-range Yukawa potential with
the Rosenfeld mixture and zero 1 s force.
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these degeneracies further as one can see by comparing
Figs. (1) and (2).

We next compare the wave functions for calculations
with and without the spin-orbit force. It will be most
convenient to display the wave function in a basis where
the space part of the orbital is either even or odd under
time reversal. In the sd shell, the wave functions of the
orbitals can be taken with real a; ~, and the time re-
versal operation is equivalent to a rotation of 180' about
the x axis or a reflection through a plane perpendicular
to the x axis. In these three cases, 0' ' simply goes into
(—1)~'—"% ~'. We choose as a representation the six
states listed in Table I and their time reversals which
correspond here only to a spin flip, and a possible phase
change. The notation is such that d2 means a d orbital
with mi ——2. The symbol j' stands for a spin-up Pauli
spinor. n and P are amplitudes for the so and do com-
ponents in 0'i.
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TABLE I. Definitions of the representation used in the
present article.

(1) (nso+pdo) 1

dy+d
(2) l

vT j
dg —d g)

(5)

(6) (—pso+~do) 1'

TABLE II.Single-particle wave functions of Ref. 4 corresponding
to normal potential range and spin-orbit force in the representation
defined in Table I.

Ne" 0.97 0.16 0.16
0'4
0 0 0

Mg'4 0.83 0.53
0.45 —0.81

0.08 0.10
0.24 —0.22

0.07 —0.10
0.08 —0.16

Sj28 0 0 0
0.28 —0.12 —0.12
0 0.23 —0.23

0.71 0.71
0 0
0.67 —0.67

0
0.94
0

$32 I —0.07 0.05 0 0.68 0.66 0.31
II —0.16 —0.63 0.04 —0.09 0.41 —0.63

III —0.16 0.50 —0.25 0.43 —0.1.9 —0.66
IV 0.29 0.55 0.13 —0.48 0.57 —0.19

Ar" I& 0.95 —0.2 —0.2 0.04

' I ~ unoccupied level in Ar36.

"E.Flamm, C. A. Levinson, and S. Meshkov, Phys. Rev. 129,
297 (1963).

"M. Kugler, Phys. Rev. 129, 317 (1963).

The wave functions of Ref. 4 corresponding to normal
potential range and spin-orbit force are expandable in
terms of %q, 46 with o.=0.44 and P=0.90 and the
wave functions of the occupied levels are shown in
Table II except for Ar" where the wave function of the
single unoccupied level is given.

The representation we have chosen is that which
gives a solution in the case of a long-range force with no
spin-orbit splitting. In the case of a very-long-range
force, the SU(3) representation suggested by Elliot
holds. (See the discussion of this point by Flamm et al."
and the following article by Kugler. ") In this case, the
orbitals 4~ 4'6 are the correct ones with P=0.82 and
n=0.57. These are simply the orbitals which occur in
the solution of a deformed axially symmetric harmonic
oscillator. We note that the values of n and P in the
Bar-Touv —Kelson calculation are not far from this
value. For the harmonic oscillator with Lr, (ken, and

FIG. 3. Schematic
diagram for the sin-
gle-particle spectrum
of an axially sym-
metric deformed har-
monic oscillator in
the absence of 1 s
force.

TABLE III. Mg' single-particle wave function for the case of
zero 1 s force.

Mg24

I
II

III
IV
V

VI

1 s=0 n=0.62
4'4.

0.98 0
0 1
0 0
0.11 0
0 0—0.12 0

0 0.16
0 0

0
0 —0.68
0 0
0 072

p=0.78

0 0
0 0
0 0
0 072—1 0
0 +0.68

Energy
(MeV)

—20.00—17.95—5.24—4.27—3.38—2.38

A~, =A(d„, we have the spectrum shown in Fig. 3. If
Ace, (ken„ the figure is simply inverted. Bearing this in
mind and remembering that the spectrum of an infinite-
range force is such that there is a considerable gap
between occupied and unoccupied states, we would
expect that the effect of the finite range and the spin-
orbit force would be simply to mix the occupied levels
but not admix much of the unoccupied levels since they
are 8 MeV or so away. The results shown in Table II
certainly bear out this point of view. In Ne", with only
one occupied level, containing four particles (4&m, +~ m,

4'rp, and O'Pp, where T stands for time reversal, and
e and p stand for neutron and proton), we see that 4'~

remains fairly pure.
We now look into the Mg" case in more detail. The

spectra with and without a spin-orbit force but with
normal-force range have been referred to earlier and
appear in Fig. 1 and Fig. 2. The wave functions for no-
spin-orbit force are shown in Table III. We see indeed
that the occupied orbits are pure O'I and %2 and the
unoccupied orbits are linear combinations of +4 and +6
or pure 0'; or 0'3. Comparing with the case where the
spin-orbit force is turned on, we see that 0'& and +~ do
mix but that the unoccupied levels hardly admix at all
because they are too far away in energy. It is the spin-
orbit force that mixes the occupied orbitals and, to a
lesser extent, the effect of the finite range also mixes
orbits. In Fig. 4 we show the effect of 6nite range on the
HF spectra. We see that as the range of the force is
varied the spectrum remains quite close to its infinite-
range appearance.

In the case of Si", there is a degeneracy. One solution
is mainly +4, +5, 0'6 and is oblate. This is the one given
in Ref. 4. The other solution is mainly%'&, 0'2, +3 and is
prolate. (We should like to thank Dr. George Ripka for
bringing this to our attention). In Ar" where the single
unoccupied level is 0'~ in the infinite range, no-spin-
orbit limit, we see that the unoccupied level remains
fairly pure.
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Fock energy in a system of A nucleons is defined by the
sum

e~=Q((n~, n„n„' X„X,)X, I
V In, )n, )n, ) Xg,X„X,)

—(ngn„n, ; X„X~,X, I VIX~,X„X„'ng)n„n,)}. (8)

I

0.2
I

0.4
I

0.6
I

0.8

occ.
I

I.O

Ftc. 4. Range dependence of the self-consistent energies of Mg24,
based on two-body force of Gaussian shape with the Rosenfeld
mixture, and zero I.s force. The range parameter g is dehned in
Ref. 13.g covers the interval from zero to unity, while the range p
changes from zero to in6nity. The energies for each g are nor-
malized so that the lowest occupied orbital is of —9 MeV.

For two-body infinite range forces (V, (r,,)= 1) of the
general form of Eq. (5), these energies are determined

by the sums of two-body wave function overlaps. The
contributions of the different exchange components may
be found by the following simple sums:

We thus see that a study of the actual Hartree-Pock
calculations in the sd shell does indeed indicate that the
main underlying zero-order spectrum and representa-
tion is that of the infinite-range case, In the next section
we will take up the case of the infinite-range limit in
detail and discuss the main physical consequences of
variations in exchange mixture and the perturbing
eGects of the spin-orbit and finite-range corrections.

IIL LONG-RANGE LIMIT OF HARTREE-FOCK
CALCULATIONS

In this section we are going to discuss the Hartree-
Fock calculation as applied to the long-range part of the
two-body potential. The expansion of a two-body po-
tential in terms corresponding to decreasing range has
been discussed by Kugler. "The leading term of zero
order is simply a constant. Next comes a term which
behaves essentially like r&2r22P2(cos8&2), the quadrupole-
quadrupole force, which is usually taken as representing
the long-range part of the force. The constant part
plays the major role in determining the nature of the
energy gap, and the quadrupole part determines the
structure of the Hartree-Pock orbitals. If one considers
a Gaussian potential of the form e ("12»)', then the ex-
pansion we have in mind corresponds to a Taylor series
in the inverse range parameter (1/p):

For more general potentials, the reader is referred to the
paper of Kugler. "We now consider the Hartree-Fock
problem for an arbitrary exchange mixture but only
considering the leading term in the range expansion of
the potential, namely a constant potential.

In order to study the single-particle spectra with
two-body forces of infinite range in a simple manner, we
will discard the single-body part of the Hamiltonian. In
doing so, the (l,s) scheme becomes a good one and each
single-particle level is denoted by separate space, spin,
and isospin quantum numbers. Denoting the general
state by In)= In„n,n,), the single-particle Hartree-

where e (W) is the e due to a unit Ivvigner force and so
on. Using Eq. (9) we can easily find the relative
spacings of the single-particle levels for any assumed
occupied states

I X) and an exchange mixture given by
assumed values of lit/', M, 8, and H.

e, =We.~&r&+35e, (&&f&+Be~(&&&+He,(rr& . (10)

The procedure is then as follows. The infinite-range
solutions are characterized by the states IX„X„X,).
Depending on the choice of the functions

I
X,), one can

construct the axially symmetric or the nonaxially sym-
metric cases. The only characteristic of the wave func-
tions IX,) that enters into question is their overlap
integrals (n, l&j.,). Since we are assuming now that the
two-body potential is a constant in its spatial depend-
ence, it cannot determine the spatial dependence of the
orbitals. The next term in the long-range expansion of
the two-body potential, namely the quadrupole force,
does determine the spatial dependence to be that going
with the deformed harmonic oscillator. So, in our
examples, we choose orbitals with this in mind. For
example in Ne" we can consider the solution

%&t'p, 4'pip, 4&$s, 4'& is.
The main point to make for infinite-range forces is
simply that all the

I
X,) functions in Ne" are identical

and have unit overlap with each other. In the case of
Ne", the above solution is the lowest one. Using Eq. (9)
we can evaluate the Hartree-Fock energies e . Simply
set (n, lX,)=0 for n unoccupied and (n, IX,)=1 for
o. =X, the occupied orbit. For example, the energy of
the occupied orbit is

~(@&)=3W+3M
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+2++3

v2 v2

and these new orbitals do yield an axially symmetric
contribution to the matter distribution. More generally,
the occupied orbitals form a subspace. If this subspace
is invariant under the operation of J„then the nucleus
in question is axially symmetric. If not, then the nucleus
is not axially symmetric. These considerations explain
why Bar-Touv and Kelson found some nuclei to be
axially symmetric and others to be nonaxially sym-
metric. The sums in Eq. (9) can easily be carried out,
and one finds quite generally that

e (occupied) =N (W—~i M+-,'8——,'H)
+4M W 28+2H, (13)— —

e (unoccupied) =N (W—~i M+-', 8——,
' H),

and the energy of an unoccupied orbit is

c(%;)=4M —M+28 —2H, i=2, 3) 4, 5, 6. (12)

We thus have a very simple Hartree-Pock spectrum for
Ne' .The unoccupied orbits are all degenerate. We next
consider the most general 4n nucleus consisting of four-
fold degenerate levels and each of the four degenerate
levels having the same space dependence. The condition
that- the four degenerate orbitals should have the same
space dependence results in determinants with maxi-
mum space symmetry. This situation is strongly favored
experimentally where the Majorana force is strong and
attractive for all exchange mixtures found in shell-model
calculations. Another symmetry found in Hartree-Fock
calculations is that the wave functions corresponding to
degenerate orbitals are time reverses of each other. If
we insist that the space part be the same for the de-
generate orbitals and that they transform into each other
under time reversal, than it follows that the space part
of the orbital be even or odd under time reversal. This is
indeed found to be the case in actual Hartree-Fock'
calculations carried out with "realistic" forces. If we
demand in addition that the orbitals be solutions in a
deformed harmonic oscillator (this would result in an
HF calculation with a P~ term), then we get the form
chosen for the orbitals%'~, +6 in Sec. II.We note that
m; is not a good quantum number for orbitals 0'&, C 3, 4'4,

%5 and that nuclei where these orbitals are occupied
cannot be axially symmetric. There are exceptions to
this, however. For example, if both 0'2 and +3 are
occupied then we do not change the determinant if we
choose new orbitals

"gap" is given simply by G independent of N where

G= 4M—+W+28 2H—. (14)

%e thus see that quite generally an inhnite-range
Hartree-Fock calculation gives a constant gap between
degenerate occupied and degenerate unoccupied levels
which agrees rather well with the Gnite-range results.

We next consider nuclei of the form (4m+I) and
consider solutions where the space dependence is the:
same for groups of 4 orbitals and only the spin-isospin
factors vary as spin-up neutron, spin-down neutron, ,

spin-up proton, and spin-down proton. We thus con-
sider systems de6ned by the diagram in Fig. 5, where X,

designates fourfold-occupied levels, n designates the
singly occupied level, and P designates unoccupied
levels. Using Eq. (9) we find

e(Xl'e) =Ni'+ (—W—-', 8+13M/4+2H),
e(Xlm) =NI'+ ( W ~B+—17M—/4+-', H),
e(X $p) =Ni'+ ( W ,'8+—17M—/4—+-,'H),
e(X $p) =NI'+ (—W——,'8+17/M4+-,'H),
e(nl'I) =Nr+ (—W——',8+-,'M+-', H),
e(num) =NI'+ ( ,'8+ gM —',—H), —-
e(n&p) =NI'+ (-,'8+~M+-,'H),

e(nip) =NI'+ (——',8+ 5~M+-,'H),
c(P &n) =NI'+ (-',8——,'M ——,'H),
e(8/m) =Ni'+ (——,'8+-', M ——',H),
e(8(p) =NI'+ (-,'8+~iM+2H),
,(pip) =Nr+ (——;By-,'M+ -,'H),

where I'=W+ ',8 ~iM ', H a-nd—N is—t—he number of
particles. I' vanishes for a saturating force and in any
case the term EF is common to all the energies and thus

plays no role in considering relative spacings. Hence
relative spacings are independent of the number of
particles involved and depend only on the "occupation
structure" of the nucleus (i.e., whether it is a 4N type, a
4m+1 type, etc.).

For comparison, we write the 4n-nucleus energies:

e(X)=NI'+ ( W 28+4M+—2H),— (16)

e(p) =NI'.

Comparing the 4e energies with the 4m+I energies,
we see that the states P on the average are unaff'ected.

The singly occupied state o. is unshif ted from its position
in the 4n nucleus if we consider saturating forces. This
is because the relative shift in o. is proportional to F

where E is the number of particles and Ã=4n where n
is an integer. This extremely simple result shows that
the occupied levels are all degenerate and the un-
occupied levels are also degenerate. The energy de'er-
ence between these levels remains constant and is
independent of the number of particles X. In fact the

I

I

I

t

P

FIG. 5. Schematic diagram for 4n+1
spectrum. X are the fully occupied states,
~ are occupied with the extra nucleon, and
p are the unoccupied levels.
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which vanishes for saturating forces. The unoccupied
levels in the 4m+1 system do shift a bit. In the 4m+1
nuclei, we find that with realistic exchange mixtures the
unoccupied n state lies lower than the occupied one. No
matter what one chooses for the occupied n state it will
invariably lie above the unoccupied o. states. Perhaps it
is more physical to consider an ensemble of occupied n
states where each one of the four possible states is
occupied with equal probability 8. We take 8 to be 4 for
a 4@+1 nucleus, 8=-', for a 4n+2 nucleus, 8=4 for
4m+3, and 8=1 for 4m+4. Consider p states X and one
state n with occupation probability 0 and unoccupied
levels P as shown in Fig. 6. The energies are then given
by

e(X) =4(p+8)1"+( W+2M— 28+H—),
e( ) =4(P+8)I'+8( W+2M— 28+H—), (17)

(p) =4(p+8)r.

We thus Gnd the extremely simple result that as a
level becomes occupied it sinks from its unoccupied
position to a fully occupied position in a linear manner.
The other levels remain relatively unshifted. (Even
absolutely unshifted for I"=0 saturating mixtures. ) If a
level is occupied to an amount 0, then it is shifted below
the degenerate unoccupied states by an amount 0G
where G is the gap in the spectra of 4e-type nuclei.

We now go on to discuss nuclei of the form 4e+2q
corresponding to nuclei of the 4m type with q doubly
occupied neutron levels. This is shown schematically in
Fig. 7. The energies are independent of spin, so we only
record spin up. The results are

«(Xpe) =NI'+ [—W —28+ (4——',q)M+ (2—
q)H],

e(Lip) =NI'+ [ W 28+ (4+—-,'q)—M+ (2+q)H],
e (n fr) =NI'+ [ W 28+—(2——-', q)M+ (1—

q)H], (18)

e(n)p) =NI'+[(2+ ,'q)M+ (1+q)H-],

e(y1n) =NI'+[ ,'qM qH], ———
e(yi) =NI'+[-,'qM+qH].

These results can be written in a more transparent
fashion if we introduce the expression

P = —(M+2H) .

This is the same term introduced by Lane" and denoted
by V&/A in order to discuss the isobaric dependence of
the interaction of a nucleon with a nucleus. (See also
Sherr et at."and further references therein. ) In terms of

I'IG. 7. 4rt+2q nucleus. X fully occupied, a
half occupied, and y unoccupied levels.

P, the isobaric shift parameter G the gap parameter, and
F the parameter which vanishes for saturating forces,
we can rewrite the energies as

.(~i~)=NI+ ', qP -G, —
e(X)P) =NI' ——',qP

—G,

e(nil) =NI'+ ', qP+ ( -W 28—+2M—+H), (20)

«(niP) =NI' ,'qP+—. (—2M+H),

e(y'fe) =NI'+ —',qP,

e(v tP) = NI' kqP—,

where g, the number of double occupied neutron levels,
is equal to T, of the nucleus. It is clear from the above
equations that neutrons and protons shift relative to
each other by an amount qP. The completely unoccupied
levels y still are a distance G above the completely
occupied levels n just as in the 4e-type nuclei. The
doubly occupied levels n lie somewhere in the gap region.
For forces which are predominantly Majorana, the o.

states lie midway in the gap region between the com-

pletely occupied and the completely unoccupied levels.
It is clear that p measures the part of the symmetry
energy in nuclei which comes from the potential energy.
In addition, there is a part coming from the kinetic
energy. "

For completeness we record the case of neutrons alone
which may be useful in considering the very heavy
nuclei. They may be described schematically by Fig. 8.
For such nuclei, only two exchange mixtures enter
corresponding to the T equals 1 forces. They are singlet-
even ('E) and triplet-odd ('0) where

'E= '(W 8+M H) -'E=—,'(W+8—+M+H-) ) (21)
'0= ,'(W+8 M H),-'0= ,'—(W —8 M+H-). — —
The energies are given by

e(X) =N['E+3 '0]+2 'E 6'0, —
e(n) =N['E+3 «0].

We thus see that an energy gap appears between occu-
pied and unoccupied levels of magnitude (6 '0 —2 'E),
which is independent of the number of particles.

FIG. 6. Schematic diagram for the case
where each one of the four possible a
states is occupied with equal probability 8.

ea
i

I i 1

t I

I f I

N- P

FIG. 8. Schematic diagram for even-number
neutron excess. X doubly occupied, a unoccupied
levels.

Y. A. Lane, Nucl. Phys. 35, 676 (j.962}.
~' g. Sherr et al.„Phys. Rev. 139, 31272 (1965}. I6 g.terence 14, p. 679 6,
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I

X j.
t I
I

FIG. 9. Diagram for odd number of neutron
excess. X double occupied, n single occupied
levels.

Nest consider pure neutron configurations with an
odd number of neutrons. This is shown schematically in
Fig. 9. The energies are given by

e(X 7) =N ('E+3 '0)+'E—5 '0,
(X l,)=N ('E+3 '0)+3 'E 7'0—,

e(n7) =N('E+3 '0)+'E—'0

e(ni) =N('E+3 '0)+3 'E—3 '0,
e(P$) =N('E+3 '0)+'0 'E—
e(P1) =N('E+3 '0) '0+'E. —

(22)

It is probably more physical to consider an ensemble
where there are p doubly occupied levels X; and the odd
particle has probability 8 to be in the n spin-down state.
The state p is unoccupied. This is shown schematically
in Fig. 10. The Hartree-Foe%. energies for this case are

e(X&rr) =NF+[ W—,'B—+—13M/4+-,'H]+ ,'qP,-
.(xi~) =Nr+[ w —',B—+17M/4+ ,'H]+-,'qp, -
e(X7P) =NF+ [—W——'B+17M/4+~H] —-'qP,

e(X1P) =NI'+ [—W——'sB+ 17M/4+-sH] —-,'qP,

e(n$ts) =Nr+ [—W ——,'B+—',M+-,'H]+-', qP,

e(nate) =NI'+ [—W —ssB+~sM+-,'H]+-,'qP,

,( lp) =NFL[-,'B+~My ;H] ,'qp-, ——

e(nlP) =Nr+ L sB+s—M sH] —sqP—
e(pits) =Nr+[ W ,'B—+ 'M—+—-',H]-+'-', qP,

,(&1~)=Nr+ [ ;B—y',M -;H—]—+;qP,-
e(y lP) =NI'+ [-',B+—,'M+-', H]——',qP,

e(&1P)=Nr+ [——,'By,'M+-', H]—', qP,

e(5 I'e) =Nr+ [stB 4M ,'—H]+-,'—qP-,

e (81m) =NI'+ [—ss B+~t M ——,
' H]+ —,'qP,

e(51P) =NI'+[ ,'B+-',-M+-', H]——',qP,

e(blP) =NF+ [ 'B+ 'M+—,'—H] —', qP .——-

(25)

As a last example, we consider an odd-mass-number
nucleus with a variable neutron excess as shown
schematically in Fig. 11.The energies are given by

eg I I

I t FIG. 10. Diagram for odd neutron excess. X
doubly occupied. Each of the two 0. states are
occupied with equal probability 8. p unoccupied
levels.

then
«(X) = 2 (p+8) (tE+3 '0)+ (2 'E—6 '0),
e(n) =2(P+8) ('E+3 s0)+8(2 'E—6 '0), (23)

e(r) =2(P+8) ('E+3 '0).
The gap parameter for the pure neutron case is thus

G„=—2 'E+6 '0= W+2B 2M H. (24)— —
We thus see that in the pure neutron case all fully

occupied levels are degenerate and are separated from
the fully unoccupied levels by an energy G„, while the
singly occupied level (corresponding to 0=-,') lies half-

way between.

IV. RESULTS WITH "BEST"FORCE
PARAMETERS

In this section we will present some typical infinite
range aspects. For this purpose we need some "typical"
values of 3f, 8, II, and 8".In another paper' a detailed
study of binding energies is carried out and the whole
question of exchange mixtures is gone into in quite a bit
of detail. The various exchange mixtures used in the
past are shown to belong to a family, all of which obey
the same conditions. As a function of mass number, the
parameters M, B, H, and W go more or less like (1/A).
If we normalize at mass number 20 then a "typical" set
of force parameters is given in Table IV.

As we go to different mass numbers the relative
magnitudes remain constant but the absolute values
decrease with increasing mass number, so our results for
the HF spectra should hold relatively for all mass
numbers. It should be pointed out that the main fea-
tures of the HF spectra remain about the same when

y

TABLE IV. Exchange parameters for the "best" force and the
corresponding values for G, P, and F de6ned in the text.

t IQq

!
I

i
I

FrG. 11. Schematic diagram for odd
mass nucleus with variable neutron ex-
cess. ) fully occupied, n doubly occupied,
g single occupied, and 5 unoccupied states.

Parameter MeV

—0.35—0.60—2.f)0
0.00

Parameter

8.85
2.60
3.65
0

"W. H. Bassichis, C. A. Leyinson, and G, Ripka (to he
published}.
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FIG. 12. Single-particle relative
spacings in various neutron excess
nuclei for long-range two-body force
with the exchange mixture given in
Table IV.
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comparison is made between the various exchange
mixtures given in the past. That is to say, G remains

fairly constant from one exchange mixture to the next.
I' and G„do show variation, however. It is interesting
that G, the pure neutron gap, is about —,'G, the 4n-
nucleus gap.

The spectra for the "typical" force are shown in

Fig. 12. The general trends are clear. The gap between
occupied and unoccupied levels is modi6ed as discussed
earlier by the presence of partially 6lled levels. In Fig. 12
the singly occupied level is not averaged over by intro-
ducing the parameter g, and we see the phenomena of
unoccupied neutron levels lying below occupied ones as
discussed earlier. In the cases where there are q doubly
occupied neutron levels, only the q equals one or zero
case is shown since the other cases can be derived from
these by merely shifting all neutron levels by an amount
-', qP and all proton 1evels by an amount ——,'qP.

V. CONCLUSIONS

It has been shown in considerable detail that the
results of Hartree-Fock calculations which involve only
orbital and spin degrees of freedom are determined
almost completely by the long-range part of the two-

body force. The solutions for a long-range model were
then exhibited, and the dependence of the energy gap
on the exchange dependence was shown. A very simple
picture emerged. Completely occupied states are de-

generate and sink lowest in energy. Then, as a state
becomes more and more occupied, it also sinks pro-
portionally. The energy "gap" between occupied and

unoccupied levels is a very important aspect of the
Hartree-Fock approximation. The larger the gap, the
better the approximation. The main effects of the spin-
orbit force and the 6nite range of the two-body po-
tential are to mix the occupied orbitals. This mixing
leaves the Hartree-Fock determinant invariant. For
typical cases in the sd shell, the energy gap is so large
that unoccupied states do not mix appreciably with the
occupied states. When a neutron excess occurs, the
partially occupied levels lie about midway between
occupied and unoccupied levels. Thus the "gap" is cut
in two, and the spin-orbit force is able to mix levels
more easily. This qualitatively explains why series of
nuclei like the oxygen isotopes or the calcium isotopes
seem to display spectra consistent with the jj model.

From this study it emerges that the most natural
representation for the one-body orbitals in these
Hartree-Fock calculations is that associated with the
axially symmetric deformed harmonic oscillator where
one takes linear combinations of the degenerate orbitals
which are eigenstates of time reversal. This prescription
will result often in nonaxially symmetric nuclei and is
consistent with the result found in exact calculations
with realistic forces.
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