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The binding-energy data of the s-shell hypernuclei and the total cross sections of the A-proton scattering
are examined with two-body, spin-dependent, charge-independent, central A-nucleon potentials which
have an intrinsic range of 1.5 F and a hard core with a radius of 0, 0.3, 0.45, or 0.6 F. The main purpose is to
see whether there exists a hard core in the A-nucleon interaction. The results show that a hard core very
likely does exist and has a radius greater than about 0.3 F. Also, it is found that even when the hard-core
radius is as large as 0.6 F, the A-nucleon interaction is not strong enough to bind together a two-body A-hy-
pernuclear system. However, it does seem to be strong enough to allow the formation of a particle-stable
excited state in the hypernucleus AH* with a small binding energy.

I. INTRODUCTION

ITHIN the past ten years, a large number of

analyses has been performed on the s-shell
hypernuclei for the purpose of obtaining some informa-
tion about the basic features of the A-nucleon inter-
action.’™¥ In most of these analyses, efforts have been
concentrated on the hypertriton which is the lightest
hypernucleus known to date. Because of mathematical
complexity, the four-body hypernucleus ,H* and the
five-body hypernucleus xHe® have, in most cases, been
treated rather crudely. For these two hypernuclei, pair
correlations have been taken into account only in the
calculations of the present authors," Dietrich et al.,
and Beck and Gutsch.”? In the work of the present
authors, the mathematical difficulty was alleviated by
the use of a Monte Carlo technique.* In the calculations
of Dietrich et al. and Beck and Gutsch, the independent-
pair method used by Mang and Wild" for light nuclei
has been employed. As has been discussed previously,"
this latter method may not be too accurate when the
binding energy of the A particle is small, which, un-
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fortunately, happens to be the case for the s-shell hyper-
nuclei. Thus even though these authors have included
the effect of pair correlations in their calculations, the
accuracy in their results may still be somewhat
questionable.

Our previous calculation on the s-shell hypernucleit*
was not an extensive one, since only a A-nucleon inter-
action with a hard-core radius of 0.4 F and an intrinsic
range of 1.5 F has been considered. In this investigation,
we extend the calculation by using A-nucleon potentials
with a hard core of radius ranging from 0 to 0.6 F. In
this way, we hope to obtain information about whether
or not there is a repulsive core in the A-nucleon poten-
tial. The intrinsic range will still be chosen as 1.5 F. In
a later publication, we shall report on results which will
be obtained using longer intrinsic ranges of 2.0 and 2.5 F.

The nucleon-nucleon potential used here will be that
which was employed in our recent study on nuclear
two-, three-, and four-body systems.'S It has a hard
core of radius 0.45 F, followed by an attractive part of
exponential shape. This particular potential is preferred,
since it yields not only a satisfactory fit to the two-
nucleon low-energy effective-range parameters but also
a good agreement with the experimentally determined
binding energies and body form factors of H® and He®.

In Sec. II, the results of our analysis on the hyper-
nuclear systems with 4 =3—235 will be presented. From
these results, we determine the strength of the A-nucleon
interaction in the triplet and singlet states. Section III
is devoted mainly to a study concerning the necessity of
having a repulsive core in the A-nucleon potential. From
this study, we do get an indication that a hard core of
radius greater than about 0.3 F seems to be quite
necessary in order to explain the binding-energy data
on pH3 JH% and ,He’. In Sec. IV, we compute the
A-nucleon scattering cross sections yielded by the
various potentials. Here, too, we find that the experi-

16y, C. Tang and R. C. Herndon, Phys. Letters 18, 42 (1965).
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mental data on A-proton scattering supports the above-
mentioned statement about the size of the hard core.
Finally, in Sec. V, we discuss and summarize the results
of this investigation.

II. ANALYSIS OF S-SHELL HYPERNUCLEI

The nucleon-nucleon potential is assumed to be
central and charge-independent. It has the form

Va=L[(A+Pu)/2]V (ri)
+LA=Pu)/ 2]V (ra)+Ve(radew, (1)

where P;° denotes the spin-exchange operator and the
last term represents the Coulomb interaction, with
eir equal to 1 if ¢ and k are protons, and 0 otherwise. The
quantities V¢(r) and V,(r) are the triplet and singlet
potentials in the even states and are chosen to be of the
following exponential type:

V;(r)= © , (7<7NN)
=—Voexp[—x:(r—ryn)], (@>ryn) (2)

V()= , (r<rww)
=—Vo, exp[—k:(r—ran)], (>7an)

with ryxy=045 F, V=549.26 MeV, V,,=277.07
MeV, ,=2.735 F, and k,=2.211 F118 It is not
necessary to specify the potential in the odd states,
since, in this investigation, we shall assume that the trial
function is symmetric with respect to the space exchange
of all the nucleons.

With this nucleon-nucleon potential, we obtain not
only a good fit to the effective-range parameters but also
satisfactory values for the binding energies and rms
radii of the nuclei H? and He!¢ This is shown in Table
I, where E represents the ground-state energy and Ryms
is the rms radius.!”

For the A-nucleon potential, we use a spin-dependent
central potential of the form

Ua=[Q+Pu)/2]U(rin)+LA—=Pis)/2]Us(rin) , 3)
with

Ui(r)=, (r<raw)
=—Ugpexp[—Nr—nn)], @>ran) (4)

Ufr)=x, (r<raw)
=—Up, exp[—Nr—ran)], (>7sw)

where 7, represents the radius of the hard core. For an
intrinsic range of 1.5 F, the various values of 7oy and
the corresponding values of \ considered in this in-
vestigation are listed in Table II.

With a trial function which is symmetric with respect
to the space exchange of all the nucleons, the depths of
the spin-averaged A-nucleon potentials in the s-shell

17 Tn the case of H?® and He?, the values of E listed are actually
the upper bounds, but, these are rather close to the ground-state
eigenvalues computed with the potential Ve(r)=3[V:(r)+V,(r)]
[Y. C. Tang, E. W. Schmid, and R. C. Herndon, Nucl. Phys. 65,
203 (1965)7].
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TaBLE I. Ground-state energies and rms radii.

E Rims

Nucleus (MeV) (F)
H2 —2.225 1.92
H3 —7.424-0.06 1.68
Het —28.31+0.19 1.44

hypernuclei can be expressed in terms of the triplet
depth Uy and the singlet depth Uy, Depending upon
whether Ug,> Ug; or Up; < Uy, we have the following
relations:

Uo>Un: Uwp=3Uo+3Uos,
Uu=3Uot+3U0s, ®)
U05=%U0t+%UOs;

Uu>Up: Ugs= Uy,

Uou=8Uo+3Uos, (6)

U05=%U0t+%UOa ’

where the symbol Ups denotes the depth of the spin-
averaged A-nucleon potential in the hypernucleus 4Z4.
From the binding-energy data of yH?® and ,He® we will
obtain the values of Uys and Upgs. Using these values,
two sets of values for Uy and Uy, can be determined,
depending on whether Eq. (5) or Eq. (6) is used. Both
of these sets are then checked to see if the binding
energy of 4H* is given correctly. In this way, we hope
to get information about the size of the hard core and
whether the triplet or the singlet interaction is the
stronger one in the A-nucleon potential.

The trial wave function is written as

T=yX, (7

with ¢ and X being the spatial and the appropriate spin
functions, respectively. The function ¢ will be chosen as

V=L I sG], ®)

with 7 and j representing the nucleons. For the function
f(r), we adopt a form which has been used in a number
of our previous calculations concerning nuclear and
hypernuclear few-body problems!; it is

f(?’) =us(r)/r,
= A ™[ exp(—aysr)+ By exp(—Bs)],

(r<dy)
(r>dy) (9)

TasLE II. Values of 7ax in the A-nucleon potentials.

Potential AN A
type ) F)
A 0 2.361
B 0.30 3.935
C 0.45 5.902
D 0.60 11.804
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where u;(r) is a solution of the equation

nt d?

———us (") +[V(r)—esJus(r)=0,
Zuf dr?

(10)

with us being the reduced mass of the nucleon and the
A particle. The potential V;(r) is the spin-averaged
A-nucleon potential effective in the hypernucleus ,Z4;
it is equal to U, (r) where

Uar)=o,
=—Uos exp[—\(r—rax)].

(r <1’AN)
(r>rw), (11)

The constants Ay and By in Eq. (9) are adjusted to
insure continuity at the separation distance dy for the
function f(r) and its first derivative. The function g(r)
is defined in an analogous manner, except that uy is
replaced by u,, the reduced mass of two nucleons, and
the potential function in Eq. (10) is replaced by the
potential V,(r) which is equal to V;(r) for ,H? and equal
to 3[V.(r)+V,(r)] for \H* and p,He?. In total, there are
ten variational parameters in our trial function; these
are ay, By, €5, Ay, Ny, &gy By, €9y dg, and ng.

In practice, we have not varied the parameters #n;
and #,. Instead, we have simply set n;=—1/(4—1)
and n,=—1/(4A—2).!® From the experience which has
been gained in similar calculations, we know that with
this simplification, the upper bound will be only very
slightly worse than that which could be obtained by
varying all ten parameters.
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To find the depths of the spin-averaged A-nucleon
potentials, the following procedure will be adopted. We
take two suitably chosen values of Ugs and compute
the corresponding values of the ground-state energy E4.
From the value of E,, the energy of the core nucleus
given in Table I is then subtracted off; the negative of
the resultant is thus the binding energy Ba of the A
particle. With these two sets of values for Uqs and Ba,
we find the constants a4 and b4 in the interpolation

formulal!?
Upsa=0aa+baBr?, (12)

from which the depths Uya corresponding to the ob-
served values of the binding energies can be determined.

The results of this calculation for AH?, y\H% and ,He’
are given in Tables ITI, IV, and V, respectively. In these
tables, the statistical accuracy in the value of E4 is
obtained with 50 000 estimates for ,H3? and 200 000
estimates for aH* and He’. The quantity (ryy?)'/2
represents the rms distance of separation between two
nucleons; its listed uncertainty is mostly not statistical,
but comes from the uncertainty in the optimum values
of the variational parameters.

The most recent values of the binding energies of AH?
and pHe® are®

Ba(yH?)=0.32-:0.17 MeV,
Ba(1He5)=3.04-£0.03 MeV. (13)

Using these numbers and the values of a4 and b4 given
in Table VI, we obtain from Eq. (12) the values of U,

TaBLE III. Results of the variational calculation for AH3.

Potential Ul oy Br er dy ag By ey d, E; Ba {ryn?)12
type (MeV) ) FYH MeV) (F) FH FYH Mev) (F) (MeV) (MeV) (F)
A 1840 0.070 5.0 —-2.0 1.2 0.23 2.2 —10.0 1.2 —2.4540.08  0.2340.08  3.324-0.07
192.0 0.085 4.5 —2.0 1.2 0.24 2.2 —8.0 1.2 —2.7240.07 0.494-0.07 3.1440.07
B 650.0 0.065 7.5 —20.0 1.15 0.23 2.2 -9.0 1.2 —2.444-0.09 0.214+0.09 3.364-0.07
665.0 0.080 6.5 —20.0 1.15  0.235 2.2 —8.0 1.2 —2.694+0.08  0.4640.08  3.224-0.07
C 1630.0 0.075 5.5 —25.0 1.1 0.22 2.3 —-7.0 1.2 —2.5540.08 0.334-0.08 3.360.07
1645.0 0.090 5.0 —25.0 1.1 0.23 2.3 —-7.0 1.2 —2.7140.08 0.48-+0.08 3.184-0.07
D 7080.0 0.070 5.5 —30.0 1.1 0.22 2.3 -7.0 1.2 —2.404-0.09 0.184-0.09 3.404-0.07
7120.0 0.090 5.0 —30.0 1.1 0.22 2.3 -7.0 1.2 —2.614-0.09 0.3940.09 3.2540.07
TasLE IV. Results of the variational calculation for JH*.
Potential Uy ay Br er ds a, B, ey dy E, By (ran))12
type  (MeV) (F) (FYH MeV) (F) (FH FH Mev) (F) (MeV) (MeV) ()
A 150.0 0.10 3.0 —2.0 1.0 0.28 2.3 —22.0 1.2 —8.9140.13 1.4940.14 2.63+0.05
160.0 0.12 3.5 —-3.0 1.0 0.28 4 —23.0 1.2 —9.65+0.12 2.234+0.13 2.5640.05
B 580.0 0.10 3.5 —-7.0 1.0 0.29 5 —240 1.2 —8.5840.13 1.16£0.14 2.58+0.05
600.0 0.12 3.5 —8.0 1.0 0.29 6 —25.0 1.2 —9.284-0.13 1.860.14 2.53+0.05
C 1520.0 0.11 4.0 -17.0 1.0 0.29 4 —27.0 1.2 —8.714+0.13 1.294-0.14 2.58+0.05
1550.0 0.12 4.0 —18.0 1.0 0.29 4 —28.0 1.2 —9.404-0.14 1.984-0.15 2.5640.05
D 6900.0  0.11 4.0 —25.0 1.0 0.29 5 -31.0 1.2 —8.78+0.16 1.3640.17 2.58£0.05
6950.0 0.13 4.0 —26.0 1.0 0.29 5 —31.0 1.2 —9.354+0.17 1.9340.18 2.5440.05

18 The choice of n, for yH? is different from that in our previous calculation (Ref. 11).

19 See Appendix A.

2 C. Mayeur, J. Sacton, P. Vilain, G. Wilquet, D. Stanley, P. Allen, D. H. Davis, E. R. Fletcher, D. A. Garbutt, M. A. Shaukat,
J. E. Allen, V. A. Bull, A. P. Conway, and P. V. March, Nuovo Cimento 43, 180 (1966).



1094 R. C. HERNDON AND Y. C. TANG 153
TaBLE V. Results of the variational calculation for AHe?.
Potential =~ Uls ay By er dy a, By 2 d, E; By (ran1/?
type  (MeV) (F) (FY) (MeV) (F) FH FYH MeV) (&) (MeV) (MeV) (¥)

4 1190 013 40 —-10 10 030 33 —-230 12 —31.16+0.45  2.85+0.49  2.1920.04
1260 013 4.0 -30 10 030 35 —24.0 1.2 —32.114+047  3.8040.51 2.184-0.04
B 5400 0.1 40 -20 10 029 31 —14.0 1.2 —31.11+043  2.804-0.47  2.242-0.04
5500 012 40 —40 10 029 35 —16.0 1.2 —31.76+043 3454047  2.224-0.04
C 1466.0 0.12 4.0 5.0 1.0 029 29 —16.0 1.2 —31.35+044  3.044-048  2.254-0.04
1500.0 0.13 4.0 2.5 1.0 029 3.0 —180 1.2 —32.84+046  4.53+0.50  2.244-0.04
D 68000 0.11 4.0 170 10 029 3.0 —17.0 12 —31.484+0.56  3.174+0.59  2.26:0.04
6840.0 0.12 4.0 150 10 029 31 —190 12 —32.30£0.58  3.9940.61  2.25:40.04

and Ups which correspond to the experimental binding
energies. With Ugs and Ups determined, we can then
calculate the depths Uy, and Uy of the A-nucleon
potentials. Depending upon whether Ug> Uy or
Uos < Uy, their values, together with those of Ugs and
U\, are given in Table VII, where the values of the well-
depth parameters s, and s; are also listed.

From Table VII, it is seen that with the type of
A-nucleon potentials considered here, the values of s,
and s; are all less than one, which means that for a
A-nucleon potential with a hard-core radius less than or
equal to 0.6 F, a bound A-IV system does not exist.

III. A-NULCEON POTENTIALS AND BINDING
ENERGY OF H*

With Uy and Ugs determined from the binding
energies of \H?® and AHe® we can calculate Ug with
either Eq. (5) or Eq. (6). Using Eq. (12) and the values
of @, and b, given in Table VI, the values of
By for y\H* can then be computed. These are tabulated
in Table VIII.

The experimental binding energies of the four-body
hypernuclei, as given by Mayeur ef al., % are

Ba(,H4)=1.95£0.14 MeV,

Bx(aHe?)=2.0720.09 MeV. (14)
The difference between these two quantities is
ABy=Ba(3HeY)— Bi(4,H%)=0.124-0.17 MeV. (15)
TaBLE VI. Values of ¢4 and ba.
Potential aa ba
Hypernucleus type (MeV) (MeV)12

AH? 4 167.0 35.7

B 619.0 67.6

C 1561.6 120.0

D 6996.3 199.0

AHA 4 105.2 30.7

B 504.9 69.7

C 1394.4 110.6

D 6638.6 2242

AHe? A 73.8 26.8

B 449.1 54.3

C 1312.0 88.4

D 6471.9 184.3

21 Tn Ref. 20, a discussion is given about possible sources of error
for these By values.

The fact that ABj is positive indicates that there is a
charge-symmetry-breaking (CSB) component in the
A-nucleon interaction. As was mentioned by Dalitz and
von Hippel”? and Downs and Phillips,® AB4 would be a
negative quantity due to Coulomb effects if the
A-nucleon interaction were completely charge sym-
metric. A crude estimate based on our calculated
difference in the matter radii of H® and He? leads to
the value

(ABA)Coulomb= —0.34+0.1 MeV. (16)
Together with Eq. (15), this means that the CSB com-
ponent of the A-nucleon interaction would be required
to account for a value of AB, equal to 0.424-0.20 MeV.
Since in our calculation the A-nucleon interaction is
assumed to be charge-symmetric, we should not com-
pare the calculated values of Bx(4H%) given in Table
VIII with the experimental value of Eq. (14). Rather,
a comparison should be made with the modified value of
Ba(aH*=2.16+0.10 MeV, @an

obtained by adding one-half of the CSB contribution
(0.424-0.20 MeV) to the measured value of Eq. (14).25
A comparison between the values of Bi(4H*) in
Table VIII and Eq. (17) makes it evident that the
case with Ugs < Uy can be ruled out. On the other hand,
for the case with Ug> Uy, the calculated and experi-
mental values are quite consistent with each other,
except when the potential is of type 4 with 7,5 equal
to zero. Thus, from this comparison, we obtain the
following conclusions: (i) the singlet interaction is
stronger than the triplet interaction, and (ii) there is
likely a repulsive core in the A-nucleon potential, with
a core radius greater than about 0.3 F. From the first
conclusion, it can be immediately inferred that the
spins of AH?, yH*, and sHe® are 3, 0, and 3, respectively,

2 R. H. Dalitz and F. von Hippel, Phys. Letters 10, 153 (1964).
(1;36163). W. Downs and R. J. N. Phillips, Nuovo Cimento 41, 374

2 The value of (AB4)coulomb given here is somewhat different
from that given by Downs (Ref. 34). The reason for this is that
the difference in the matter radii of H® and He? (=~0.03 F) obtained
by us with a variational calculation is only about half as much as
that obtained by Downs with the help of the “naive model” of
R. H. Dalitz and T. W. Thacker, Phys. Rev. Letters 15, 204 (1965).

26 This has been previously pointed out by Downs (Ref. 34).
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TABLE VII. Depths of triplet and singlet A-nucleon potentials.
Uos >Uot Uos <Uo:
Potential Uos Uos Uos Uot Uos Uot
type (MeV) (MeV) (MeV) (MeV) Ss St (MeV) (MeV) Ss St

A 187.1+ 5.9 120.5+ 3.8 220.5+ 9.1

87.24 6.4 0.71520.030 0.283 +0.021
B 657.2::11.4 543.84 7.4 713.9£17.5 487.1412.5 0.835-:0.020 0.570:£0.015
C  1629.4420.0 1466.0+12.2 1711.0£30.6 1384.3-£20.9 0.890-£0.016 0.720-£0.011
D 7108.7433.1 6793.2430.9 7266.5:-52.0 6635.5-:47.2 0.945--0.007 0.862:£0.006 5846.7--158.6 7108.7 =-33.1

—79.5+ 23.3
203.6+ 45.2 657.2411.4
976.0+ 77.3 1629.4-£20.0

187.14 5.9 —0.258+0.076 0.607+0.019
0.2384+0.053 0.7690.013
0.508 +-0.040 0.8480.010
0.7600.021 0.9240.004

whichis in agreement with the experimental finding on
the spins of these hypernuclei.26-27

Since the conclusion about the relative strength in
the triplet and singlet states is a rather definite one, we
shall in the following consider only the case where Uy, is
greater than Uy,.

It is interesting to point out that because of the short-
range nature of the A-nucleon potential, the nuclear
cores in the s-shell hypernuclei are significantly com-
pressed. The rms values of the separation distance
between two nucleons, as given in Tables III, IV, and
V, are about equal to 3.33, 2.54, and 2.25 F in 4H3, y\H%,
and pHe5, respectively. Comparing with the correspond-
ing values of 3.84, 2.91, and 2.35 F in the free nuclei H?,
H?, and He!, we note that the amount of core compres-
sion is 13, 13, and 49, in these three hypernuclei,
respectively. Thus, the present study shows that, in
general, core compression needs to be considered in
hypernuclear studies, if accurate results are desired ; it is
only in these cases where the nuclear core has a com-
pressibility as low as that of the alpha particle that such
compression effect may be neglected.

The values of the effective-range parameters
(@sy705,04,70:) Of the A-nucleon potentials are listed in
Table IX.2® From this table, we note that the singlet
parameters are relatively insensitive to the radius of the
hard core, which is, however, not the case for the triplet
parameters.

With Ul, and Uy, given in Table VII, we can deter-
mine the binding energy of a possible particle-stable
excited state of J=1 for the hypernucleus yH* For this
state, the spin-averaged well-depth is

Uo*=3Uot5Uos. (18)

With Uy* determined, the value of Ba* can be com-
puted by using Eq. (12); for potential 4, B, C, and
D, B,* turns out to be equal to 0.01, 0.08, 0.16, and
0.21 MeV, respectively.?®

%M. M. Block, R. Gessaroli, J. Kopelman, S. Ratti, M.
Schneeberger, L. Grimellini, T. Kikuchi, L. Lendinara, L. Monari,
W. Becker, and E. Harth, in Proceedings of the International Con-
ference on Hyperfragments, St. Cergue, Switzerland, 1963 (CERN,
Geneva, 1964), p. 63.

27 R. H. Dalitz and L. Liu, Phys. Rev. 116, 1312 (1959).

28 We wish to mention that the values of the effective-range
parameters given in Table VI of Ref. 13 have not been computed
quite correctly. For those cases where the A-nucleon potential
used does not have a hard core, the correct magnitudes of the
scattering lengths, for instance, are 10-159, less than the listed
values. Thus, when a comparison is made with our values given
here, this should be kept in mind.

Recently, Bodmer'®% has suggested that the effective
A-nucleon interaction in hypernuclei may differ from
the free A-nucleon interaction through a suppression
effect which arises from a modification of the coupling
between the AV and the ZN channels. This suppression
is possibly quite important in sHe® since in this case,
the virtual process He!*4A — He*+Z is forbidden be-
cause of isospin conservation and the coupling can occur
only through T=1 states of the alpha particle, which
have rather large excitation energies of more than 20
MeV.3 For z\H? and ,H* on the other hand, one would
expect that this effect should be relatively unimportant,
with the consequence that the effective A-nucleon inter-
action in these hypernuclei is essentially the same as the
free A-nucleon interaction.

From this calculation, we can estimate the importance
of the suppression effect in the following manner. The
scattering lengths @, and @, given in Table IX are ob-
tained from the binding-energy data of y1H? and sHe® in
Eq. (13). Similarly, we can calculate these quantities by
using instead the binding-energy data of 4H? and pH*
in Egs. (13) and (17). A comparison between these two

Tasre VIII. Calculated values of By for JH2.

Ups>Uus Uos<Uo:
Potential Ugs Ba(LHY) U Ba(aHY)
type (MeV) MeV) (MeV) (MeV)
A 153.84+ 3.5 1.76+0.23 142.74 3.2 1.04+0.18
B 600.5+ 6.8 1.88+0.25 581.64 6.2 1.2140.20
C 1547.7411.7 1.9240.27 1520.54+10.5 1.3040.22
D 6951.0422.7 1.944-0.29 6898.44+-23.4 1.34+0.25

TasLE IX. Low-energy effective-range parameters
of the A-nucleon potentials.

Singlet parameters Triplet parameters

Potential s 70s a Yot
type () ) ) (F)

A —2.8440.40 2.0140.08 —0.4740.05 4.59+0.35

B —3.084+0.47 1.9340.08 —0.6040.06 4.26-+0.31

C —3.134+0.50 1.914+0.08 —0.714£0.06 3.74+0.26

D —3.1840.52 1.894-0.08 —0.7840.07 3.43:+0.23

29 These values of By* are computed without considering the con-
tribution from the CSB component of the A-nucleon interaction.

% See also R. H. Dalitz, an invited paper presented at the
Topical Conference on the Use of Elementary Particles in
Nuclear Structure Studies, Brussels, 1965 (unpublished).

31 7. Cerny, C. Détraz, and R. H. Pehl, Phys. Rev. Letters 15,
300 (1965).
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TABLE X. Values of ¢, and a; from different
methods of computation.

a, (F) a: (F)
From From From From

AH? AH? % AHS AH? %
Potential and and differ- and and differ-
type AH4 2He® ence AH4 sHe®  ence

A —2.63 —284 8.0 —0.60 —047 217

B —2.80 -—3.08 6.6 —0.70 —0.60 14.3

C —298 =313 50 -0.79 —0.71 101

D —-3.07 -—-3.18 3.6 —0.85 —0.78 8.2

sets of values for the scattering lengths would then give
a measure of the suppression effect. In Table X, we list
the values of a, and g, obtained from these two different
methods of computation. From this table, we see that
the suppression effect seems to be only of minor im-
portance, especially for those cases where the A-nucleon
potential has a hard core of radius equal to 0.3 F or
more. The two values of g, differ by an average of about
159, which is somewhat smaller than the amount
estimated by Bodmer®® using a rough theoretical pro-
cedure and a reasonable value for the average excitation
energy of the alpha-particle 7'=1 states.

It should be emphasized that the above discussion
can only yield a qualitative conclusion that the suppres-
sion effect is relatively unimportant.’? To obtain a more
quantitative estimate, it is necessary to know first the
radius of the hard core. But, this latter information is
exactly what we would like to obtain from this investiga-
tion. In this sense, therefore, the possible existence of a
suppression effect creates a rather unfortunate situation.
Without this effect, we will be able to conclude from the
binding-energy data of the s-shell hypernuclei that a
hard core with a radius greater than about 0.3 F exists
in the A-nucleon potential. With this effect, such a con-
clusion can no longer be made and other means of
determining the hard-core radius must be sought.

T T T T T T T T T
350 N
300 ]
A-p
250 ] 4
—
_200]- "I _
0
£ T
50} = .
1
100} ]
—_
D M—
501 c
B8
A
1 1 1 ] 1 1 1 1 ]
o 2 4 6 8 10 12 14 16 18 20
E (Mev)

Fic. 1. Total A-proton elastic scattering cross section as a func-
tion of c.m. energy. For the calculated curves, the central values
of Uy and Uy given in Table VII are used.

3 To reach this conclusion, we have assumed that other effects,
such as those due to tensor and three-body ANN forces, are not
important.
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IV. A-NUCLEON SCATTERING

In this section, we shall compute the A-nucleon total
cross sections yielded by the various potentials in the
low-energy region. The results will be compared with
the recent experimental data on A-proton scattering
obtained by Alexander ¢/ al. in the c.m. energy range
of 3 to 20 MeV.3

First, we should mention that the contribution from
the CSB component in the A-nucleon interaction to the
low-energy effective-range parameters has recently been
considered by Downs.?* He found that with the CSB
interaction taken into account, the scattering lengths in
the A-proton case are changed by about 109, and the
effective ranges are almost unchanged. For a change of
this magnitude, we have found by using the effective-
range approximation that the corresponding change in
the total cross section is only a few percent in the energy
region of interest (3-20 MeV), which is much less than
the percentage error in the experimental data. Thus, in
this calculation, we have simply ignored the CSB con-
tribution and compared the calculated total cross sec-
tions directly with the experimental A-proton cross
sections.

The total cross sections (¢) as a function of c.m.
energy (E) for the various potentials are shown in
Fig. 1.3 To obtain these cross sections, the central
values of Uy and Up, given in Table VII have been
used. From this figure, we see that when the A-nucleon
potential is of type A without a hard core, the cross
sections are considerably smaller than the experimental
values. On the other hand, for potential B, C, and D,
although the values of o are still below oexp, the dis-
crepancy is no longer too bad. In all three cases, the
calculated points are within two standard deviations of

10 12 14 16 8 20
E (MeV)

Fi6. 2. Forward-to-backward ratio of A-proton scattering
as a function of c.m. energy.

3 G. Alexander, O. Benary, U. Karshon, A. Shapiro, G.
Yekutieli, R. Engelmann, H. Filthuth, A. Fridman, and B. Schiby,
Phys. Letters 19, 715 (1966).

# B. W. Downs, Nuovo Cimento 43, 459 (1966).

3 As in our previous calculation (Ref. 11), we have computed
triplet and singlet phase shifts up to &;.
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the experimental points. Thus, from this comparison,
even though a definitive conclusion cannot be prudently
made, we do obtain a strong indication that a hard core
very likely exists in the A-nucleon potential, with a
radius greater than about 0.3 F.

Also, it is seen from Fig. 1 that the experimental cross
sections seem to fall off more rapidly with increasing
energy than do the calculated curves. This suggests that
the intrinsic range of 1.5 F used in this investigation is
possibly too small, and larger values of 2.0 and 2.5 F
might very well be more appropriate.

The behavior of the forward-to-backward ratio (¥/B)
is shown in Fig. 2 for the various potentials. From this
figure, we see that the calculated values increase with
energy, which is due to the assumption of an ordinary
nature for the A-nucleon interaction. Experimentally,
the data are too crude to confirm this definitely, but
there does seem to be a rising tendency.®

To make sure that the conclusion made above about
the size of the hard core in the A-nucleon potential is
reasonable, we have examined the uncertainty in o due
to the uncertainties associated with Ups and Ups;. What
we do is to use the upper limits of Ugs and Ugs to
compute Uy and Uy, and then calculate o. The results
are shown in Fig. 3, where again we find that potential
B, C, and D yield acceptable fits to the experimental
data, while potential 4 does not.

Also, it is necessary to examine how the suppression
effect discussed in Sec. IIT might affect the values of the
total cross section. For this purpose, we shall calculate
o for a number of cases where Uy, is increased over that
given in Table VII, while at the same time keeping Ulys
fixed. This has been done for all the potentials con-
sidered, but, for simplicity, we shall give here only the
result for the case with potential C. The various combi-
nations of Uy, and Uy which have been examined are
listed in Table XTI and the result is shown in Fig. 4.
Here, we note that the change in ¢ is relatively un-
important even for an increase in Uy by 49, which is a

1
6 8 10 12 14 16 18 20
E (MeVv)

Fic. 3. Total A-proton elastic scattering cross section as a func-
tion of c.m. energy. For the calculated curves, the values of Uy
and Uy, used are computed from the upper limits of Ugs and Ups.
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TaBLE XI. Potential combinations to study the
influence of the suppression effect.

Potential Uss Uq: % increase
type (MeV) (MeV) in Ug:
C 1711.0 1384.3 0
C1 1692.6 1439.7 4
C2 1674.1 1495.1 8
C3 1655.7 1550.5 12

rather large amount, since the value of Bx(4H*) corre-
sponding to this particular combination of Ug, and Uy
(i.e., potential C1), being 2.41 MeV, is already larger
than the value given in Eq. (17).3¢ Thus, we conclude
from this study that with the type of A-nucleon poten-
tials considered here the suppression effect does not
seem to be important in a calculation on A-nucleon
scattering cross sections.

V. CONCLUSION

In this investigation, the binding-energy data of the
s-shell hypernuclei and the total cross sections of the
A-nucleon scattering have been examined with two-
body, spin-dependent, charge-independent, central
A-nucleon potentials which have an intrinsic range of
1.5 F and a hard core with a radius ranging from 0 to
0.6 F. The main purpose is to find out whether there
exists a hard core in the A-nucleon interaction. The
results show that even though it is not possible to make
a definitive conclusion from this study, there is still a
strong indication that a hard core does exist and has a
radius greater than about 0.3 F.

It is interesting to note that the above conclusion
agrees with the result which we have recently obtained
from an analysis of the hypernuclei sBe® and ,C%.37 In
this latter analysis, it was found that to obtain agree-
ment with the experimentally determined values of

o 2 4 6 8 10 12 14 16 18 20
E (MeV)

Fi1G. 4. Total A-proton elastic scattering cross section as a func-
tion of c.m. energy. The combinations of Uq and Uy, used are
given in Table XI.

3 For potential C2 and C3, the values of By (yH*) are 2.96 and
3.56 MeV, respectively.
87 R. C. Herndon and Y. C. Tang, Phys. Rev. 149, 735 (1966).
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By, the A-nucleon potential employed should have an
attractive part with an intrinsic range less than about
1 F. In this respect, we should point out that the
A-nucleon potentials used in this investivation have an
intrinsic range for the attractive part less than this
value when they have a hard-core radius greater than
0.3 F.

This study also shows that the hypernuclear results
do have a fairly sensitive dependence on the radius of
the hard core in the A-nucleon potential. The total cross
section of the A-nucleon scattering, for example, in-
creases by about 309, when the radius is increased from
0t0 0.6 I.

Also, we have found that when the hard-core radius
is less than or equal to 0.6 F, a hyperdeuteron does not
exist. Since this value (0.6 F) represents very likely an
upper limit for the core radius, we can quite definitely
conclude that the A-nucleon interaction is not strong
enough to bind a two-body A-hypernuclear system.

From our calculation, it appears that there is a
particle-stable excited state for the hypernucleus pH?,
but its binding energy is rather small. Even in the most
favorable case when the A-nucleon potential has a core
radius of 0.6 F, the value of Ba* is only about 0.2 MeV .8

The trial wave function used here has been assumed
to be totally space symmetric with respect to the
nucleon coordinates. In particular, the effect of S'-state
mixing in AH?, as discussed by Bodmer,'® has not been
taken into consideration. This can inject some un-
certainty into our results, but we do not feel that the
uncertainty is a large one. In our investigation, all
the A-nucleon potentials which have been found to be
of interest, i.e., those with a hard-core radius greater
than 0.3 F, have an attractive part with an intrinsic
range similar to or shorter than that of the K-meson
exchange. From Bodmer’s calculation, it has indeed
been found that when the A-nucleon potential has
such a short range, the effect of .S"-state mixing is quite
insignificant.

A comparison between the calculated and experi-
mental values for the A-nucleon total cross sections gives
an indication that the intrinsic range of 1.5 F adopted
here is probably too small and larger values of 2.0 or
2.5 F might be more appropriate.®® This is presently
being investigated in detail, and the results will be
given in a forthcoming publication.

APPENDIX A: THE INTERPOLATION
FORMULA

In this appendix, it will be shown that for a short-
range potential — ¥ f(r) which has a bound s state with

38Tn our calculation, a number of small effects, such as that
due to charge asymmetry in the A-nucleon interaction (see Ref.
34), have not been taken into account. For this reason, we feel that
the values of B* determined here should be considered as having
only semiquantitative significance.

® Similar remark has also been made by B. W. Downs and
R. J. N. Phillips, Nuovo Cimento 36, 120 (1965), and by Dalitz
(Ref. 30).
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a small binding energy B, the two quantities V and B
are approximately related by the equation

V="VotcB2, (A1)

where ¢ is a constant depending on the shape of the
potential and Vy is the depth required to form a bound
state of zero binding.

To show this, we write down the Schrédinger
equations

" d*u
— — 4 Vf(")u(r)=Bu(r), (A2)
2m dr?
and
72 d?u,
— —+Vof (Nuo(r)=0. (A3)
2m dr?

Multiplying Eq. (A2) by uo and Eq. (A3) by # and
subtracting, we obtain

h2 d du duo
— —(uo—-— u——>+ (V—=Vo) f(r)umo=Buu,. (Ad)
2mdr\ dr dr

After integrating over » from zero to infinity and apply-
ing the appropriate boundary conditions, the above
equation becomes

0

(V— Vo)/w f(r)uuodr=Bf wiedr . (A5)

Under the condition that B is very much smaller than
V, the function #(r) is almost the same as #,(r) inside
the potential well; thus, the left-hand side of Eq. (AS)
is approximately equal to

V— Vo)/w Fuddr,

where the important point to note is that the factor
multiplying (V—V,) does not depend on V but only on
the shape factor f(r). The right-hand side of Eq. (A5)
can be handled in the following manner. For »<d,
where d is the range of the potential, both # and %, will
behave roughly like sin(wr/2d). For r>d, the function
uo(r) is equal to 1 and %(r) is approximately given by

u(r)=exp[a(d—r)], (A6)

a= 2mB/H)!2, (A7)

Using these forms of #(r) and u,(r) in the right-hand
side of Eq. (A5), the result is

with

o d 1
B / uuodr=B<——|——) , (A8)
0 2 «
which is nearly equal to B/« if
$ad<1. (A9)
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Thus, Eq. (AS) is reduced to

(V—Vo) /O ’ (P uddr=DB/a= (2—h2—>1/231/2 ., (A10)

m

which has the form of Eq. (A1).

For the s-shell hypernuclei, the use of Eq. (12) as an
interpolation formula is based on the following observa-
tions: (1) the A particle can be approximately regarded
as moving in a potential well created by its interaction
with the individual nucleons, with the depth of the well
determined by the strength of the A-nucleon interaction,
and (2) the condition expressed by Eq. (A9) is fairly well
satisfied. There is a slight complication arising from the
fact that the shape of the well depends somewhat on the
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depth of the A-nucleon potential, but we do not think
that this can seriously affect the results obtained by
using Eq. (12). In any case, we have taken the extra pre-
caution of always choosing one value of Ups which
yields a value for Bj close to that determined
experimentally.

There is also another piece of evidence which shows
that a two-parameter interpolation formula is quite
sufficient for the s-shell hypernuclei. In Ref. 11, we
have used a more careful procedure involving three
values of Ups and a three-parameter interpolation
formula. But, this was later found to be unnecessary,
since a two-parameter formula would have yielded very
nearly the same results as that from a three-parameter
formula, if the values of U, are chosen properly.
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Nature of Hartree-Fock Calculations in Light Nuclei*
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The role of the two-body force, its exchange mixture, and the spin-orbit force in their effect on the Hartree-
Fock wavefunctions and spectra is investigated. It is shown that the main features of the Hartree-Fock
single-particle field are determined almost completely by the long-range part of the two-body force. The
solutions for a long-range model are derived for various systems of different neutron excesses, and the ex-
change dependence of the energy “gap’” between occupied and unoccupied levels is particularly considered.
The main effect of the spin-orbit force and the finite range of the two-body force is to mix the orbitals. In
the cases where the energy “gap” is large, the mixing is only of the occupied orbitals among themselves.
Out of this study it emerges that the most natural representation for the Hartree-Fock single-particle
orbitals is that associated with the axially symmetric deformed harmonic oscillator where one takes linear
combinations of degenerate orbitals which are time-reversal eigenstates. This prescription results often in
nonaxially-symmetric nuclei and is consistent with the resultsfound in exact calculations with realisticforces.

I. INTRODUCTION

N recent years the method of self-consistent de-
formed orbitals has been successfully applied to
various nuclear structure problems. In particular, there
now exists a number of papers'—® dealing with the ro-
tational and vibrational aspects of the low-lying spectra
of nuclei in the 1p and 2s, 1d shells. Intershell prob-

* Supported in part by the U. S. Atomic Energy Commission.

T ?n leave from the Weizmann Institute of Science, Rehovoth,
Israel.
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lems®=? such as the O'® spectrum involving 1p holes and
2s, 1d particles as well as the dipole giant resonances
involving the 1p, 25, 1d, and 2p, 1 shells have also been
treated by the method of deformed orbitals.

The success of the above calculations certainly indi-
cate that the underlying Hartree-Fock (HF) approxi-
mation has considerable validity in light nuclei. It is the
purpose of this paper to discuss the main physical
features of these calculations and to investigate the role
of the two-body force and its exchange mixture and the
spin-orbit force in their effect on the Hartree-Fock wave
functions and spectra. Usually these points are obscured
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