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The effects of an interaction between the spin of the incident neutron and the spin of the target nucleus
are considered in the framework of the optical model. It is found that the differential elastic scattering is
insensitive to the interaction. However, the interaction splits the single-particle states, and the elastic
scattering shows structure as a function of energy when the absorption is small. The spin-spin interaction
has negligible effect on the polarization. The rotation parameter R(6) and the asymmetry parameter 4 (6)
are sensitive to the spin-spin interaction for §=180° and 90°, respectively. For angles near the minima in
the differential elastic scattering, the depolarization is approximately zero.

1. INTRODUCTION

VER the past decade various refinements have been
made to the optical-model potential first proposed
by Feshbach, Porter, and Weisskopf.! In the present
work a term of the form Vi F(r)l-e, proposed by
Feshbach,?is added to the usual optical-model potential,
where I is the spin of the target nucleus, and o= (2/%)s,
where s is the spin of the incident neutron and F(r) is
the form factor. The usual optical-model potential
produces no depolarization, i.e., D=1.0. We find that
the introduction of a term dependent on the target
spin produces depolarization; however, the term has
negligible effect on the polarization. If the spin-orbit
interaction is zero the spin-spin interaction would
produce no polarization when the target in unpolarized.
The Vi.F(r)I-¢ term can modify the polarization only
through the presence of the spin-orbit term. Thus, it
has a small effect on the polarization.

The characteristic effect produced by the spin-spin
term is the splitting of the single-particle resonances.
The spin-orbit term splits a state of angular momentum
1 into two states: j=I=3. If one considers a central
potential plus a spin-spin interaction, the single-
particle state ! is split into several states. For the
channel spin, S=I4+3% and, 12>S, there are 2I+2
resonances for J=|l—I—%| to J=I4I+3%. One there-
fore expects to see resonances in the differential elastic
scattering, polarization, asymmetry, and depolarization.
For example, for the scattering of neutrons by 27Al
(I=3) we took the central potential ;=50 MeV and
the spin-orbit potential V;;=6 MeV. The fy» partial
wave resonates at E,=4.2 MeV. Upon introducing the
spin-spin interaction we would expect to see resonances
for 1=3 in channels J=0 to 6. When the absorption
potential W is zero, the calculated differential elastic-
scattering cross section shows resonances as a function
of energy. For any reasonable value of W the states

* Work supported in part through funds provided by the U. S.
Atomic Energy Commission under Contract No. AT (30-1)-2098.

1 H, Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev.
96, 448 (1954). )

2 H. Feshbach, in Nuclear Spectroscopy Part B, edited by Fay
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are spread out and the calculations do not give any
structure.

The optical model with a central-plus-spin-orbit
potential gives zero for the spin-flip amplitude for
scattering in the forward direction because of the
conservation of the Z component of angular momentum.
Hence the rotation R(0°) and the depolarization D(0°%)
are unity and the polarization P(0°) and asymmetry
A (0% are zero. The spin-spin interaction allows the
incident neutron to flip its spin, u=% — u=—1%, when
scattered in the forward direction; thus R(0°) and
D(0°) are no longer identically unity. The simplest
method of detecting a spin-spin interaction would be to
measure R and D in the forward direction. A departure
from unity would confirm the presence of a spin-spin
interaction. The calculations predict the departure of
R and D from unity to be small in the forward direction
because only amplitudes dependent on PQ(cosf) are
nonzero, and thus measurements in the forward direc-
tion may not be profitable.

The most dramatic effect on R due to the spin-spin
interaction is for §=180°. The spin-spin interaction can
cause R to become positive where as for I=0, R(180°)
=—1. In the absence of a spin-spin interaction the
depolarization is identically unity for all angles. The
The spin-spin interaction causes D to approach zero
for angles corresponding to the minima in the differ-
ential elastic scattering.

In the present work the channel-spin coupling
representation is used and the spin-flip and nonspin-
flip amplitudes are obstained by using vector addition
coefficients to transform to the uncoupled representa-
tion. In Sec. IT we give the mathematical formulation
and in Sec. ITI we present the results.

II. MATHEMATICAL FORMULATION

We consider the elastic scattering of neutrons, spin 3,
by target nuclei, spin 7. The interaction is defined by
the complex potential

—V(@)=Vif(r)+iWg(r)+Vi4a?h(r)]-e
+Vl¢x1‘2h(7’)l'0’ (1)
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where
f()=[1+exp(r—R)/a]™,
)= 1 df(r)

r dr
g(r)=3S1f(r)+ (1—S1)darh(y),

and R=ro48. The parameter S; determines the ratio
of volume to surface absorption.

The spin-orbit term is of the Thomas type where &
is the pion Compton wavelength, taken to be V2 F
exactly. The form factor for the spin-spin interaction
was taken to be 4(r) for convenience in computation.
In this model the real part of the potential accounts for
refraction of the incident wave, the imaginary part
provides for absorption, the spin-orbit term generates
polarization and the spin-spin interaction produces
depolarization.

The wave function describing the scattering is written
in the channel-spin representation. The neutron spin is
coupled to the spin of the nucleus to give states of
channel spin S. The usual separation of the radial
and angular coordinates of the channel radius r is made
giving states of relative orbital angular momentum .
Finally the channel spin S is coupled to / to give states
of good JM. Thus

si?M=|(Is)SITM)(1/r)fs’ (r),

2)

where

| Is)SUM)=7" (Imsu|Sm—+u) (M —m—uSm—+u| TM)

Xor™X (it Y M=m—r(0p)}. (3)
The total wave function is
V=3 yg'M. (4)
JMS1

With this choice of representation the spin-spin
interaction is diagonal giving — (I41) when S=I—3%
and I for S=1I+1%. Substituting Egs. (2), (3), and (4)
into the Schrédinger equation for scattering in the
center-of-mass system, multiplying on the left by
{(Is)SIJM| and integrating over angular variables
gives the following coupled equations:

[iz+—2ﬁ[E+ VAf ) +iWe(r)
ar?  h? : 8V

1(0+1)

o 2 e

=3 fmss'”fs'ﬂ(f) , 9

where S, S’ take the values I=%. The coupling matrix
element

M 1= Vidke 20+ D[ (2S+1) 25"+ 1) 2 (— 1)+
X LW (ISF| 30)W (IS'F1| 1)

—WISEHLN3)W (IS0 5T)Ju(r).  (6)

ELASTIC SCATTERING OF NEUTRONS

1053

In Eq. (6) it and I-=I43, respectively, and the W’s
are Racah coefficients. For each J value there are
2142 allowed values of I(J>I+3%). For I=J4(I+1)
the equations are uncoupled ; however, for the remaining
2I values of I the functions fryy:/(r) and fr_y.7(r)
are coupled.

For r<R., where the interaction V(r) is nonzero,
Egs. (5) were solved numerically. For an incident
partial-wave channel |JIS) the boundary conditions
which yield the scattering matrix elements Sgg’? and
Sser’t are

fSl"(Rm) =ISZJ(Rm)_Sss“OszJ(Rm) ,
Jsrt! (Rm)=—S557"0s:17 (Rm). )
The functions I g7 (r) and Og” (r) are the usual ingoing
and outgoing waves,
Is! (n)=r(m(r)—ij(r)),
Oz’ (r)=7(mi(r)+i5:()). ®
To calculate the observables we must evaluate the
scattering amplitudes 4 ,,"”(Q). The amplitude 4 ,,»™
() gives the probability that the neutron initially in
state |3u) will be scattered to state |3u’) while the
target changes from initial-state spin I, projection
to its final-state |In). The scattering amplitudes are
obtained by transforming from the channel-spin
representation in which the S matrix elements are

calculated, to the uncoupled representation using the
usual vector-addition coefficients. Hence

Awu”m(ﬂ)
¢ —I D7 .

X(_ 1)()\+I)‘|)/2Z (SSS' _BSS')
J8s’

X (Ingp' | S'n+-p") Imp | S m+u)
X (S m~+u 10T m+u) (S’ ntu' IN[T m+p),

where

©

and Q= (0,9).

It is convenient to write the non-spin-flip amplitudes
as

A=mtp—n—p'

Ay (@)

=43 (f)ef ¢
1 (l—|m—n|)! 1/2

=—> 2+ 1)[————————] gi(m—n)¢ P lm—n|
2T LG Il
X (c()sﬂ) (—- 1) (m—nt|m—n|)/2 Z (SSS'Jl_a,S"S)

JS8’

X (Ing%|S" n+3) (Im33|S m+3)

X (S n+3lm—n|J m+3)

X (S m+510[J m+3), (10)
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and the spin-flip amplitude
(V)
=B_3 3" (6)ei D9
1 (I— |m—n1]) 77
—_—— Z(Zl—l—l)[,—_‘_—_—_] Pl]m—n—Hl
2ik 1 (+ |m—n+1])!
X (cosf)ei(m=mDé (— 1) (mmntit m—ntiD/2
X ¥ (Sss?t—0gs) (Ink—%|S'n—2)(Imis| Sm+3)
X (S n—1Im—n+1|J m+3%)

X (S m+510]T m+3). (11)

The amplitudes have the following symmetry properties:
Ay @)= (1) dy7m0),  (12)
Ay @)=— (=1 dy 0. (13)

We write the scattering matrix M in terms of two-

dimensional submatrices .4"™. The diagonal terms of

A" are the non-spin-flip amplitudes 4™ (¢) and the

off-diagonal terms are the spin-flip amplitudes B_3,;"™(6)

M=.A4"m
=ei(m—n)¢( A‘Hnm(o)

B_y "™ (0)e™*

Using Egs. (12) and (13),

nm— (_ l)m—nei(m—n)da

Bé._%nm(o)e—i(ﬁ 4
By () ) .

A nm
X( 13 (0)_
B_y"m(6)e'

To calculate the observables we use the density matrix
formalism.? The expectation value of the operators S7is

——B_;,f”,—m(o)e“"d’
. (15
Ay m(0) ) s

Io(Sy= ST (MS*MTST).

— (16)
2(2141) >
The initial state is described by specifying the average
values of the operators S”. The bar denotes the statis-
tical average and the quantum-mechanical average is
denoted by the brackets. In Eq. (16), [, is the intensity
and M is the scattering matrix.

In the uncoupled representation the operators S” are
products of operators of the incident neutron .S and
the target nucleus S¢,

NERFAYS @an
When neutrons are scattered by unpolarized targets,
S¢=1, and if measurements are only made of the
scattered neutrons, S;7=1. Combining Egs. (14), (16),
and (17) we obtain the following expression for the

8 L. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956).
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scattering of neutrons by an unpolarized target:

I(Sy= S8AHY Tr(ASAmtS ). (18)

201+1) 7

The intensity of an unpolarized beam of neutrons is
given by taking (S2)=1 and S;"=1. Thus*

Iy=

2 (|Amm || Bmm[3).
2041

To obtain expressions for the polarization, rotation,
asymmetry, and depolarization we specify the following
axes. The direction normal to the scattering plane is
denoted by n:

(19)

k:Xk;
n=—m—,
Ik’kaI

Taking k; along the z direction and k; in the x-z plane,
n is along the y direction. The direction perpendicular
to the incident direction is defined by

nXk,
Inxk;|

S;

The unit vector s; is in the x direction. The unit vector
8y, perpendicular to the outgoing direction is defined by

nXk,-
§y= .
[nXk;l
Thus,
e:n=¢,, €-8;=0;, O-S;=0,C080—0c,sinf. (20)

The polarization is the expectation value of ¢ when the
incident beam is unpolarized. Equations (18) and (20)

a b c
ke ke
! ~
z ki \
3 ke
!
]
: v !
in .
J
f
P R ki ki
x—s ~ ~
st
A R

Fi1c. 1. The unit vectors used to specify the polarization,
rotation, and asymmetry.

4 To simplify the notation we make the abbreviations
Amm=A4y, v (6)
and
Brn=B_j, ().



153

give

1
IoPn=ZI > 2 ImA rm*Brm, (21)

The only component which is nonzero is perpendicular
to the scattering plane.

The asymmetry is a measure of the component of the
incident beam which is polarized along the incident
direction k; which after scattering points in the direction
nXk;; see Fig. 1(b).

1
Ids;=————3 TrA""¢-kiA""'a-nXk;

22I41) "

1
——— 3 [—sing(| 4|~ | B

21

~+cos62 Red»™*Br»m]. (22)
The rotation measures the polarization in the direction
nXk; when the incident beam is polarized in the
direction nXk;; see Fig. 1(c).

Z Trﬁ"mﬂ'nincA"""To"nka

IoRsy=———
202I+1) ™

2
=—-3" Re{sinf4 »mB—r—m*
2I+1 »m

+cosf(ArmA—r—m*— BrmB-n—m¥)}  (23)

The remaining observable is the depolarization which
gives the polarization along n after scattering when the
incident beam is polarized along n:

2
IiDn=——— 3 Re(4™ A= Brnp=r=r). (24)

From Egs. (19), (21), (22), (23), and (24) we see that
measurements of 1¢(6), P(6), 4(8), R(f), and D(6) give
the quantities,

> (|4rm|2£|B]?),

Re Z Anm*Bnm,

nm

Im Z A nm¥ Bnm s

Re Z Ant—n—m*’

nm

and
Z (A nmA—-n—m*_Bnt—n—m*) .

The choice of the channel-spin representation
provides a convenient check to the computer program
written to calculate the scattering. The spin-spin
interaction appears in the formalism [Eq. (5)] in a
simple manner. It is diagonal and equals — (741)4a?
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TasLE I. Optical-model parameters (MeV).

V1 w Vlv
48 5.75 5.5

VIII
7.58

X Vih(r) or I4a*Vr.h(r). The usual spin-orbit term
couples the channels; S=7-3. If Vy, is zero, the poten-
tial is just the usual optical-model potential; however,
the formulation is complicated and in order to calculate
the non-spin-flip and spin-flip amplitudes A43"™(f) and
B_y"™(0) we must sum over /, J, S, and S,

The scattering by the usual optical-model potential
is solved by coupling s to ! to form j. Then, the spin-
orbit term is diagonal and the non-spin-flip, 4 (6), and
the spin-flip, B(¢) amplitudes are obtained as a sum
over / and j:

1
A(0)=5~,]; ;[(l+1)(51+—1)+z(5r—1)]

X PP(cosh), (25)

B(6)= L 2 LSF—Si1P/ (cos). (26)
2tk 1

Equation (10) and (11) are the generalizations of (25)
and (26). Since Egs. (10) and (11) give sums over J,
S, ', and [, we see that when V;,=0 there is a strong
check on the amplitudes, as differences of many terms
must give the same results as Egs. (25) and (26). If the
spin-orbit interaction is zero the scattering matrix
elements are diagonal in S and independent of J, see
Eq. (5). The only nonzero amplitudes then are 4™™
and B™t™, Hence, the polarization is zero.

III. RESULTS OF NUMERICAL CALCULATIONS

The calculations were carried out for several nuclei in
order to investigate the general effects of the spin-spin
interaction. Light, medium, and heavy nuclei were
chosen and nuclei of similar mass, but with different
spins were compared. The values of the optical poten-
tials were taken from Rosen ef al.5 and are given in
Table I. The radius parameter 7o was taken as 1.25 I
and the diffuseness parameter ¢=0.65 F, except for
the surface absorpition potential (S1=0) when ¢ was
taken to be 0.7 F. An estimate of the spin-spin interac-
tion strength was made by assuming that the target
spin is due solely to the odd particle and taking the
two-body force to be of the Rosenfeld mixture and
separable,

V (r1,r5) = —Vola+bor-a:)F (r)F (r2) . (27

The spin-spin interaction arises from the ¢i-0y term.
The interaction potential,

=—VbF(r)o: <F (r)o),

5. Rosen, J. G. Berry, A. S. Goldhaber, and E. H. Auerbach,
Ann. Phys. (N. Y.) 34, 96 (1965).

(28)
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where

103

(F()o)=2(0|F (r:)0:]0).

In Eq. (29), |0) is the ground-state wave function of
the target and the sum is over the nucleons in the

A. P. STAMP

(29)
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target. The expectation value of ¢ is just the polarization
of the target; hence when the target nucleus is assumed
to consist of a spherical core plus an odd particle in
state |#lI), then only the odd particle contributes to

1.0
27p| Vi o
0.5 0.0 —
< N 7.68 x--x
g 0.0 [ x=x=X=%=x T e _x// ‘
S T ! p
° \ X
a - \ X
\\ ’X'
X
-0.5— \\‘ "/X
- e
-10
=y
1.0 X .
— X,
05~ x\\ Pl
g B ‘.\L‘/x
k=l
N
5 00
©
Q.
8 -
o
-0.5—
1 1 ] | |
0 30 60 90 120 150 180
9°CM.
(b)

F16. 2. (a) The differential elastic-scattering cross section of
neutrons scattered by *7Al, /=%, at E,=4.0 MeV for V;,=0.0
and 7.68 MeV. (b) The polarization and depolarization of neutrons
scattered by 27Al at E,=4.0 MeV for V;,=0.0 and 7.68 MeV.
(c) The rotation and asymmetry of neutrons scattered by 27Al
at E,=4.0 MeV for V;,=0.0 and 7.68 MeV.
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the sum in Eq. (29). Thus,

0y TIIED
(U )Ty

=T — 1) ==

[I(I+1)]”2( :

X (2s4+1) QI+ 1)W (sIsI:I)R, (30)
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where R= f"R,2(r)F (r)7*dr, and I is the average value
of the target spin. Substituting the analytical expression
for the W coefficient in Eq. (30) we obtain

V=— VI.,F(f’)I'O' y
where

1(z+1)—0.75]

Vie=(—1)"*VdR| 1—
ro=(~1) [ pr—

— 3lsi

o
o
T

Vio
0.0 —

¥

103
L i Vi o
I 0.0 —
B 7.68 xxx
102
= F
s +
bl -
(=]
s
‘5 -
]
Q
gIO’:—
S C
a F
E L
< -
Tt
©
100
10-! | . 1 | 1 |
0] 30 60 90 120 150 180
E%m,
(2)

Fic. 3. (a) The differential elastic-scattering cross section of
neutrons scattered by 3Si, I=% at E,=4.0 MeV for V;,=0.0 and
7.68 MeV. (b) The polarization and depolarization of neutrons
scattered by #Si at E,=4.0 MeV for V;,=0.0 and 7.68 MeV.
(c) The rotation and asymmetry of neutrons scattered by #Si at
E,=4.0 MeV for V;,=0.0 and 7.68 MeV.

768 x-x

Polarization
o
o

-05—

-10 X x
10 X, - %X
3

o
o
I

o
o

Depolarization

-0.5

-10 ! L ! ! !
120 150

180

Vig

0.0 —

o5 7.68 x-xx

0.0

Rotation

05—

0.0

Asymmetry

-1.0 | | | 1 |
120 150°

180



1058 A. P. STAMP 153
104 1.0
:» 5IV VI -
0.0 —
| 768 x-x

103 *

T TITT

T TTIIT

do/qq (millibarns per steradian)
o]
9

Polarization

L S - ! K
— / \
M ~ %
o' 5 00 X ‘\,,(—xzii‘.
£ S
. Q
o -
- o
L -05-
100 | ! | ! 1 -1.0 | | 1 | !
o] 30 60 90 120 150 180 o] 30 60 90 120 150 180
6°cm, &°m,
(a) (b)
1.0

0.5

Rotation
o
o

-0.5—

05—

Asymmetry
o
o

\
o
3

-1.0

180

Taking V=50 MeV, 4=0.7, F(r)=4a%(r), I=2, and
j=%, we obtain R=~0.2 and V. is of the order of 3 MeV.
Collective efforts are likely to increase the value of Vy,;
hence we take V5,=3.84 and 7.68 MeV and assume
the I dependence is small. The greater I is, the greater
the core polarization, and hence, the greater the collec-

F1c. 4. (a) The differential elastic-scattering cross section of

neutrons scattered by ®'V, I=1 at E,=4.0 MeV for V;,=0.0 and
7.68 MeV. (b) The polarization and depolarization of neutrons
scattered by 5V at E,=4.0 MeV for V;,=0.0 and 7.68 MeV.
(c) The rotation and asymmetry of neutrons scattered by 5V at
E,=4.0 for V1,=0.0 and 7.68*MeV.

tive contribution to Vr,; hence the assumption of 7
independence is reasonable.

In Figs. 2, 3, and 4, the results are presented for the
scattering of 4-MeV neutrons elastically scattered by
2A1(I=%), ¥Si(I=1), and V(I =%) for V1,=0.0 and
7.68 MeV. The depolarization was calculated assuming
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the incident beam is 1009, polarized along the direction
n, similarly the rotation and asymmetry were calculated
for the incident beam 1009, polarized in the direction
nXk,;. The minima in the differential elastic scattering
occur when the real and imaginary parts of the non-
spin-flip amplitudes are approximately zero. The
characteristic structure in the polarization (i.e., rapid
change in sign of P) and the rapid fluctuations in D,
R, and 4 are all due to both the real and imaginary
parts of A4,,"™(8)= zero.

In Fig. 5 we illustrate D and R as a function of Vi,
for the reaction 27Al(n,7)*Al.

The effect of the spin-spin interaction is greatest for
large values of I. However, changes induced in the
differential elastic scattering and the polarization by
V1, would probably be reproduced by taking Vi,=0
and varying the remaining parameters.

The most characteristic effect due to V7, is seen in
D and in R (=180). For large angles the depolarization
departs from unity and approaches zero for angles
corresponding to the minima in the elastic scattering.
For §=180° and Vi,=0 we can see from Eq. (23)
that R(180)= —1. However, V7, causes R(§=180) to
approach zero as I increases.

For the scattering of neutrons by ?’Al we investigated
the energy dependence of do/dQ, P, D, R, and A. For
V1,=0.0 the f;;» wave resonantes at E,=4.2 MeV
the functions fg37 (r) for J=0 to 6 will all resonate for
E, near 4.0 MeV, and hence we expect to see structure
in do/dQ, P, D, R, and 4 as a function of E,.

27p
DEPOLARIZATION

0.5

o
[e]

Depolarization

-05

ROTATION
0.5

Rotation
o
[e]

S
o

-1.0
[¢] 30 60 90 120 150 180

F16. 5. The depolarization
27Al, I=4%, as a function of Vy,.
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Fic. 6. The elastic-scattering cross section at §=160° for
neutrons scattered by 27Al as a function of the neutron energy.
For W=1.0 MeV, the diffuseness parameter of the absorption
potential was taken to be 0.6 .

In Figs. 6, 7, 8, and 9 we present the results for
V1=50 MeV, W=0, V;;=6 MeV, =13 F, and
a=0.65 F. The energy dependence of the elastic
scattering is illustrated in Figs. 6 and 7, for 6=160°
and 90°, respectively. For W=1.0 MeV we see (Fig. 6)
that the single-particle resonances are spread over
several hundred keV and no longer show up. For
V1.="7.68 MeV, the resonances occur at E,=2.96, 3.76,
and 4.45 MeV when the imaginary part of S337% for
1=3, J=1, 2, and 3, is zero and the real part of Ss;”*
is approximately —1. For J=4 and 5 the imaginary
part of Ss372 is zero for E,=5.20 and 5.56; however, the
resonances are wide and do not show up. When Vi,
=3.84 MeV, the imaginary part of S3372 is zero at 3.00,
3.26, 3.58, 4.00, 4.48, and 4.82 MeV for J=0, 1, 2, 3,
4, and 5, respectively. However, the resonances are
not very distinct. As expected, the resonances which

L )
110 27p) (n,n) 27Al Vio

L 6 = 90° 3.84 ———
<
S
3 oo
f
»
k]
a
g oor
o
=
E L
3 so
o
o

1 ! 1 ! ! 1 {
2.0 30 4.0 50 6.0

En (MeV)

and rotation of neutrons scattered by ~ Fi1c. 7. The elastic-scattering cross section at 6=90° for neutrons

scattered by 27Al as a function of energy.



1060
-0.21~ 271 (n,n)27Al
) ROTATION & = 160°
-0.3f-
"\\
N
AN
-0.41 \
\
/ \\
s -05— / \
= / \
5 / \
o
T .06 / \\
~
/ Vig 3.84 —— 4
07l / 768 —
/
/
/
-08f- -~
1 1 1
2.0 30 40 50 6.0
En (MeV)

F1c. 8. The energy dependence of the rotation at §=160° for
neutrons scattered by 27Al.

occur at the lowest energies (i.e., small J) are sharpest.

The energy dependence of the rotation is given in
Fig. 8 and of the depolarization, polarization, and
asymmetry in Fig. 9. When W=1 MeV, the structure
in D, P, R, and 4 is lost. Elwyn et ¢l.® have measured
the polarization and the cross section for the reaction
27Al(n,n) 27Al for E, below 2.2 MeV. They observe reso-
nances at intervals of 300-400 keV, which have widths of
100-200 keV and point out that the structure is not in-
consistent with an intermediate structure described by
Block and Feshbach? and discussed qualitatively by
Kerman et al.? We have shown that a spin-spin interac-
tion generates resonances provided the absorption is
small. If the central potential V' is increased, the reso-

8 A. J. Elwyn, J. E. Monahan, R. O. Lane, and A. Langdorf, Jr.,
Nucl. Phys. 59, 113 (1964).

7B. Block and H. Feshbach, Ann. Phys. (N.Y.) 23, 47 (1963).

8 A. K. Kerman, L. S. Rodberg, and J. E. Young, Phys. Rev.
Letters 11, 422 (1963).
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F16. 9. The energy dependence of the depolarization, polarization,
and asymmetry at §=160° for neutrons scattered by 27Al.

nances occur at lower energies and are narrower. Elwyn
et al.% analyzed their results in terms of the optical model
in order to account for the general features of the elastic
scattering and polarization and took W=16.5 MeV.
We have shown that for W=1.0 MeV, the structure
due to the spin-spin interaction is lost, and therefore
the resonances observed by Elwyn are unlikely to be due
to a spin-spin interaction.

The simplest method of experimentally verifying the
existence of a spin-spin interaction would be to measure
the depolarization for angles corresponding to the
minima in the elastic scattering or for 6=180°. A value
of D different from unity would show the existence of
a spin-spin interaction.
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