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ured position should be shifted by this amount toward
the larger of the two outer derivative peaks.

Figure 9 of Ref. 28 shows that for a dispersion-type
crossing signal (e((1) the two outer derivative peaks
are shifted from their positions for ~=0 by an amount

e, while the central derivative peak is shifted by ——,e.
Differentiation of Eq. (8) shows that the zero-derivative
points of a dispersion-type crossing are also shifted (to
first order in e) by an amount —e. When derivative
detection is used, the zero-derivative points can be
determined much more precisely (provided a good
baseline can be established) than can the positions of
the outer derivative peaks. The central derivative peak
position is corrected by shifting it away from the mean
position of the two zero-derivative points by an amount
equal to one half the difference between this mean and
the observed central peak position.

2. F01' OV8lla, p

The overlap of the signals from the diferent hyperfine
crossings does not shift the position of Ho, the center

of the Lis low-field crossing signal, but does shift the
positions of Hi through H4, the zeros in the derivative
of the Li7 low-6eld crossing signal. The resolution of
the hyperfine signals in Li7 is large enough to allow us to
calculate the correction for overlap by considering only
two hyperfine signals at a time and then adding the
results for all such overlapping pairs. For two over-
l.apping Lorentzian signals, the signal is proportional to
L1+(co—&oo)'] '+t 1+(co+coo)'] ', where again &o is the
dimensionless ratio 6/y and 2coo is the dimensionless
spacing of the two hyperflne crossings. Setting the de-
rivative of this expression equal to zero yields, in addi-
tion to the obvious root at ~=0,

co'= 2cov(coo'+1)'" —(coos+1) .
The diGerences between the roots of this equation and
~=&coo give the shifts of the derivative zeros arising
from the overlap. If ~0'& —,'the equation has no real
roots and the only zero in the derivative signal is the
one at co=0. For the Li7 low-field signal, the spacings of
adjacent hyperfinc crossings correspond to an ~0 of
very nearly 2.

PHYSICAL REVIE~ VOLUME i 53, &UMBER $ JANUARY 3. 967

"Anticrossing" Signals in Resonance Fluorescence*
H. WXEDER) AND Y. G. ECK

Physscs DeParAnent, Case Institnte of Technology, Cleveland, Ohio

(Received 26 August 1966}

The level-crossing technique of atomic spectroscopy utilizes the spatial interf'erence in the scattering of
resonance radiation which can occur when two Zeeman levels of an atom are brought into coincidence
("crossed"} by the application of an external magnetic field. "Anticrossing" refers to the case where the two
levels involved are coupled by a small static interaction. In this paper the general expression for an anti-
crossing signal is given and its predictions compared with signals observed in the 2 'P term of Li. It is shown
that anticrossings produce signals in many experimental situations for which there would be no signal from a
normal level crossing.

I. INTRODUCTION

'HE two most widely used techniques for investi-
gating the fine and hyperfine structure of excited

states of atoms are those of optical-double-resonance
(ODR)' and level-crossing. ' In both of these techniques,
signals are seen which are the result of a "coupling"
between two Zeeman levels of the excited state. For
ODR experiments, this coupling i.s accomplished by the
application of a rf magnetic field having the appropriate
frequency, while for a level crossing the coupling in the
region of the crossing is simply an intimate part of the

*Work supported by the National Science Foundation.
f Present address: IBM T. J. Watson Research Center, York-

town Heights, New York.' J. Brossel and F. Bitter, Phys. Rev. 86, 308 (1952}.' F.D. Colegrove, P. A. Franken, R. R. Lewis, and R, I, /ands,
Phys. Rev. Letters 3, 420 (1959'l.

optical cxcltatlon process. In this papcl wc consldcr the
situation where two crossing levels are coupled by a
small static interaction (as opposed to the time-
dependent coupling of ODR). The static interaction can
give rise to a signal even if the properties of the optical
excitation or of the two levels are such as to prohibit the
presence of a normal level-crossing signal. The word
"anticrossing"4' has been used to distinguish this case
from a normal level crossing, because it is descriptive of
the manner in which the coupled levels "repel" one
another as the magnetic field is varied through the
region of close approach. We discuss anticrossing signals
that we have observed in the 2'I' term of Li and

' P. A. Franken, Phys. Rev. 121, 508 (f96]}.
4 T. G. Eck, L. L. Foldy, and H. Wieder, Phys. Rev. Letters 10,

239 (&963}.'T. 0, Kck, paper presgqted at the Zeerpan Centennial con-
ference (to be published),
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indicate how such signals can be used to extend the
range of precise investigations of excited atomic states.

The general expression for an anticrossing signal is
given in Sec. II and then reduced to a form appropriate
for discussing the signals observed in the 2 'P term of Li.
Sections III and IV contain the experimental results and
their comparison with the theory. Suggestions for
further anticrossing experiments are given in Sec. V.
The work reported here was part of a detailed investiga-
tion of the Cine and hyperfine structure of the 2 'P' term
of Li. Most of the results of that investigation are pre-
sented in the preceding paper, hereafter referred to
as SEW.

II. THEORY

A. Anticrossing SignaIs

The calculation of the steady-state resonance Auores-

cence signal associated with an anticrossing is straight-
forward in principle. One simply calculates the steady-
state signal arising from the decay of two coupled states
that are excited at uniform rates. Lamb' considered a
closely related, but more complicated, problem in his
discussion of narrow resonances in the n=2 state of
hydrogen. His treatment was for the case where
one of the states being coupled did not radiate, i.e.,
y= 1/27r7. =0, where r is the lifetime of the state. Re-
cently, Series~ ' considered fluorescence from two states
coupled by a static interaction, but again only for the
case of y= 0 for one of the states. He found that for this
special case the steady-state signal is independent of the
coupling. We have examined the more general case
where both states radiate but may have different values
of p and may or may not be radiatively connected to the
same initial and 6nal states in the resonance-Ruores-
cence process. The calculation of the steady-state signal
obtained for this case is briefl. y outlined in Appendix A.
After describing qualitatively the behavior of the levels
and their associated wave functions in the region of close

approach, we shall state the general result for the
steadv-state signal and examine certain limiting forms
of it.

Figure 1 shows the behavior of two anticrossing levels
when y, =y~. The symbols u and b refer to the levels
and wave functions in the absence of coupling, and u'

and b' the levels and wave functions when coupling is
present. The dashed levels u and b cross (6=0) at
H=Hp. While the levels u' and b' never cross, they
attain their distance of closest approach for this value
of H. The minimum separation of the levels is simply
I
2 V I, where V is the matrix element of the interaction

coupling the states u and b. The energies and wave
functions of u' and b' are readily obtained for any value
of 6, the frequency separation between levels u and b,
by diagonalizing the energy matrix for states u and b. As
H is varied through the region of Hp, the wave functions
of a' and b' interchange their identities, i.e., P, =P
for H«HO and P,.=|t t, for H&)Hp. At H= Ho the wave
functions of u' and b' are 50-50 mixtures of those of
u and b.

Figure 51 of Ref. 6 shows the behavior of anticrossing
levels when y /y~. This figure is for the special case
where one of the p's is equal to zero, but it and the ac-
companying discussion of the mixing of states are
qualitatively correct for any p, and p&. There is a
cusping of the levels u' and b' toward one another as H
approaches Hp, the amount of this cusping being deter-
mined by the ratio of L(y, —yt, )/47' to

I
V

I

'. If this ratio
is equal to one, then at H=Hp the levels u' and b' just
touch and their wave functions are again equal mixtures
of the wave functions of the levels u and b. For large
values of the ratio, the levels cross and there is very
little state mixing, while small values of the ratio give,
of course, a behavior very nearly that for p, =p&.

The steady-state anticrossing signal, expressed as a
function of 6 and in terms of the properties of the
eigenstates u and b (which do not vary appreciably over
the region of the anticrossing), is

S= (1h,)Z L I f I'I g I'7+ (1/»)& I I fbi'I g, l'7
Lt3 L2]

+('Ye7b/ YD)P [faf'b*gagb*+fa*fagg*gg7 (jy y~A/y~D)—g Pf fPg gP f +f&g +g&7—
L3j

—(2I VI'v.v~/»)2 Lfg7+. (2/iD)g p(v*f f&*+Vf *f&)(Vg g&*+V*g *gb)7
Dj L6j

+(Av.V ~/v'D)Z Lf(Vg.g~*+ V*g.*g~)yg(v*f fp*+ Vf,+f&)7
L7j

+(''r.»/& )& Lf(Vg.g~* V*g.*g~)+g(V*—f f~* Vf-*f~)7, (1)—
I:83

where D=yayt+ I2VI'+(r 'rs/'P)~' 's the resonance and V is the matrix element oi the static interaction
denominator, which couples states a and b. The symbol f, is an

p —&(p +p~) f= (I f I2/p )—(I f~l2/pb) abbreviated notation for f, = (elf rim), the—electric
dipole matrix element for excitation to state u from
state m. Similarly, g,—=g,—= (m'lg rla) is the matrix

6. E. Lamb, Jr., Phys. Rev. 85, 259 (1952). Sections 68 element for spontaneous decay from state u to state m'.
through 72 of this paper contain the pertinent discussion. The starring of a quantity indicates its complex conju-

~ G. W. Series, Phys. Rev. Letters 11, 13 (1963).
& G. %. /eries, Phys. Rev. 136, A684 (1964). gate. The symbol g before a set of brackets means that
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the quantity within the brackets is to be summed over
all the relevant levels m of the initial state, and m' of
the final state in the resonance-fluorescence process.
All factors having to do with the intensity and spectral
distribution of the resonance lamp, the spectral sensi-
tivity of the detector, polarizations of incident and
scattered light, experimental geometry, etc. , are as-
sumed to be contained in the matrix elements.

The first two terms of Eq. (1) give the nonresonant
background scattering from the states u and b, while the
third and fourth terms taken together are the normal
level-crossing signal modified by the presence of ~2V~'
in the resonance denominator and written in the form
appropriate for y, not necessarily equal to yg. The
variation of the background signal over the region of
the anticrossing is usually negligible unless the anti-
crossing is quite broad, either because of a large p, p&,
or V or because M/BH is small (levels u and b having
nearly the same slope). The observation of the level-
crossing part of the signal requires "coherence" in both
the excitation and detection parts of the experiment in
the sense that f, and fs„must both be nonzero for at
least one m and g, , and g ~ both nonzero for at least
one m . This is the familiar criterion for a level-crossing
signal and means that the optical excitation must excite
atoms to u and b from the same one or more levels of the
initial state and that the detector must observe transi-
tions from a and b to the same one or more levels of the
final state.

Term 5 of Eq. (1), which will be the important one
in most anticrossing experiments, is the only "pure"
anticrossing part of the signal. It vanishes for V=O
and does not require coherence in either the excitation
or detection parts of the experiment. In fact, it is a
maximum when only one of the states a or b is excited
by the incident light and re-emitted light from only
one of these states is detected. Furthermore, if y, =yq,
term 5 vanishes when a and b are populated equally
(P ~ f, ~'=g

~
fs~') or when the detection fails to dis-

criminate between the radiations from these states
(P~g, ~'=g~g~~'). Series' has pointed out the very
close kinship of term 5 and an ODR signal. It can be
taken as a good rule of thumb that in those experimental
situations where one can see an ODR signal, it should
also be possible to observe a signal associated with term
5, provided that one can obtain the close approach of
two coupled levels. The last three terms of Eq. (1) are
mixed crossing and anticrossing terms, requiring both
V~O and coherence in one or both of the two steps in
the resonance fluorescence process. Term 6 requires
coherence in both steps, and terms 7 and 8 require
coherence in at least one.

To conclude our discussion of Eq. (1), we note three
limiting forms of it. When V=O, the last four terms
vanish and we are left with the nonresonant background
plus the normal level-crossing signal. When y or yq ——0,
all terms vanish except the second or first. This is
apparent from the fact that y =0 implies that f and

g ~ are zero for all m and m', and similarly for 7q= 0.

a'

Hp

FM. 1. The anticrossing of two energy levels for the case where
both states have the same lifetime. The dashed levels show the
crossing that would occur if there were no coupling between the
states (7=0).

This absence of any crossing or anticrossing signal when
one of the two states involved does not radiate agrees
with Series's' ' analysis and the more formal treatment
by Lassila. Finally, if coherence is absent in both the
excitation and detection steps of the resonance-fluores-
cence process, we are left with only the nonresonant
background (terms 1 and 2) and the pure anticrossing
signal (term 5).

B. High-Field Fine-Structure Crossing
in the 2 'P Term of Li

Figure1of the preceding paper (BEW) shows that the
J=—'„mg= —

~ and J=-'„mJ = —
~ fine structure levels

of a 'P term cross at a field II~, which for the 2 'P term
of Li is equal to approximately 4800 G. We refer to this
crossing as the high-field crossing to distinguish it from
the crossing of the —'„—~ and -'„-', levels at the lower field
III. The eight hyperfine structure Levels involved in the
high-field crossing in the 2 'P term of Li~ are shown in
Fig. 2. The static perturbation which couples the levels
and causes them to anticross is provided in this case by
the magnetic hyperfine interaction. Coupling occurs
between pairs of levels having the same value of
my= m~+mr, but different values of mr. In Fig. 2 the
levels obtained by neglecting this coupling are labeled
by their mI quantum numbers at the left of the figure,
while the actual levels are labeled by their m& quantum
numbers at the right of the figure. The three squares
locate the centers of the three anticrossings of the pairs
of levels with my= —2, —1, 0, and the circles show the
positions of the four level crossings which would be
observable if the coupling were not present. Though the
level-crossing signal is still observable, it is distorted by
the shifts in the positions of the crossings (the mr = s
and ——, crossings are eliminated as identifiable points
and the 2 and —

~ crossings shifted to the regions
indicated by the arrows in Fig. 2) and by the fact that
the wave functions of six of the eight states are changing

' K. E. Lassila, Phys. Rev. 135, A1218 (1964).
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FIG. 2. The eight hyperfine levels
involved in the high-field fine-structure
crossing in the 2 'P term of Li'. To
show more clearly the details of. the
crossing, the spacing of the four mI
levels with mg = ——,

' has been increased
by a factor of approximately 22. The
spacing of the mI levels with m J = —-',
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rapidly over the region of the crossing. Thus, it is
dificult to extract fine- and hyperfine-structure inforriia-
tion from the crossing part of the high-field crossing
signal. Fortunately, the anticrossing part of the signal
is not distorted and can be easily analyzed, provided
that it is possible to eliminate the crossing signal and
observe the pure anticrossing signal. For Li' with
I= 1, one obtains the same effect as that shown in Fig. 2,
except that there are two anticrossings and three
crossings. The distortion of the crossing signal in Li' is
less than that in Li~, but still present.

Since each pair of levels that are mixed in each of the
three anticrossings of Fig. 2 have different values of my,
they cannot both be excited from the same level of the
ground state and cannot decay to the same ground-
state level. Using this property plus p„=p& ——p in Eq.
(1), we obtain for the anticrossing part of the high-field
crossing signal [omitting the nonresonant background
terms in Eq. (1)g

where the summations over m and e are nonoverlapping.
The total anticrossing signal is a superposition of three
such signals (with strong overlap) for Li' and two for
Li'. It should be noted that the signal given by Eq. (2)
has a Lorentzian line shape for any experimental
geometry. There is not the mixture of Lorentzian and
dispersion-type line shapes which occurs in level-
crossing experiments for all but special angles of scatter-
ing. The dependence of the anticrossing signal on the
polarizations of the incident and detected light can be
readily determined by evaluating the matrix elements

f, , fi, etc. , using the wave functions of Appendix A
of HEW and the properties of a T vector given on page
63 of Condon and Shortley. ' For our experimental
geometry, where the propagation vectors of the incident
and detected light were perpendicular to H and to one
another, we find

58~i; ~ (3 cos 8i—1) (3 cos 8g —1), (3)

where 8~ and 02 are the angles between 8 and the planes
of polarization of the incident and detected light.
Significant discrepancies were found between the experi-
mental results and the predictions of Eq. (3) for reasons
discussed in Sec. IV.

The form which the crossing part of the high-field
crossing signal would take if there were no coupling of
states is given by Eq. (7) of BEW. Evaluating the
matrix elements in the manner indicated above, we find
that for our experimental geometry the undistorted
crossing signal would have a dispersion-type line shape
and a dependence on Polaroid orientations given by

S„„,~ sin(28i) sin(282) . (4)

The coupling distorts the line shape, but does not alter
Eq. (4). Equations (3) and (4) together predict that a
pure anticrossing signal can be obtained for 0~ or 8~——0'
or 90', and a pure crossing signal for 0~ or 02 ——cos '-',V3.
If 0~ or 0~ is set at cos ' 3%3 and the other Polaroid
oriented either parallel or perpendicular to I, both
signals should vanish. This analysis clarifies the reasons
for the experimental procedures which were chosen to
obtain anticrossing information, and which are described
in detail in Sec. III.

The matrix element V responsible for the anti-

"E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England, 1953).
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crossing signal is the magnetic dipole matrix element
(-,', —~~, mr+2 ~Kn

~ » ——',, mr) given in Appendix A of
BEW. In the vicinity of the high-field crossing

V= (6&3)[(I—nor)(I+mr+1)]'"[(6/5)n(1/r') —$]. (5)

This can be evaluated using the values of n(1/r') and f
determined in BEW. The value of V can also be ob-
tained from the width of any one of the overlapping
components of the anticrossing signal (two for Li' and
three for Lir) and a knowledge of y. Setting the second
derivative of Eq. (2) with respect to A equal to zero
yields

Sp —(2/v3) (p~+
~
2V ~2)i&2 (6)

where 5~ is the peak-to-peak derivative width of a single
component of the anticrossing signal. Before Eq. (6)
can be used to find

~ V~, some means must be found to
deduce the width of a single component signal from the
observed width of the total signal. The discussion of
Appendix B shows how to obtain this information for
equally spaced components, provided the spacing of the
centers of the component signals is known. This spacing
can be obtained with sufficient precision from the dif-
ference between the ($, ——,', mr~X'a~2, —2, ~r)
(i, ——'„~rlXD lk, —2, mr) matri~ elements of Appen-
dix A of BE%.

Sp c' g=[(4/15) (1/r') —ln (7)

Finally, we wish to be able to infer the field H& at
which the center of the high-field crossing signal would
occur if there were no coupling (the point marked with
an X in Fig. 2). To find the amountbywhich the center
of the anticrossing signal is shifted down in field from
B~~, we consult Fig. 2, the corresponding diagram for
Li', and Eq. (3) of BEW. The quadrupole interaction
Kq contributes a negligible amount to this shift. Again
using the appropriate matrix elements of KD given in
Appendix A of BE@1 and analyzing the geometry of
Fig. 2, we find for Li'

Shift= [grpoH+ (14/15)n(1/r')+ i3&](BA/BH) '. (8)-
This expression for the shift also holds for Li'. We find
H& by adding the field interval given by Eq. (8) to the
held corresponding to the center of the anticrossing
signal. To the precision of the data, it is immaterial
whether one takes H in g~poH to be H~ or the center of
the anticrossing.

III. EXPERIMENTAL PROCEDURE

A description of the apparatus and most of the details
of the experimental procedure are given in Secs. III and
IV of BE%. Only two additional points need to be
discussed.

To separate the crossing and anticrossing parts of the
high-field crossing signal and to test the predictions of
Eqs. (3) a,nd (4), it is necessary to be able to determine
the orientations of the Polaroids with high precision.

The Polaroids were mounted so that their orientations
could be reproducibly set and read to within approxi-
mately one-half degree with respect to fixed fiducial
marks on their mountings. The orientation of one of the
Polaroids corresponding to its plane of polarization
parallel to H was found by setting this Polaroid ap-
proximately parallel to H (using light reflected at
grazing incidence from a glass plate) and rotating the
second Polaroid to the orientation for which the anti-
crossing signal vanished. This latter orientation was
quite easy to locate, since the anticrossing signal, which
is changing more rapidly with angle than the residual
crossing signal, changes sign at this orientation. With
the second Polaroid set at this orientation, the first was
aligned parallel to 8 by setting it to eliminate the cross-
ing signal. The orientation of the second Polaroid was
then calibrated with respect to its fiducial mark by
interchanging the roles of the two Polaroids and repeat-
ing the above procedure.

As discussed in Sec. IV of HEW, the centers of the
low-field crossing signals were found by manually ad-
justing H to values that gave sharp nulls in the 40 cps
signal from the tuned amplifier of the lock-in detector.
This technique was not used to find the center of the
crossing part of the high-field crossing signal, since the
derivative of a dispersion-type line shape is not zero at
its center, but a maximum, and is considerably more
difficult to locate accurately. It was also found to be in-
applicable to the anticrossing signal, since at the center
of the anticrossing, as determined from pairs of recorder
traces, there was still an appreciable 40 cps signal from
the tuned ampliher. This residual 40 cps signal arises
from magnetic tuning of the Zeeman levels of the
scatterer over the spectral profile of the lamp [see Sec.
IV of BEW]. It is not surprising that this background
signal is much larger for the anticrossing signal than
for the low-field crossing signal, since about 10 times
larger amplitudes of magnetic-field modulation are re-
quired for a comparable signal-to-noise ratio, and since
at the higher field the Zeeman levels are shifted, on the
average, further from the center of the lamp profile.
The data discussed in the following section were al} ob-
tained from pairs of recorder traces (one sweeping up in
field strength and the other down) calibrated with
proton frequency markers.

IV. RESULTS AND ANALYSIS

Typical recorder traces of the derivatives of the anti-
crossing and crossing parts of the high-field crossing
signal in the 2 E' term of Li are shown in Figs. 3—6. The
anticrossing traces (Figs. 3 and 4) were taken with both
Polaroids aligned paraljel to H, and the crossing traces
with both ei and 02 set at the angles for which the anti-
crossing signal vanishes as determined by the procedure
outlined in Sec. III. While the crossing signal in Li'
(Fig. 5) is only slightly distorted from the shape ex-
pected for the derivative of a dispersion-type line shape,



108 H. WIEDER AND T. G. ECK

4 GAUSS PEAK-TO-PEAK
MODULATION 4 GAUSS PEAK - TO-PEAK

MOD U LATI0 N

INCREASING
H

Fxo. 3. Recorder trace of the derivative of the anticrossing
signal in the 2 'P term of Li6.
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Fn. 4. Recorder trace of the derivative of the anticrossing signal in
the 2 'P term of Li~. The spike in the trace is a field marker.

Table I compares the experimentally observed de-

pendence of the strength of the anticrossing signal on
Polaroid orientation with that predicted by Eq. (3).
ey~ and Oy2 are the Polaroid orientations for which the
anticrossing signal vanishes, and the plus and minus

signs denote the relative phase of the signal. Large
discrepancies between the experimental results and the

the distortion of the Li' crossing signal (Fig. 6) is very
pronounced. This greater distortion of the Li' signal is
to be expected, since the magnetic hyper6ne interaction
in Li' exceeds that in Li' by a factor of approximately
8/3. In going from Li' to Li", both the coupling matrix
element V and the range of H over which the crossings
occur are scaled by roughly this factor.

INCREASiNG
H

FxG. 6. Recorder trace of the derivative of the high-field crossing
signal in the 2 'P term of Li'. The spike in the trace is a field
marker.

predictions of Eq. (3) occur for those combinations of
Polaroid settings which admit to the scattering chamber
the component of the incident light which is polarized
perpendicular to H. Also, while the experimental and
predicted values of ey2 are in good agreement, the dis-
crepancy between these values of 8&& is much too large
to be explained by the uncertainty in the experimental
value of this angle. The most plausible explanation for
these discrepancies is that one or more of the transitions
from the ground state to the anticrossing levels lie out-
side the spectral distribution of our lamp, since the lamp
is located in a fringe field of less than 10 G. For H =B~,
the frequencies of the transitions from the J=—,', m J = 2,
mq levels of the ground state to the —'„——'„mq levels of
the 2'P term are reduced by about 10' Mc/sec from
their values for II=0. Thus, it is quite likely that these
transitions are not induced by the lamp. Recalculating
the anticrossing signal with the omission of the excita-
tion matrix elements corresponding to these transitions
yields

Sa~g;~ $2 cos IIr—g]L3 cos2I4 —1]. (9)

The last column of Table I gives the relative signal
strengths predicted by Eq. (9). They are definitely in

Thar. E I. Dependence of anticrossing signal
on Polaroid orientations.

Strength relative to 01 ——82=0' signal
Expt. Eq. (3) Eq. (9)

INC R E AS I N G
H
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pO

pO

90'
90'
0'

none'

none'

pO

90'
pO

90'
none'

PO

none'

+1.00—0.55—0.83
+0.43
+0.64

(+0.48)b
+0.19

(+0.14)b
+0.09

(+0.05)b
48'
55'

+1.00—0.50—0.50
+0.25
+0.50

+1.00—0.50—0.75
+0.375
+0.50

55'
55'

49'
55'

+0.50 +0.25

+0.25 +0.125

FIG. 5. Recorder trace of the derivative of the high-field
crossing signal in the 2 'P term of Li'.

a Polaroid removed.
& Renormalized to account for the effect of Polaroid absorption.
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better agreement with the experimental results than
the predictions of Eq. (3). Thus, we conclude that the
transitions from the —'„—,', ml levels of the ground state
to the -'„—-'„m& levels of the 2 'I' term are indeed only
weakly excited by our lamp.

A few words are in order regarding apparent internal
inconsistencies in the experimental results given in
Table I. For example, the relative signal of +0.64 for
Op=0' and no Polaroid in front of the detector does not
equal, as it should, the value of +0.45 given by the sum

of the signals for 0~=0' and 8~=0' and 90'. The di6er-
ence between these two signals is satisfactorily explained

by the fact that at 6708 A, HN-32 Polaroid sheet trans-
mits only about 75% of the light polarized parallel to
the axis of the Polaroid (and a negligible fraction of the
light polarized perpendicular to the axis). The entries in
parentheses in column 3 of Table I are the experimental
signals renormalized to account for the eR'ect of Polaroid
absorption.

The peak-to-peak derivative widths of the anti-
crossing signals in Li and Li~ were determined from
recorder traces of these signals, 10 in the case of Li' and
four in the case of Li'. These widths, corrected for
modulation broadening" and converted to frequency
units using 1.866 Mc/sec G for 86/BH and 4.2577
kc/sec G for the conversion factor between proton reso-
nance frequency and magnitude field strength, are

Li': 19.67+0.20 Mc/sec,

Li': 66.66+0.67 Mc/sec,

where the uncertainties of 1% are about two times the
standard deviations and represent our 80% confidence
limits. The spacings between the hyperfine components
of the anticrossing signals can be calculated from Eq. (7)
using for Li' the values of n(1/r') and $ found in BEW
and for Li' these values scaled by gr(Li')/gr(Lir)
=0.3786. When the spacings and measured derivative
widths are used in the expressions developed in Ap-
pendix 8, we find for the derivative width of a single
component of the anticrossing signal

Li': 18.22+0.20 Mc/sec,

Li': 58.71+0.67 Mc/sec.

Substituting these results into Eq. (6) and using for
y = 1/2s.r the value determined by the r given in BEW,
we obtain for the matrix element V responsible for the
anticrossing signal

V(Lie) = 7.33+0.08 Mc/sec,

V(Li') = 25.25&0.30 Mc/sec.

Equation (5) can be used to calculate V directly from
the hyperfine interaction constants. This gives

V(Li') = 7.36&0.11 Mc/sec,

V(Li') = 25.05+0.37 Mc/sec,
1' H. Wahlquist, J. Chem. Phys. 35, 1708 {1961).

where for Li' the value of V for the central hyperfine
component of the anticrossing signal is larger than that
for the other two, and we have taken the average of the
three values 23.82, 27.51, 23.82 Mc/sec. As discussed in
SEW, the excellent agreement between the values of V
obtained from the anticrossing signal widths and those
calculated directly from the hyperfine interaction con-
stants is quite convincing evidence for the adequacy of
our theoretical treatment of the hyperfine-structure
data.

The magnetic field strengths corresponding to the
centers of the anticrossing signals were determined from
pairs of recorder traces, five pairs for Li' and four for
Li~. The average of the measured Geld strengths, cor-
rected for line shape distortion in the manner discussed
in Appendix Ci of SEW, are

Li'. 20366.2+0.7 kc/sec;

Li': 20350.8+4.0 kc/sec,

where again the uncertainties represent 80% confidence
limits. The large uncertainty in the position of the Li~
anticrossing is a reQection primarily of the uncertainty
in the baseline of the recorder traces of this signal. A
large amplitude of modulation of the magnetic field was
required to obtain a good signal-to-noise ratio for this
broad signal, with the result that there was an appreci-
able slope to the baseline even far from the crossing.
This uncertainty in the baseline caused not only an
uncertainty in the location of the center of the anti-
crossing signal, but also an uncertainty in the correction
for line shape distortion. Since for a given fractional
distortion the correction is proportional to the signal
width, a small uncertainty in the distortion can cause
an appreciable uncertainty in the position of the center
of a broad signal.

When the field intervals calculated from Eq. (8) are
added to the Geld strengths of the centers of the anti-
crossings, we find for H~, the center of the high-Geld
Gne structure crossing,

&a(Li') =20374.8+0.8 kc/sec,

&a(Lir) =20373.4+4.0 kc/sec.

The quadrupole and oG-diagonal dipole matrix elements
of the hyperfine interaction produce small shifts in the
positions of the hyperfine levels, but these change the
values of B~ by amounts that are negligible compared
to the experimental uncertainties in these field strengths.
In SEW we determined for Li' and Li' the value of HL, ,
the position of the low-Geld Gne structure crossing.
Combining these results with the above values of H~,
we obtain for the ratio of B~ to H~

Li'. 1.49928+0.00006,
Li~: 1.49912%0.00030.

Equation (2) of BEW predicts that this ratio should
be equal to (gs+gz)/ga. Taking g8= 2.00232 and
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go=1—m/M, where I is the electron mass and M is
the nuclear mass, we find that the theoretical ratio is
1.49938 for both Li' and Li'. The small discrepancy be-
tween the theoretical ratio and the experimental ratio
for Li' arises most likely from our neglect of relativistic
and diamagnetic corrections" to g~.

Finally, the held strength corresponding to the central
derivative peak of the level-crossing part of the high-
field crossing signal was determined for both Li' and
Li using five pairs of recorder traces for Li' and four
for Li'. The results,

Li'. 20374&1 kc/sec,

Li": 20368+1 kc/sec,

were not corrected for instrumental distortion of the
line shape, since such distortion cannot be separated out
from that caused by the state coupling responsible for
the anticrossing signal. These peak positions are quite
close to the values of IIH determined above, which for
Li' is somewhat surprising in view of the large distortion
of the Li~ crossing signal.

V. DISCUSSION

Although in the preceding sections of this paper we
have been concerned with resonance-fluorescence signals
in atomic systems, the reader should not deduce from
this that anticrossing signals are restricted to resonance-
fluorescence experiments or can only be seen in experi-
ments involving free atoms. Whenever a physical system
possesses sharp energy levels that can be tuned through
one another by the application of an external field and a
static coupling exists between these levels, an anti-
crossing signal should be observable. The work of van
der Ziel and Bloembergen" shows how anticrossing
signals can be used to investigate the crystalline fields in
solids via their perturbations of the sharp energy levels
of substituted ions. Robiscoe's" measurement of the
Lamb shift in the e= 2 state of hydrogen can be viewed
as an anticrossing experiment where the state coupling
is produced by the applied electric field and the anti-
crossing signal arises from the increased quenching of
the 25 state in. the region of the crossing.

To illustrate the types of anticrossing experiments
which can be used to investigate excited states of atoms,
we shall discuss briefly an experiment now underway in
ouz laboratory, an investigation of the fine. and hyper-
6ne structure of the 3 'D term of Li. .The energy levels of
the 3'D term of Li can be populated by. radiative
decay following optical excitation to the O'P term or
can be excited directly from the ground state by electron
bombardment. In the case of optical excitation, a
normal level-crossing experiment is ruled out by the loss

A. Abragam and J.H. Van Vleck, Phys. Rev. 92, 1448 (1953)."J.P. van der Ziel and N. Bloembergen, Phys. Rev. 138,
A1287 (1965)."R.T. Robiscoe, Phys.

'
Rev. 138, A22 (1965).

of angular correlation due to the added step in the
excitation process. For the observation of a level-
crossing signal with electron bombardment excitation,
the electron beam must have an appreciable component
of velocity in a unique direction perpendicular to the
magnetic field. " This limits the investigation to the
zero-field crossing signal (Hanle effect), which gives no
information about fine or hyperfine structure splittings,
or requires replacement of the electron beam by a high-
energy beam of ions. Observation of an anticrossing
signal requires only that the states involved in the anti-
crossing be populated unequally and the detection be
such as to discriminate between the radiations from
these states. There are naturally occurring anticrossings
(caused by off-diagonal matrix elements of the magnetic
hyperfine interaction) associated with two of the fine
structure crossings in the 3 'D term of Li, and there are
three more fine structure crossings which can be con-
verted into anticrossings by the application of an electric
field perpendicular to the magnetic field. The results of
Budick et at. ,

" indicate that electric field strengths of
10000 V/cm should be sufhcient to produce appreciable
anticrossing signa1s for these three crossings. All 6ve of
the anticrossings shonld produce easily detectable
changes in the spatial distribution and polarization of
the 6103-A transition from the 3 'D to the 2 'P term of
lithium.

Series' implies that for the anticrossing of two levels
of opposite parity all of the terms in Eq. (1) vanish
except the first two, the nonresonant background terms.
This conclusion is correct for the specific case he con-
siders, the e= 2 levels of hydrogen, but follows from the
very long radiative lifetime of the 2s state (ys, 0) and
is not a general property of the anticrossing of levels of
opposite parity. If neither of the two levels involved has
y=0, there will be a contribution to the steady-state
signal from term five of Eq. (1). Thus, Stark-induced
anticrossing signals can be used to measure the Lamb
shifts of the levels of hydrogen with e)2.

Recently, Leventhal, " using electron-bombardment
excitation and monitoring of the Lyman o. line, observed
a signal associated with the anticrossing of an s and p
level of the n= 2 term of hydrogen. This may seem sur-
prising in view of the comments in the preceding para-
graph. However, Leventhal's experiment was performed
in a magnetic field of approximately 2300 G. For this
field strength the lifetime of the 2s level involved is
reduced to about 10 ' sec. by the coupling to distant
p levels via the electric field seen by the atom as a
result of its motion in the magnetic field. While Eq. (1)
was derived for the case of optical excitation, it can
easily be modified to give the form of the signal to be
expected in Leventhal's experiment. Identifying state a

15 E. B. Aleksandrov, Opt. Spectr. (USSR) 16, 209 (1964)
LEnglish transl. : Opt. i Spectroskopiya 16, 377 (1964)j."B.Budick, S. Marcus, and R. Novick, Phys. Rev. 140, A1041
(1965)."M. Leventhal, Phys. Letters 20, 625 (1966).
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of Eq. (1) with the s state and b with the P state, we

replace P„If, I' and g„If&„I' by r, and r„, the rates
at which atoms are excited to these states by electron
bombardment. Since there is no coherence in the

excitation to or decay from these states, terms three,
four, six, seven, and eight of Eq. (1) vanish. In addition
to the nonresonant background signal from terms one
and two, we have

—
I
2 V I'v.[(r./v. )—("/vn))[(1/v*)Z- (Ia-" I')—(1/v. )2- (I g-'I'))

S=
v.v,+12V I +(4v,/v„) A

where we have replaced v=-', (v,+v~) by —,'v~, since

y,«y„. The fullwidth at half maximum of this signal is

Av =v.(1+12VI'/v. v )'" ~

Leventhal's value of 14 G for the peak-to-peak deriva-
tive width of his signal corresponds to a A&12 very nearly
equal to v~, indicating that v.v~)) I

2V I'.
Lamb and Sanders, "in connection with their investi-

gation of the m =3 term of hydrogen, obtained an expres-
sion for the resonance signal when atoms are excited by
electron bombardment and states of opposite parity are
coupled by an rf electric 6eld. Their result [Eq. (6) of
Ref. 18) is essentially identical to term five of Eq. (1),
if the interpretations of some of the factors of this term
are appropriately altered. This demonstrates again the
previously mentioned close kinship of anticrossing and
double resonance signals.

Finally, we note that in principle all level crossings
are really anticrossings, since all states of an atom are
coupled to all other states in some order of perturbation
by stray electric fields. However, if the matrix element
V coupling the states a and b is small compared to y,
and y~, the signal in the region of the crossing is in-
distinguishable from that for V=O. A case in point
occurs for the low-field fine structure crossing in the
2 'P term of Li', where off-diagonal matrix elements of
the electric quadrupole hyperfine interaction couple the
state J=—,', mg= —» m~= —,

' to the state»» —
~ and

the state ~)
—-,') —,'to the state —'„~, ——,'. Thus, with the

Polaroid axes aligned parallel to H to eliminate the
normal crossing signal, one might hope to see two well
resolved signals from these two anticrossings. Our failure
to observe such signals above the noise level is not sur-

prising, since the ratio
I VI/v is only about 4X10 '

compared to a value of 4.3 for the anticrossing that was
observed in Li".
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ia= ',iaI'.j—2+-Vb exp(ia)t),

ib = 2ibI'g+ 2—nV—*a exp (—. io&t),
(A1)

where ra=a&, &ob and—V=(aIBC'Ib)/2mb. Substituting
the trial solutions

a=+ A exp(n. t+ico.t),
n=l

b=P B exp(e t+uabt),
n=l

(A2)

into Eq. (A1) yields

B.=i(a„+us.+ ',I".) (A„/2nV),-.
and

ai, ~= —L:;(I'.+I"s)+2i(~.+~~))
~&[(r.—rb)/4+-,'iv))' —

I
2~V I'}'"

where the plus sign in front of the square root goes with
n& Setting t=. 0 in Eq. (A2) and taking a(0) =f, and

APPENDIX A: DERIVATION OF
ANTICROSSING SIGNAL

Series has considered the resonance-fluorescence
signal from the anticrossing of two states

I a) and
I b) for

the special case where one of the states does not radiate
(v, =0). He finds that for this limiting situation the
steady-state signal is independent of the separation be-
tween the two levels and of the coupling between the
two states. We shall treat the more general case of
arbitrary p, and p& using the same approach as Series,
but with slight changes in notation.

The states
I a) and

I b) are eigenstates of the Hamil-
tonian Xo with eigenvalues A'co, and b~~. Radiative
decay is handled by introducing a damping Hamiltonian
3CD whose matrix is diagonal, with elements —~ihr,
for Ia) and —~iihI'~ for Ib) (I',=1/r„where r, is the
mean lifetime of state In)). The states Ia) and

I b) are
coupled by the time-independent perturbation 3C'.

The wave function of the atom at time t is found by
solving the Schrodinger equation

it (a I t)/~t) = (xo+xnyx')
I t).

Assuming a solution of the form

I t) = a (t) exp ( i&a, t) I

—a)+b (t) exp ( i~ qt) I
b)—

and using the orthogonality of
I a) and

I b), we obtain
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b(0)= fq„, gives

Ai= —L(ni+ior +-', I',)f.„+i2 Vf „)/(u —u ),
Am (——(«+m.+-,'I'.)f.„+i2ir&fi„)/(« a—i)

f,„=(a
I
f r

I m) is the electric dipole matrix element for
excitation from the ground state Im) to state Ia) by
photons of polarization f.

The intensity of the scattered light reaching the
detector is proportional to the square of the electric

dipole matrix element (m'
I
g. r

I t) for spontaneous decay
to the final state Im'} via photons of polarization g.
Thus, the detected signal is proportional to

I a(t)g„, exp( —ia&,t)+b(t)g i, exp( —i&oqt) I'.
The preceding discussion assumes that the atom is

excited at t'=0. To find the steady-state signal from a
collection of atoms excited at a uniform rate, we replace
t in the above expression for

I
(m'I g. rI t) I' by t to a—nd

integrate over to from —~ to t. This yields

5'= —
I g-" I'L I

A i I'/(«+«*)+ I
A~ I'/(am+~2*)+A iA2'/(«+«*)+A i*A2/(«*+«))

—
I g- ~ I'L I ~iI /(«+«*)+ I

~2I'/(«+«*)+2tift2*/(ai+«')+&i*&~/(ai*+~2))
gsa'sgta'6 I Alftl /(«+«)+A2+2 /(&2+&2 )+A1B2 /(«+&2 )+A2fti («+Q2))

—
g .'g. ~I:Ai*&i/(«+«*)+A~*&i/(«+«*)+A i*&~/(«'+a2)+A~*&i/(«+«*)) (A3)

We assume that all factors having to do with the
intensity and spectral distribution of the resonance

lamp, the spectral sensitivity of the detector, polariza-
tions of incident and scattered light, experimental
geometry, etc., are contained in the matrix elements

f, , g „etc. Equation (A3), after much straight-
forward but tedious algebraic manipulation, yields the
form for the signal given by Eq. (1) of Sec. II. In Eq. (1)
we have summed over all possible values of the initial
state m and final state m', and have replaced co by 2~2
and F by 2~& to convert from units of angular frequency
to those of frequency.

APPENDIX B' ANALYSIS OP OVERLAPPING
ANTICROSSING SIGNALS

The oQ-diagonal matrix element t/, responsible for
the anticrossing phenomenon, can be determined from
the peak-to-peak derivative width of the anticrossing
signal, provided 7., the lifetime of the excited state, is
known. Since the anticrossing signals observed in the
2 'P term of Li are composite curves made up of closely

spaced hyperfine components, we must have some way
of deducing the width of an individual component from

the observed width of the composite curve.

Let us consider in detail the calculation for Li'.
Here, the anticrossing signal is proportional to

L1+(~—&oo/2)')
—'+I 1+(or+&so/2)')-', where ~0 is the

dimensionless spacing of the two hyperfine components
of the anticrossing. Since coo&1, this expression can be
binomially expanded in powers of &oo'/(1+aP) (odd
powers of coo obviously cancel in the expansion). Neglect-
ing terms of the order coo' and higher, and solving for the
derivative extrema in the usual manner, we obtain

1—3(a'—-'(op'(1 —10(u'+ 5a)4) (1+a)')-'=0.

Since the third term in the above equation is a small
correction, it is safe to substitute for co' in this term the
value —, obtained by setting ~0=0. The final result is

P=P' (oo'/P'—
where P is the peak-to-peak derivative width of an
individual hyperfine component and P' is the observed
peak-to-peak derivative width of the composite signal.
Gdp is calculable from a knowledge of n(1/r') and $. For
the widths and spacings of this experiment, the error
introduced in the above expression for P (and the
corresponding expression for Li') due to neglecting the
higher order terms in &oo is certainly less than 1'Pa.

A similar calculation for the Li' anticrossing signal,
which has three overlapping components, gives

P= P' (8/3)cop'/P', —

where coo is the spacing between adjacent components.


