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Physical. Pmperties of an 08-Center Impurity in the Tunneling
Approximation. I. Statics*
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The present work presents the static properties of an off-center monopole impurity in a host lattice of
octahedral symmetry. The energy levels of the lowest lying states were determined and classified for a model
multi-well potential in the tunneling approximation. The effects of externally applied electric fields on the
energy levels, specific heat, absorption spectrum, and induced dipole moment of the impurity are studied
in detail for the model. The effects of uniaxial stress on the absorption spectrum are also studied.

I. INTRODUCTION
'
ANY experiments' suggest that substitutional Li+

- ~ in KCl exhibits properties which are unexpected
in view of the usual harmonic approximation for such
impurities. '

Matthew, ' calculating the potential acting on a Li+
impurity in KC1, found unstable equilibrium. positions
at the lattice site and possible equilibrium sites away
from the lattice site. Later work by Dienes et al.4 con-
firmed this result. Both calculations indicate that the
effective-force constant for the Li+ at the lattice site is
negative, and thus that harmonic approximations are
not applicable to this probleIIl. HatcheI' and Wilsons
have recently extended these potential calculations to
several other point defects and host lattices. Since the
usual harmonic approximation is not applicable to these
impurities, it is necessary to have a theory which treats
the problem satisfactorily.

The present paper presents a theory applicable to
this type of impurity if the potential barriers between
potential minima are large enough to justify a tunneling
appl oxlIDatlon.

The general treatment of the impurity problem begins
with the separation of the terms in the full lattice-im-
purity Hamiltonian into three parts: the defect-lattice
Hamiltonian HL„ the impurity Hamiltonian Hz, and
term Hq coupling HI. and HI. Thus
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For simplicity, we consider only one impurity. Calculations in-
cluding impurity-impurity interactions will be discussed elsewhere.

The defect-lattice Hamiltonian HI, is easily obtained by
collecting all kinetic-energy terms of the host lattice
and all terms of the potential in the small-oscillation
approximation which are independent oi the impurity.
The terms Hr and Hc are derived from the impurity
kinetic energy T& and that part of the total potential
energy VJ.I which involves both the impurity and host
coordinates. Vl.q is expanded in the displacements of the
host ions, but not with respect to the irqpurity coordi-
nates. Thus the coef6cients in this expansion are ex-
plicit functions of the impurity coordinate.

VLr= VLr "({&(/,E)},r;,)+
L,X,a

a V({Z(/,E)},r;.,)—I,(/, E) . (1.2)
8R (/, E)

Here, {E(/,E)}indicates evaluation at the equilibrium
positions of the host-lattice ions; I (/, E') is the nth com-
ponent of the (/, E) host-lattice ion displacement.

The impurity Hamiltonian is

Hr Tr+ Vrr &0'({E(/,E——)},r; p),

and VL,1&0) is the potential due to the static defect lat-
tice. The coupling terms H~ to all desired orders are
represented by the higher order terms in the expan-
sion of Vt,l.

The emphasis of this paper will be on the. static as-
pects of the impurity problem and will involve calcula-
tions of the states and energies of HI.

The eigenstates of HI for the various possible poten-
tial wells are determined in the approximation of a
linear combination of atomic orbitals (LCAO) for the
lowest energy multiplet, A one-dimensional example will

demonstrate the method.

II. TUNNELING MODEL

A. One-Dimensional Model

The model potential in which the impurity is assumed
to move is the double-well potential

V= Vz=-,'mm'(x+x())' for x&0
= V~=-', neo'(x —xo)' for x)0,

j.009



1010 GOMEZ, HO%EN, AND KRUM HANSL

where es is the impurity mass. Linear combinations of
the complete set of eigcnfunctions a, a', a", , which
are solutions of the Schrodinger equation of a simple
harmonic oscillator (SHO) whose center is displaced in
the —x direction a distance xo (i.e., potential V~ when
the restriction x(0 is removed), and of the complete set
b, b', b", ~, which are solutions of the Schrodinger
equation of a SHO whose center is displaced in the +x
direction a distance xo, are sought as a solution to the
problem. If the overlaps of the a and b wave functions
are small enough, approximate solutions can be found
for the two lomest levels of the system in terms of
linear combinations of the ground-level wave functions
a and b. Thus the problem is reduced to solving the
secular equation

(2.2)

rl= (aI H Ib),
S= (alb).

(2.3)

Its solution gives two roots which are the energies of the
two lowest states of the system; these are

E+= (Eo+n)l&1+S)
E-= (Eo—n)/(1 —S)

&2.4)

a= c exp[(—cue/2A) (x+xo) '],
b = c exp[(—moo/2A) (x—xo)'],

(2 6)

where c is the normalization factor; thus the overlap
integral is

(2.7)S= (a I
b&= exp[—(mat/A)xo'];

Eo and q are

Eo (alHla&g+(alHla——)gg,

~= &aIHIb4+&al ~lb&. ,
(2.8)

where the subscripts of the brackets specify the region
over which the integral is carried out, i.e., ( I I )~
indicates that the integral must be carried over the re-

gionx(0;( I I )~, overtheregionx)0;and( I I )„,

Thcsc two roots arc associated with two sets of simul-
taneous equations whose solutions give the proper ad-
mixture of the a and b wave functions for the wave
functions of the two lowest levels of the system. The
normalized wave functions are

0+= (a+b)/I:2(1+S)]'"
(corresponds to energy E+), 2.5

4-= (a-b)/[2(1-S)]'"
(corresponds to energy E ) .

The wave functions a and b can be written explicitly
Eo'=QoS,

g'= QS,
(2.15)

S=exp[—(moo/A) xo'].

Qo and Q are only weakly dependent on the position
of the well minima. The strong exponential dependence
of the matrix elements on the position of the well minima

has been factored out in the form of overlap integrates.
In Appendix II it is shown that this factorization can
also be carried out in three dimensions.

From Eqs. (2.13) and (2.14), if the tunneling ap-
proximation is valid (i.e., for small S), Qo((Q and thus
Eo'«q'. Neglecting Eo' compared mith q' and S com-

pared with unity, Kqs. (2.11) simplify to

E —-'A+ '
(2.16)

L =—'Ace —g'.

over all availablc space. The above expressions are sim-
plifj.ed by using the following relationships:

&alai a&= &al r+V, I a)„—(al V, V—, la&
=-', A~ —(al V,—V, la)„ (2.9)

&al&lb&=(al 2'+V~lb&. (al V—~ V~lb—&s

=2" &al2'+ala') &a'lb& (al —Vs V~—lb&~
=-', AcoS—(al Vs—V~I b)s,

(2.10)

where P, indicates a sum over the complete set of wave
functions, a, a', a", ~ ~ . In obtaining the above rela-
tionships, use has been made of the fact that the a's form
a complete and orthogonal set of eigenfunctions of the
SHO with Hamiltonian H=T+Vg. Substituting the
results obtained above into Eo and q, the folloming ex-
pressions for the energies of the system are obtained:

E+= o»+(&al V~—V~I a&s

+& I V.-V. lb).)/(1+S),
E = ,'A +-(&aIV V,—la),

&al V.--V.I».)/(1-S) (2»)
The two integrals involved in this expression can. be
easily evaluated.

Eo' ——(al Vs —V~I a&s
=—Xc'(exp[—(mrs/A) xoo]/2(m(o/A)
—xo(o[orA/neo]' ')(1 C'([neo/A]"'xo)))

g'= &a I Vs —Vg I b)s = —«'
)&exp[—(neo/A)xo']/2(m(o/A) . (2.13)

Here, X=2mco'xo (from V~—V~ ———Xx for x)0) and

4([two/A]xo) is the error integraL
For small S (i.e., S(0.05), an asymptotic expansion

for the error integral can be used;

1—C [(mo)/A]"'xo)

exp[—(mo)/A)xo']/(neo/A)'~'xo, (2.14)
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B. Three-Dimensional Model

For the cubic symmetry of the impurity's environ-
ment, there are three multi-well potentials which are
consistent with the octahedral symmetry. These are
XFq with 6 minima in the [100]directions, XFs with
8 minima in the [1117directions, and XF~g with 12
minima in the [110]directions. See Fig. 1.

The model for each of these three cases begins with
a tractable potential described by certain parameters:
frequency co and well locations ro. These model param-
eters may be determined either by comparison with ex-
periment or by adjusting the parameters to approximate
a theoretical potential calculated from first principles.
For the calculation of the low-lying states (i.e., those
whose energies are below the theoretical barrier heights),
the model potential can be adjusted to the theoretical
one by letting them have the same minima position and
the same curvature at the bottom of the wells. The
above 6tting will yield correct results as long as their
respective barriers have comparable opacity (where
opacity is used here in the same spirit that it is used in
the WEB approximation). But if the above method
does not yield comparable opacities, as is the case in
the Matthew's potential (see Fig. 2), the conditions of
equal curvature at the well minima must be sacrificed
in order to achieve comparable opacities of the barriers.
Figure 2 illustrates the results of the two methods of
fitting the theoretical potential.

The model potential for each case XF' (I=6, 8, 12)
is the appropriate three-dimensional analog of the one-
dimensional double-well harmonic oscillator [Eq. (2.1)].
As in Eq. (2.1), to write down these potentials, it is
necessary to specify the potentials in several diRerent
regions and match the potentials together at the bound-
aries. The XY8 case yields a simple expression for the
model potential if each displaced harmonic-oscillator
potential is characterized by only one frequency (i.e.,
is isotropic).

V=-;m~'[(I~I —»)'+(Iyl —»)'+(Isl —») ] (2»)
A priori, of course, there is no reason to suppose that

the oR-center wells should be isotropic or even to re-
quire that they should have inversion symmetry about

FIG. 1.Location of
well minima and la-
beling of the local-
ized harmonic-oscil-
lator (HO) basis
states for (A} XV6,
(B) XI"„ (C) XI „.

FrG. 2. Two possible
ways for 6tting the HO
multi-well potential to a po-
tential calculated from first
principles. (A) Potential
calculated from first prin-
ciples by Matthew (Ref. 3)
for Li:KCl in the Li00j
direction. (B) Model po-
tential adjusted so that the
wells will have the same
minima position and the
same curvature at the bot-
tom of the wells. (C) Model
potential adjusted so that
the wells will have the same
minima position and their
respective barriers the same
opacity, where opacity is
used here in the same spirit
that it is used in the WKB
approximation.
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their minimum positions. Nonisotropic wells have been
studied in the form of ellipsoids of revolution consistent
with OI, symmetry for XY6 and XY8, as well as for XY»,
although for XY» a general e]lipsoid will satisfy the
symmetry conditions. Some of the ellipsoidal well's

properties are discussed in Appendix II.
The energy levels of the lowest lying multiplet are

found from the correct linear combinations of basis
states. For these ground-state splittings, the basis states
are normalized SHO ground-state wave functions~ cen-
tered at each well minimum. The labeling of the basis
states for the XY8, XY6, and XY» models are shown
in Fig. 1.The explicit form of basis state

~
a) in the XVS

model is

I o)= (m(u/ark) "' exp j—(III')/2i'I)

X[(~-»)'+ (y—») +(s—») ]) . (2.18)

The correct linear combinations of basis states for each
of these three models are easily determined by group-
theoretical methods. The wave functions for each irre-
ducible representation were used to evaluate the ener-

gies of that eigenstate. The results of this evaluation are
shown in Table I for XY8 and in Appendix I for XY6
and XY».

An interesting physical significance can be associated
with the overlap integrals {5)and the tunnel-splitting
matrix elements. For XY8, for instance, the overlap
integrals S, 5', and 5", and the tunnel-splitting matrix
elements q, p, , and v are characterized by the location of
the two basis states in each matrix element. S and q
represent overlap and tunneling along the cube edges.
S' and p, represent overlap and tunneling across the cube

(C)

' The admixture of higher excited states can be taken into ac-
count by doing a perturbation calculation if necessary, but their
contribution can be shown to be negligible as long as IIgco is greater
than the tunneling splittings.
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TABLE I. XI's energies and wave functions.

f(Atg) = $8(1+3S+3S'+S")j '»(a+b+c+d+e+ f+g+h),
4'x(T1s) = L8{1+S—S' —S")g '»f(a+b+e+ f) —(d+c+g+h) j,
fg(T1 ) = L8(1+S—S' —S")g '»f(b+c+ f+g) —(a+d+e+h) ),
fz(T1~) = L8(1+S-S' —S")j '»f(a+b+C+d) —(e+f+g+h) $,

flax(T2g) = I 8(1 —S—S'+S")g '»P(b+c+e+h) —(a+d+ f+g) g,
fxs(T2g) = L8(1 —S-S'+S")J 1»f(a+b+g+h) —(c+d +e+f) j,
pl y(T2g) =L8(1 —S —S'+S")j '»P(b+d+f+h) —(a+c+g+e) j,
f{Ai ) =I 8(1 —3$+3S'—S")j '»L(b+d+e+g) -(a+c+f+h)j

E(A 1g) = (Eo+3q+3p+v)/(1+35+3S'+S"),
F(T1~) = (Eo+g —p —v)/(1+S —S'-S"),
E (Tag) (Eo —g —p, +v) /(1 —S—S'+S"),
E(A ae) = (Eo —3g+3p —v)/(1 —3S+3S'—S"),

where a, b, c,d, e, f, g, and h are the localized basis states pictured in Fig.
1, and

s=&alb&=&blc) = ~ ~ ~

S'=(al f& =(alh& =",
S"-&alg&=&blh&=" ..
Eo =(alH ta& = &b IKIb& = ~ ~ ~,

& =&alHlb&=&blHI. &=",
p = &a I H I c& = &a I H I h)
v = &a I H I g& = &b IH lh& = ' ' '.

where H is the impurity Hamiltonian.

faces. 5"and v represent overlap and tunneling through
the cube along a body diagonal.

In Appendix II, it is shown that Ep, q, p, and v can be
written, in a form analogous to the one-dimensional
case, in terms of new parameters Ep g p and v'. In
terms of these new parameters, the energy-level expres-
sions for XFS become

E(A y p) = p App+ (Ep'+3rl'+3p'+v')/(1+3S+3S'+S"),
E(Tr„)= ,'A(u+(Ep'+o-' p' v')/(1+—S —S' S"), — —
E(T,)= ', A + (Eo' -' '+ ')/—(1 —S S'+S")—, —
E(A p„)= p AM+ (Ep' 37)'+ 3p' v')/—(1 3S+3—$' S"—) . —

(2.19)

The relative magnitudes of these matrix elements q',
p', and v' depend quite strongly upon the well separa-
tion. As will be shown in Appendix II, for our choice of
basis states, this dependence is through a factor of the
form expL —(m&o/A)xp'5, where 2xp is the separation dis-
tance between two adjacent well minima. This strong
dependence on the relative position of the wells makes
5 and g' dominant for isotropic wells. This implies that
the orbitals have their maximum amplitude along the
line joining adjacent well minima. Thus the ion may be
thought of semiclassically as shuttling around the sur-
face of the cube for XVp and XFrp (or along the edges of
a rhombohedron for XFp), rather than tunneling
through the center as would be appropriate if v' for
XF6 and XF8, and 0' for XI'12 were dominant. This
kind of motion is equivalent to a quasirotational motion
associated with rigid rotators in an octahedral field with
large barriers (see Fig. 8). The lowest level structure of
the Devonshire' molecular-rotor model coincidentally
resembles the present results.

It must be pointed out that the dominance of S and
p' which imparts a rotational nature to the impurity

A. F. Devonshire, Proc. Roy. Soc. (London) A153, 601 (1936).

tunnel-split spectrum is valid even for ellipsoidal wells,

as long as the ratio of the two frequencies describing the
harmonic potentials is less than five. But, clearly, as dis-

cussed in Appendix II, for sufficiently elliptical wells,
v' becomes dominant and the tunnel-split spectrum be-
comes identical to that associated with a translational
kind of motion.

H'= T+V+eE&„(nx+Py+ps), (3.1)

where V is the multi-well potential, Ei„is the field seen

by the impurity (not the externally applied field), e is the
charge of the impurity, and n, P, y are the direction
cosines of the field with respect to the x, y, and s axes.
We will assume that the wave functions of the tunnel-

split levels (see Appendix I) provide us with an ap-
proximate complete set to construct the solutions for
the perturbed Hamiltonian II'. Thus the problem is
reduced to the solution of a relatively small secular
equation. '

The matrix elements entering the secular equation
will be (i) the diagonal matrix elements that will be of
the form

9(» I
&'If(r) &= (0 (r) I T+v14'(»&= E(»

where f(F) is the eigenfunction of one of the ground-
state multiplet states and E(» is its associated energy;
(ii) the nonzero off-diagonal matrix elements that will

be of the form

Q (p-) I
&'IO(f'.) &

=g (1'-)
I «~-(~x+Py+vs) I a(p.)&

= expE).,(nNg+PNp+yNp)+0[S'5,
(3.3)

where P(F„) and f(F,) are odd-parity and even-parity
states, respectively, xp is the position of the well's

minima, and Xi, X2, and E3 are constants which depend
on the wave function. Notice that, to second order in the
overlap integral, the off-diagonal matrix elements are
independent of the actual shape of the potential wells

(i.e., independent of the &o's) and depend only on the
position of the well minima. This result will be valid for
both elliptical and spherical potentials as long as each
potential well is symmetric with respect to inversion
about its minimum position and as long as the tunneling
approximation is valid.

It should be pointed out that this approximation will yield
good results as long as the matrix elements between the first-excited-
state multiplet and the ground-state multiplet wave functions are
smaller than the energy difference between the multiplets. This
approximation does not impose an upper limit to the region where
the ground-state multiplet has levels increasing in energy as the
electric field increases. Upon taking the first-excited-state multiplet
into account, it is found that for suSciently high fields the levels of
the ground-state multiplet that increase in energy with increas-
ing field are forced down by levels from the first-excited-state mul-
tiplet with the appropriate symmetry.

III. ELECTRIC-FIELD EFFECTS

The Hamiltonian for the model impurity under the
inhuence of an electric held will be
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FIG. 3. Electric-field splittings for XF8 when g is the dominant tunneling parameter, with the corresponding dipole-allowed transitions
and the energy in units of a. (A) Field applied in the [100$ direction. (B) Field applied in the (110jdirection. (C) Field applied in the
L11j.j direction.

Kith the wave functions in Appendix I, the secular equations appropriate to each one of the three cases are
obtained. The secular equation for XI 8 then becomes

nt —E/6
yA
PA
nA
0
0
0
0

yA
ns —E/6

0
0
0

nA
PA
0

PA
0

ns —E/6
0

nA
0

yA
0

nA
0
0

ns —E/6
PA
yA
0
0

0
nA
0

yA
0

n, -E/S
0

PA

0
0

nA
PA

ns E/6—
0
0

0
pA
yA
0
0
0

n E/6—
nA

0
0
0
0

yA
pA
nA

n4 —E/6

=0 (3 4)

where

nt ——E(A t,)/6, ns ——E(TJ.)/6, ns E(Ts,)/6——,
ns ——E(As„)/6, A = eEIooxo/5,

and A=E(As„)—E(AJ,).
Thus the value of each matrix element is expressed in
units of the energy difference between maximum and
minimum energies in the multiplet.

The dimensionless quantities nj, n2, na, and n4 contain
all the pertinent information on the nature of the tun-
nelings, since they are determined by the relative mag-
nitudes of the energy terms q', p', v', and 0' through Eq.
(2.19). The effect that the different types of tunneling
have on the electric-field properties can be studied by
changing the relative magnitudes of the energy terms
g', p, ', v', and 0'.

The secular equation was solved and the energy eigen-
values and eigenvectors were obtained as a function of
A and as a function of the direction cosines of the electric
Geld (see Figs. 3 and 11).Electric Gelds parallel to (100),

(110), and (111) (which reduce the Os symmetry to
C4„, Cs„, and Cs„, respectively) were considered.

From the reduced symmetry group, the splittings of
levels and the electric-dipole selection rules can be
easily obtained. Figure 3 and Appendix III show the
nature of the splitting and the selection rules for a few
of the cases that were studied. As can be observed in

Fig. 3, there is a 6ne structure due to tunneling super-
imposed on the usual Stark effect. At high Geld (i.e.,
A))1), this structure becomes independent of the Geld

and depends only on the tunneling parameters; in par-
ticular, for XY8 when the electric 6eld is applied in the
$100] direction, the Gne structure is determined by the
parameter g' even in the case where the zero-field tunnel

splitting is dominated by v. Physically, this can be
understood as follows: When the energy associated with
the electric field exceeds the tunneling energy it will

effectively localize the particle in planes (a,b,c,d) and

(e,f,g,h), thus freezing out the tunneling through the
center but still allowing the impurity to tunnel freely
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1.0
A

X

0.5

1,0

(A) secular equation (3.4). The functional dependence of

the dipole moments (p), on the electric 6eld Ei„ is

shown in Fig. 5. For small A(i.e., exsEi«(A), (p), is

proportional to A, while for A&)1, (p), saturates and

the expectation values of the distance from the lattice
site (i.e., (p),/e) are a measure of the perpendicular dis-

tance from the plane in which the particle is now

localized to the center of the cube.
The (p), obey the following simple sum rule:

0.5
(3.6)

I

A
(C)

where S is the number of wave functions in the ground-

state multiplet. The thermal average of the system's

dipole moment will be

05- (p)'= (2 (p)'s "')/(2 s "'), (3.7)

FiG. 4. The square of the dipole-transition matrix elements in
units of exo for the XFs, s-dominant, and E~„~ $100j system of
»g. 3(A). (A) For transition A1 —+ A1, E—+ E, and B2~ B2.
(&) For transitions of the form Ai —+E and B2 ~E which
are forbidden in the absence of an electric-field perturbation. (C)
For transitions of the form A1 ~ E and B2~ E which are allowed
even in the absence of a field.

in the planes perpendicular to the field. In general, it is
to be expected, then, that the one structure of the levels
in the strong-6eld limit should be independent of the
tunnelings that the field freezes out and should depend
only on the tunnelings that take place in planes perpen-
dicular to the field.

The squares of the o6-diagonal matrix elements for
the dipole operator were calculated and classified into
three different types: (i) those that represent allowed

dipole transitions for Ei„=O with the electromagnetic
field 8 parallel to the static applied field Ei„[this will

progressively weaken as the applied field is increased;
see Fig. 4(A)]; (ii) those that represent allowed dipole
transitions with f J Ei„[these will be independent of
the magnitude of E&„, see Fig. 4(C)];, (iii) those that
represent transitions which are forbidden for Ei„=O
[these will increase as Ei„increases; see Fig. 4(B)].As
can be seen from Fig. 4, the sum of the square of the
off-diagonal matrix elements for the dipole operator is
independent of the perturbing field, as required by the
theorem of spectroscopic stability. "

The electric Geld will induce a quantum-mechanical
dipole moment on the system. In particular, each state
of the multiplet will have an induced dipole moment
associated with it given by

(p)'= (lp'I «I4'), (3.5)

where the lp; are the wave functions obtained from the

"J.H. Van Vleck, Theory of E/ectric and Magnetic SuscePti-
bilitites (Oxford University Press, New York, 1952), pp. 137—139.

where E; is an eigenvalue of Eq. (3.4) associated with

wave function iP, and P=1/AT. From the sum rule it
follows for the case PE,«1 (for all i) that the net
dipole of the system will be proportional to 1/T. This
result is analogous to the classical result at high tem-

peratures when the field is unable to align the dipole

associated with the displacement of the particle. For
the other extreme case, when PE;~t&)PEi,

(p)'= (p)i (3.g)

where "1"refers to the lowest energy state in the mul-

tiplet. Thus, contrary to the classical case, (P)r becomes
temperature-independent, showing the usual dis-

crepancy between classical and QM systems at low

temperatures.
For the strong-field limit A)&1, the E;~A and the

Boltzmann factor is dominated by the electric-field en-

ergy, while for weak fields the Boltzmann factor is

2.0

1.0

0
0

Fio. 5. The absolute value of the induced dipole moments as-
sociated with the states of the multiplet, in units of exo, as a func-
tion of the electric field, for the XY8 system with the tunneling
parameter q&)p, ,v. (A) E~,„.

~
L100j, for all states. (8) E~„~~L110j,

for states that are split by the field. (C) E&„~~L111j,for states that
show relatively weak splitting with respect to the field. (C')
E~„IIL111j,for states that show relatively 'strong splitting with
respect to the field.
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2.5—

2.P-

O
1,5-

between two levels e, and e~. In general, either or both
of the levels may be degenerate in the absence of the
stress, and degenerate perturbation theory must be con-
sidered. Let IC;) be the degenerate states for r., and

I
4', ') the perturbed states; similarly, lf ) unperturbed

and If ) perturbed for the eq level. The first moment in
the presence of a stress is obtained using the following
function":

0.5

p l~~ I I

O l 2 5 4
k T/d

I I I

7 8 9 lo

FIG. 6. The speci6c heat C of the XFS under the influence of an
electric 6eld in units of k (Boltzmann's constant), as a function of
kT/A. For the following electric fields jA=E~„(ex0)/6): (A)
A =0.0; (B)A =2,5 in the L100j direction; (C) A =2.5 in the L1101
direction; (D) A =2.5 in the $111jdirection.

dominated by the tunneling-energy parameters. Never-
theless, because of the dependence of the (p) s on E,.„
at high temperature both the strong- and weak-field
limits go as Ei„/T (see Appendix III for the details of
the &P)r's for the different cases).

IV. SPECIFIC HEAT

The low-lying levels into which the ground level of
the system is split by the tunneling will give rise to a
Schottky anomaly in the system's specific heat. Since
this anomalous specific heat will be proportional to the
number of impurities in the crystal and its maximum
value will occur when kT is of the o~der of 8 (the average
energy spacing between levels in the multiplet), the ob-
servability of the anomaly will depend on the relative
magnitude of th, e anomalous specihc heat for a given im-

purity concentration and the lattice T' specific heat at
temperature kT= 8. The effect that an electric 6eld has
on the specific-heat anomaly is shown in Fig. 6. The ap-
pearance of two peaks in the specific heat when the
field is in the [100] and [110]directions is due to the
tunneling fine structure that is superimposed on the
Stark splitting (see Fig. 3).The increase in the maximum
of the speci6c heat as the field goes from the [100] to
the [111]direction is due mainly to the term

E„,d&p)'/dT

associated with the dipole energy.

where D is the dipole operator and the sum is restricted
to the two levels under consideration. The first moment
&~) is

i
(&)=— « f(&) &

~ (5.2)

A= de f(e).

If the impurity is acted upon by a stress perturbation
II', then the change of the energies in erst-order-
degenerate perturbation theory will be Q, 'IH'IP )
=he;. If Ae;& e, then an expression for the change in
the first moment of the absorption due to the perturba-
tion can be written as a temperature-independent factor
&he') times a Boltzmann factor.

&Ae) = &he') =

The temperature-independent shift &Ae') can be cal-
culated in 6rst-order —degenerate perturbation theory
in terms of the unperturbed states IC',) and If,) if
unitary transformations U and V can be found so that

V. STRESS FIELD

The application of a uniaxial stress to this type of
impurity provides a useful tool for probing its structure.
From group-theoretic methods, the splittings and al-
lowed electric dipole transitions can be deduced for
special symmetries. These results are presented for XI'8
in Fig. 7 and for XI 6 in Appendix IV.

A convenient way to summarize the response of this
model to uniaxial stress is to calculate the change in the
Grst moment of the absorption spectrum for a transition

For uniaxial stress applied in an arbitrary direction,
a determination of U and V requires a solution of the
usual eigenvalue problem associated with degenerate
perturbation theory. However, for certain special sym-
metry axes it is possible to determine the U and V
matrices from symmetry considerations alone.

The expression for &Ae') in terms of the U and V

"C. H. Henry, S. E. Schnatterly, and C, P, Slichter, Phys. Rev.
Letters 13, 1% (1964).
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Fro. 7. Group-theoretic classi6cation and allowed electric-dipole transitions for the stress-induced sphttin s of the XF t th
the stress in the following directions: (A) stress I~L100j, (8) stress ~(p10j, (C) stress

) L111j.

matrices is

H'= P h„(r )s„(r). (5 6)

The factors h„(I'") are linear combinations of first de-

rivatives of the potential coupling the impurity to the
host lattice with the appropriate symmetry. These fac-
tors are tabulated in Appendix IV. If n, p, and y are the
direction cosines of the uniaxial stress —P~~ with respect
to the cube's principal axes, then the factors e„(I'")may
be written

1
(~e') =—2 l'-I"-*~s'I'.'*(((') ID I 4' )

imlnyq

x&c.lD'lt, &(C.IH'I C.&

1
U-, U-*U,*U.'*(C'

I
D'l 0-&

g st~npq

x(it. lDI c &(4.1H'l4, &. (5.5)

The further reduction of the terms in Eq. (5.5) proceeds
from an examination of the symmetry properties of the
stress Hamiltonian H'.

The stress Hamiltonian can be written for an arbi-
trary uniaxial stress —P&& in terms of irreducible repre-
sentations F" of the OI, group. Thus

where —P is the magnitude of the stress, e.g., —P,„
crPP, an—d St), Sts, and S44 are stiffness coef(icients

of the lattice adjacent to the impurity.
The expansion of H' in terms of definite irreducible

representations of the OI, group allows a reduction of Eq.
(5.5) to a similar expansion, since the product space of
I C„) I C,) can be expanded in elements of each of the
same irreducible representations. The simpliication
arises from the well-known symmetry selection rule
that Q (I' t) I

h(1's)
I
f(l's) & vanishes unless I"s is contained

in F~)& I'3. These considerations give rise to an expan-
sion of (C„IH'I C,) in terms of the irreducible elements
Of OI(,.

(5 (0

Here the factors H„(1'")are properly symmetrized linear
combinations of matrix elements of h„(l'") multiplied
by the appropriate e„(l'"), and the a„(l'") are constant
matrices. Fo'r reference, the H„(1'") and the a„(l'") are
tabulated in Appendix IV for the T~„state. An expan-
sion of (d e') in terms of the irreducible representations
of Os is accomplished by substituting Eq. (5.8) into Eq.
(5.5).

(g ')= P H ( )(I )g ( )(I.)

e(A ts) = —(Stt+2sts)E,
&,(z,)= —(2& —Ns —p )(s„—s„)z,
s,(z,)= —( —p )(s„—s„)z,

et(Tss) = S44PyJ', —
es(Tsg) = S44ayE, —
es(Tss) =—S44nPP,

(5 'I)

where

and

1
(s) (pv)lf (s) (pv) (5 9)

Z„&.)(r )=g (VtDtDy), ,(yt, &.)(I')y) ..

&,'s)(I'") =Q (UtDDtU);;(Utu &»(I'")U)"



H(Aig) =A(a)s(Aig),
H (&,)=&() (&.),
Hs(~s) =&s(o)ss(~g),

H;(Ts,)=C;(u)e;(Ts,), s=1, 2, 3

(5.10)

where A 8~, 82, and C; refer to certain matrix elements
of Q (I') h(i")

I f(1')&. A major result of this section will

Here (a) and (b) denote the two levels being considered.
and D is that submatrix of the dipole matrix which con-
nects the C and P states

For all of the levels of this model, the H„t &(I"")can be
reduced to

be to quote the speci6c matrix elements for the allowed
transitions of the ground-state tunneling multiplets and
their order of magnitude.

The shift &Ae'& is directly calculable from the tunnel-
ing model if the V and U matrices are known. It must
be emphasized again that these matrices can only be
determined with the help of symmetry alone in special
directions:

I 100], L110], and
I 111].To obtain these

matrices for arbitrary directions, the secular equation
of degenerate perturbation theory must be solved. "In
quoting the results for the special symmetry directions,
it is convenient to quote the slope Bhe'/—BP. For the
3q, ~ T~„ transition,

I 100] stress: rr=1, P=O, y=0
—Be/BP =A (Sit+25»)+Bi(2rr"—y"—P")(Sii—Sit),

I 010] stress: rr=0, P=1, y=0
—Be/BP= A (Sit+25»)+Bi(2P"—cr"—y")(5»—5„),

I 001] stress: n=0, P=O, y=1
—Be/BP =A (5»+25»)+Bi(2y"—cr"—P")(Sii—5»),

L110]stress: a=P=1/V2, y=0
B /BP=A—(S +2S ) ,'B,(2y" ——" P")(—5„—5„)+C '—P'5„,

L101]stress: n=1/V2, P=O, y=1/V2
Be/BP =A (5»+25») —s&i(2P '—rr '—'y ')(Sll—Sis)+«'7'544,

I 011]stress: rr=0, P=7=1/N
Be/—BP A(=5»+25») sf'—i(2~" P"—V"—)(Sii 5»—)+Cd'V'544,

L111]stress: a=P=y=1/V3
Be/BP =A—(Sit+25»)+ as C544(n'P'+P'y'+n'y'),

(5.11)

A=A(T „)—A(A, )=&i(,(T „)lk(A,)lg, (T,„))—&$(A„)lh(A„)ly(A„)&,
fbi=&i(Ti-) =8"(Ti-)IIii(~s) I4.(Ti-)&,
C= C(Ti-) = Q.(Ti-) I

I s(Tss) I4"(Ti-)),

where rr', P', and y' are the direction cosines of the electromagnetic polarization vector with respect to the principal
axes of the cube. All of the other transitions, with exceptions to be noted in Appendix IV, yield the same expressions
for the slope Be/BE, but wi—th different values for the coefficients A, 8, and C. The explicit equations for the
coefficients 3, 8, and C are quoted in Appendix IV. The various coe%cients 3, 8, and C can be calculated explicitly
from the model if the interaction between the host lattice and the impurity is known.

For the tunneling model which has been discussed in this paper, the coefficients I A (I'i)—A (I's)], 8, and C can
be shown to be of order S I 0(5)], where 5 is the overlap integral between the localized basis states.

It is relatively easy to see why A(1'i) —A(I' s) is 0(S); for example, for XI's, the Ai, —+ Ti„ transition is

A(Ai. ) =&4(Ai.) lh(Ai. ) I4(Ai.))=sE&olh(Ai. ) Io&+" +&~lb(Ai. ) II &]+0(5),
A(Ti-)=&4.(Ti.) I&(Ats) 14"(Ti-)&=sC&ol js(Ats) Io&+" +&I Il (Ai.) II &]+0(5).

(5.12)

Thus A(Ti )—A(Ai, )=0(S).The same argument carries through for the other transitions.
Either of the 8 coeKcients can be written as

&=(1/24)l &olhs(&.) I~&+&1 IIs(~.) I»+&cll s(~.) Ic&+«Ihs(~s) Id)+&elis(&.) Ie&

+&flhs«. ) lf&+&glhs(&. ) lg&+&I Ihs(~.) II &]+0(5) (5.»)
»&his point is not emphasized in a treatment of this stress problem in another context by %'. Gebhardt and K. Maier I phys.

Status Solidi 8, 303 (1965)g. That the dependence oi (4e'} on u, p, and p for arbitrary stress directions is quite complicated, away frotn
the "special" directions, can be easily seen by solving the secular equation for the E~ levels of the XI"6 model, a very tractable
problem.
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Now consider a rotation U, by —,'pr about the s axis, such that a —+ b —p c —+ d —1 a, e —p f—p g
—+ h —+e. For this

transformation,

Then, for example,
UIIp(Eg) UP = —hp(Eg) . (5.14)

(u [ hp(Eg) ) a& = (Ua ( Uh2(E, ) UP
[ Ua}= —

&b t hp(E, ) ~
fp&,

and the leading terms in 8 vanish pairwise, so that B=O(5).
A similar argument shows that the C coeflicients are also 0(5). For example, consider C(TI„) of XFo,.

C= &4*(TI-) I
I o(2'pg) 14 g(TI-) &

=
o [&f I &o(Tpg) I f»+ &f1 ho(Tog) I f&+ && I ho(T'pg)

I
I &+&d Il o(2'pg)

I d&

—&ol &o(2'pg)
I ~&—&glho(2'pg) le&

—(albo(2"pg) I a&
—&~II I(2'pg) I ~&]+0(5) (5.16)

Considering the same rotation as in the previous
argument we note that now Uho(Ppg)UP=&o(2'pg) and
thus

=(biho(Tpg) [b&, (5.17)

and similarly for the other terms. Thus C(TI„)=0(S).
An identical argument may be applied to the other C's.

For such tunneling models, the response of the 6rst
moment of the absorption is 0(5). This means that for
an impurity in which the potential is determined by
Coulomb interactions, polarization eRects, dipole-dipole
interactions, and repulsive interactions with its neigh-

bors, the response of the system to uniaxial stress will

be relatively small.
While the response of this impurity to electric 6elds

depends only upon xo (to first order in 5), the stress re-

sponse depends on ~ and xo and is much more sensitive
to the precise values of the well parameters. Because of
this, numerical values of A, 8, and C for some physical
model will not be given here.

VI. CONCLUSIONS

The tunneling multi-we/1 model discussed in the text
as an appropriate model for describing the physical
properties of an oR-center impurity has the following

features:

(i) The ground state in the absence of tunneling splits
into a multiplet when tunneling is allowed. The general
features of this multiplet are quite independent of the
shape of the wells, while the relative values of the energy
spacings between levels depends strongly on the relative
values of the energy barriers between wells.

(ii) When an electric-field perturbation is applied to
the impurity, a Stark-type splitting of the multiplet will

result with a fine structure superimposed on it. Only
the "6ne structure" will reQect the tunneling structure.

(ill) Tlic tllclIilal average of tllc systcI11 s dipole II10-

ment will be proportional to E~ (ego)/6 for weak fields

[i.e., (2 =EI„(ego)/A)«1] and will sa,turate for strong
fields (i.e., A))1).

(iv) The specific heat of the tunneling system under

the inQuence of an electric 6eld will show a multilevel

Schottky anomaly with up to two maxima in its
structure.

(v) The erst nonzero term in the stress-induced
splitting will be proportional to the overlap integral S.
Thus the eRect o& stress on the tunneling system will be
relatively weak, since 5 is a small number for a tunneling
systelTl.
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APPENDIX I:ENERGIES AND WAVE FUNCTIONS
FOR XF6 AND XFI2

The location of the well minima and localized basis
states for XFo is shown in Fig. 1(A). The wave functions
and energies for this model are listed below.

XF6 Wave Functions and Energies

$(AI,)= [6(1+4S+S')] '~'(a+fp+c+d+e+ f),
4"(2"I-)= [2(1—5')] "'(o—~),

f.(2"I-)= L2(1—5')?"'(f—d),

0"(2"I-)= [2(1—5')] "'(e—f),
fi(Eg) = [12(1—2S+5')] '~'[a+b+c+d —2(e+f)],
Pp(E,)= [4(1—25+5')] "'(a—f+c—d),

E(~ ig) = (Eo+4n+~)/(1+45+5'),
E(TI )= (Eo p)/(1 S )

E(E,)= (Eo—2@+p)/(1 —25+5'),
where

Eo=&ol&lo&=&fl&lf&= ",
~= &ol&lb&=&ol&i d&= ",
I =&olrfl~&=&al&lf&=",

5'= &ol~&= (bid&=

The location and labeling of the localized, basis states
for the XYIp model is shown in Fig. 1(C). The wave
functions and energies are listed below.
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&~a2 Wave Functions and, Energies

P(A ts) = [12(1+4S+25'+4S"+5"')]'~'(a+b+c+d+e+ f+g+h+h+l+m+n),
il t(E,)= [24(1 2S—+25'—25"+5'")] 'I'[a+b+c+d+n+h+l+m 2(e—+f+g+h)],
fs(E,)= [8(1 25—+2S' 25—"+5"')] '~'[(a+b+c+d) (n—+0+i+m)],

Pt(Tt„)=L8(1+25—25"—5"')]-'"[(a+b+k+n) —(c+d+l+ m)],
ll s(Tt )= [8(1+25—25"—5'")] '"[(a+d+e+h) —(b+c+f+g)],
it, (T,.)= [8(1+25—25"—5"')]- ~ L(g+h+ + )—(.+f+h+i)]
Pt(Tss) = [4(1—25'+5'")] "'(a+c—b—d),

A(T")= [4(1 »'—+5")] "'(h+f e —g)—
P,(T„)= [4(1—25'+ 5"')]-'~s(n+l—m —h)

ib, (Ts„)= [8(1—25+25"—5"')] 'i'[(e+ f+n+ m) —(h+ g+ h+ l)]
il,(T,.)= [8(1 »+»—" 5"')]—"'[(b+c+e+» (d+a+—g+f»,
i/3(Ts„) = [8(1—25+25"—5"')] "'[(c+d+n+ h) —(b+a+m+ l)],
E(~,)= (Eo+4n+2i+4 + )/(1+45+25'+45"+5'"),
E(Es)= (Es 2rt+2ir, —2v+rr)/—(1 25+ 25'—25"+5"—'),

E(Tt„)= (Es+2ri —2v —o)/(1+25 —2S"—S"'),
E(Tsu) = (Eo 28+ r—r)/(1 25'+—5'"),
E(T..}= (E,—2q+2v —o)/(1 —25+25"—5'"),

~= &a[~In&= &a[ ~lh&=. ",
n= (a[8[b)= &a [8[d) = .

=&a[&lg&=&a[&lf)= "..=&a[~le&=&b[~[d&= .
,

S=(a[n)=(a[k)=
5'=&alb)=(aid&= ".,

5"'=&a I c)= &b

APPENDIX II: APPROXIMAT~ EXPRESSIONS OF THE TUHHELIÃG MULTIPLET
ENERGIES FOR SPECIAL CASES

The parameters entering the expressions for the energies in XF8 have the explicit, form"

Es=&al&la& =Z &a[T+V~la&~=&a[T+V~la)-+&'&a[V~ —V~la&~

—-'»+3&a
I Ve—V~ [a&e+O(5') —',A~+3Es',

n= &al&lb&. =Z &al T+ V~lb&~=(& &al T+ V~I a'&„&a'Ib&„+2 &a[ V~ V~ lb)~)—
Or

¹

—',A(oS+ &a [ Ve—Vg [ b)e+O(Ss) ~-', AroS+ ri',

p=(al&lc) =2 &al T+Vsrlc)~= &2 &al T+V&la'& &a'Ic)„+& &a[VN
~t

¹

-', A(y5'+(a[ Ve—Vg l c)e+O(Ss) st Ar5'+On',.=(a[&[g&„=Z (al T+ V~I g&=(Z &a[ T+ V~I a').&a'I g&.+2 (al V~—V~ I g&~
¹

~-,'AceS"+(a l Vg —Vg
l g)a+0(S') -,'~ASS+v', (A2. 1)

1r The snhseript & on the matrix elements (a[&[a)~ denotes a limitation on the range of integration to that region associated
~ith the localized well e. This is the three-dimensional generalization of the notation in Eqs. (2.8), (2.9), and (2,10).
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where

))'= QS,
I Q/SI

ffSff

s=(aI b), s'=(Ir,
I c), and s"=(I)lg).

(A2.2)

For spherical wells, we have

where P, indicates the sum over the complete set of
wave functions, a, a', a", . , and P))r. indicates the sum
over all wells except well Vz and, where only the two
largest matrix elements in the above expressions have
been kept. The terms neglected are at least of order S'.

The parameters g', p, ', and v' are alway, ys negative
quantities. They can always be expressed in terms of the
overlap integrals, in a fashion similar to the one-
dimensional case, as

Eo'= QoS,

Spherical Sells

E,(2)

r,„(z)
A

g,(i)

~*2l~l

4,„(l)
A~T2g(3

T,„g}
Ajg(l)

~=2l~l

XYz

XYa

E,)2),Tp„)s)

T„(a)

l Tj.(»
Aig(l)

a=2)& (

XYI2

Highly Elliptical Wells

Tj„(3)

Al

Ajg(l) E~(2)'

~=2lf'I

42)l), TI„Q)

4),(l), T2)3)

T~„(5),Tl„(3)

"
T,P),E,(2),A, )()

Fzo. 8. Ground-
state tunnel split
multiplet, both in
the spherical and
highly elliptical well
limit. For the XF(),
XI'6, and XY1g
models.

S'=S', S"=S',Q, 0.1Q, Q'&Q, Q"(Q.

For the tunneling approximation to be valid, S(0.1;
thus

The expression for the four energy levels reduces to

E(Atg) = t2fto) —3
I
r)'I,

E(&t-) 2&~=

E(T„)= ,'o)+
I
)I'I, -

E(a,„)=-', f~+3I &'I,

(A2.3)

while for potentials which are ellipsoids of revolution
with their selnimajor axis oriented along the radial di-

S"))S))S',Qe~0.1Q, Q"& Q~) Q',

and thus v')&g'))p, ', making the expression for the en-
ergy levels reduce to

E(&tg) =—e'A(o)t+2o)) —I) 'I,
E(2't )= e&(~t+2~)+ I~'I,
E(&2r) =-,'A(o)t+2M) —I) 'I,
E(&2.)=-;A(o&+2 )+I)'I.

(A2.4)

It is worth mentioning that, although at some point
between the two extreme limits of highly ellipsoidal and
spherical wells (actually o&/o)t 7) )'~rj', 1)' always re-

rection and a ratio of maximum frequency to minimum
frequency of o)/o)t~40, we have
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F&G. 9. Electric-field splittings for XI'6, when g is the dominant tunneling parameter, with the corresponding allowed dipole transi-
tions and the energy in units of A. (A) Field applied in the 5100) direction. (8) Field applied in the I 110j direction. (C) Field applied
in the t 1117 direction.



TUNNELI NG APP ROXI MATION

mains smaller than g' and never helps shape the energy
configuration.

The models XI 6 and XI'~2 yield similar results and
we will only quote them.

For spherical wells XI'6,
S'=S' Q~01Q Q)~e'

where S=(aI b), S = (oI o), Eo'=Qo=QoS, rl'=QS, and
p, '=Q'S'. Therefore, ri'))p' and the expressions for the
energies become

E(A„)=-;W—4I ~'I,
E(Tt„)=-', Ace,

E(Eo)=o&~+2 I n'I,

while for highly ellipsoidal wells we get

E(To,)= -', Ao),

E(E,)=-,'Wy2I &'I,

E(To )=-,'Aco+2I tl'I,

(A2. /)

while for highly elHpsoidal wells we get

S"'))S))S'))S",Q 0.1Q, Q"'& Q,Q",Q'.

Thus 0'»q »p, »v and thc energies become

Therefore q'»p, '»v'»0' and the expressions for the en-
ergies become

E(A„)=-,'w —4I &'I,

E(Tt.)= —,'Acv —2
I v'I,

S'))S, Q~0.1Q, Q'&Q,

so that p,'»q' and the energies become

E(A„)=-,'A(~, +2~)—Ii 'I,
E(Tt-) = o&(~t+2~)+ I

~'I

E(Eo)=—,'io(out+ 2ro) —I
p'

I
.

(A2.6)

E(A t,) =-'ok(oot+2oo) —
I
o'I,

E(Tt„)=—o'A(rot+2oo)+
I
o'I,

E(T„)=-,'~(,+2 )- I. I,
E(Eo)=-o'k(oot+2ro) —

I
o'I,

E(To„)=-'oh(ro, +2co)+ I
o'I .

(A2.8)

For spherical wells XF~2 we have

8'=52, 8"=83, 5'"=54,
Q-0.1Q, e&e, e&e",e&e"',

E.=e~, .=es, .'=e's', '=Q"s", -'=e'"s"'

See Fig. 8 for the different types of tunneling multi-
plets discussed here.

APPENDIX III: ELECTRIC FIELD

The held splittings can be calculated for XI'6 in the
same manner that they were calculated for XF8 from
the following secular equation:

~,—E/a nA/V3
nA/v3 ooo E/6—
pA/v3 0
7A/vS

0 nA/Q6
0 nA/42

pA/V3
0

eo E/6—
0

PA/g6—pA/v2

7A/vS
0
0

ooo—E/6
-2'/g6

0

nA/+6
pA/V'6

—2~A/g6
ooo—E/6

0

0
nA/V2
—PA/v2

0
0

No —E/6

,=E(A„)y/A, .=E(T.)l/~,

~,=E(E,)/~, &=E(E,)—E(A .),
and all other symbols have the same meaning as in Eq.
(3.3). Figure 9 shows, for XFo, the resulting field split-
ting when the held is in each one of the three symmetry
directions, and the corresponding dipole selection rules.
Figures 10 and 11 show the eRect that different values
of the n's (i.e., different relative values of the tunneling
parameter) have on the f'teld splitting for the XFo, XFo
systems. As can be seen from the hgures, at high Gelds

(i.e., in the region where the splitting depends linearly
on the iield) the Stark effect is independent of the I's,
while the superimposed hne structure depends on the
8 S.

The thermal average of the dipole moment (pp for

YAsrz II. Values of (P)~jex0 at saturation for XF6 and XFg.

Field direction t'100) L110)

XF'6
XVs

the three symmetry directions of the electric Geld is
shown in Figs. j.2 and I3 as a function of the applied
6eld with IoT=D. As discussed in Sec. III, (pp is pro-
portional to Ei„in the wreak-field region and saturates
at strong Gelds to a value which is dependent only on
the geometry of the well minima. Table II gives the
appropriate geometric factors for XF6 and XI'8.

Since, ss can be seen from Figs. 14 and 15, (PP is in-
dependent of the oo's (i.e., independent of the tunneling
parameters) in the regions of weak and strong fields, it
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Fio. 12. Thermal average of the XFS system's dipole moment
(P)~ in units of exo with the tunneling parameter g&&p, v, for a tem-
perature kT= 6 (where k is Boltzmann's constant) as a function of
the a plied 6eld. (A) Field in the L100$ direction. (8) FieM in the
[110 direction. (C) Field in the [111)direction.
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FIG. 15. Thermal average of the XI 6 system's dipole moment
(p)r in units of sso as a function of a Geld applied in the[100)
direction, at a temperature kT= 6 (where k is Boltzmann's con-
stant). For the following relative values of the tunneling param-
eters: (A) q»p, (B) q=s»p, , (C) s»g, p,.
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Fxo. 13. Thermal average of the XI'6 system's dipole moment
(p) in units of exo with the tunneling parameter q»p, , for a tem-
perature kT= 6 (where k is Boltzmann's constant) as a function of
the applied field. (A) Field in the [100jdirection. (8) Field in the
[110]direction. (C) Field in the [111]direction.
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Fio. 14, Thermal average of the XI'8 system's dipole moment
(P) in units of exo as a function of a held applied in the L100j
direction, at a temperature kT=A (where k is Boltzmann's con-
stant). For the following relative values of the tunneHng param-
eters: (A} p»p, ,p-, (B)g=p»p, (C)p»g, p.
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FIG. 16.The speci6c heat C of the XI"6system under the influence
of an electric 6eld in units of k (Boltzmann's constant), as a function
of kT/A. For the following electric fields LA =Bi„(exo}/hj: (A)
A =0 0; (8) A = 5 0 in the [100]direction; (C) A = 5 0 in the [110)
direction; (D) A =5.0 in the [111$direction.

@rill be possible with the help of Table II to obtain xo
in a form independent of the tunneling parameters g, .p, ,
v„and r by experimentally applying a saturating electric
Beld to the impurity. Once xo has been obtained, Ei„
can be obtained in terms of the applied field by making
measurements i' the weak-field region.

Figure 16 shows the 6eld-dependent specilc-heat
anomaly for the XI"6 system. The features are similar
to the XP8 discussed in Sec. II.

APPENDIX IV: STRESS FIELD

The group-theoretic classi6cation of the stress-split
levels and the selection rules for allowed electric-dipole
transitions for the XV6 model are shown in Fig. 17 for
special symmetry directions.

The irreducible elements of the perturbation h„(i'")
are listed below:

( 8 8 8
h(Atg)=-'s Q~ x, +y, +s, V,'

'~.& ax; ay; as;

8 8)
hr(&su)=s Zl y. +s.

0 c)sr

8 8 8)
ht(&,)=e Zl ».'

'~el as; ax; ay;i

f 8 8)
hs(T„)=-', P x, +s, ~V,'

'~a& as; ax,i

8 cI)
hs(F.,)=-', P x, —y, ~y,

c)x; ay;i

8 8)
h(~, )=-.'Z y, +,

'wo c)g; c)yj
(A4.1)
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FxG. 17. Group-theoretic classigca-
tion and allowed electric-dipole transi-
tions for the stress-induced splittings
of the XI'6 system, with the stress in
the following directions: (A) stress
i
[100j; (B) stress ~([110); (C) stress
[111j.

where the sums are over the lattice equilibrium sites and V is the impurity multi-well potential expressed now as
an explicit function of all its neighbor coordinates.

The form of the elements in the expansion of Q„lH'lg, ) for the Tt„state are, for both the XFs and XI's,

641 If'l 4') =r. &.(1'")( .(1'"))-,

&(A t.)= l [&4.1h(A t.)14*)+Q. Ih(A r.) I il.&+Q. Ih(A r.)14.&]e(A .),
II (E.) = i[28"I

I (E.) I f.&
—

&il" I
h (E.) I il.&

—641 @ (E.)14.&]e (E.)
&s(E.)=k[9.I he(Eg) I if.)—&Ww I

I s(Es) los&]ss(E.&,

+r(Ts )=8"Iht(Ts. ) I il'*&st(Ts )

&s(Ts.)= &0"Ihs(Ts.)14*)es(Ts.)

&s(Ts.)= &O. lhs(Ts. ) I O.)es(Ts.)

j. 0 0 0 0 0 0
a(At, )= 0 1 0, at(E, )= 0 —1 0, as(E,) = 0 —1 0

0 0 1 0 0 2 0 0 0

(A4.2)

0 0 0 0 0
at(Tsg) = 0 0 1, as(Tss) = 0 0 0

0 1 0 1 0 0

0 1 0
as(Tss) = 1 0 0

0 0 0

(A4.4)

The A], —+ T]„transition for XY6 yields the same result as XFS. The T]„—+ 8, transition for XY6 yields:

A =A(E.)—A(Tt-) = &A(Eg) lh(Ars) I A(E.)&
—&4.(Tr-) II (A r.) I 4*(Tt-)&,

f1=f1(E,)—&(Tt-) = 8 t(E,) lht(E, ) IA(E,)&
—Q*(Tt.) I &t(E.) I~I*(Tt.)&, (A4.5)

C=+-,'C(T,„)=+-,'Q, (T,.) I
h (T .) 14.(T .))

The coefficients A, 13, and C for the other transitions are as follows. Tt„~Ts,(XFs):

A =A(Tsg) —A(Tr.)=Q„.(Tsg) I h(Arg) lg, g(Tsg)) —(Pg(Tr.) I
Is(Atg) I g, (Tt.)),

21= —k[&(Tsg) —&(Tr-)]= [9"uII t(Eg) If.s&
—9"Iht(Eg)10.)](—s) (A4.3)

C= —rs[C(T„)—C(T,„&]=—
r s[Q„.lh, (T„)1~1.,&

—&il, I as(T„)14„&].

For the Ts, ~ As„ transition, XFs, the equations for the [100]and [001]directions must be interchanged as well
as interchanging the equations for the [110]and [011]directions.

A =A(As-) —A(Tsg) = Q(As. ) lf (At.)14(As.)&—8"(Tsg) lf (Ats)14".(Tsg)&,

&= —&(Ts.)= —(~I".(Ts.) I ht(E.)14.s(Tsg))
= — ( sg)= —&its.( s.)l s( s.)14-( s.)).


