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{Received 15 August 1966)

It is shown that binding of electrons in the electric dipole 6eld of polar molecules cannot possibly occur, if
the molecules have an electric dipole moment smaller than the critical value Do ——1.63)&10 ' esu cm, ir-
respective of the size of the dipole. This result casts doubts on a proposed mechanism of electron scattering
by polar molecules, namely, electron capture with rotational excitation of the molecule.

I. INTRODUCTION

HE scattering of low-energy electrons by molecules
has been shown experimentally to present peculiar

features when the molecules possess a permanent
electric dipole moment. ' The interaction between the
charge of the electron and the dipole moment of the
molecule gives rise to a long-distance force which
signihcantly modifies the scattering process. The cross
section for this process has been calculated for the case
of a point-dipole scatterer by Altshuler' in the erst
Born approximation, and exactly by Mittleman and
von Holdt. 3

However, the experimental results for some polar
molecules do not agree with the theory. Turner4 has
tried to explain the discrepancy by taking into account
the possibility of temporary capture of the electron
with rotational excitation of the molecule. This mech-
anism can lead to the desired increase of the theoretical
cross section, at least for molecules with a high enough
dipole moment and a sufFiciently low moment of inertia.

But the question of the possibility of electron capture
has remained unsettled up to now. Indeed, one has to
examine whether or not a dipole field of arbitrary
strength can possess bound states. We will show that

*This work was supported in part by the U. S. Atomic Energy
Commission.
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s S. Altshuler, Phys. Rev. 107, 114 (1957).
'M. H. Mittleman and R. E. von Holdt, Phys. Rev. 140,

A726 (1965).
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only polar molecules with a dipole moment higher
than a certain critical value can capture electrons.
We first prove this result in the case of 'a point dipole.
(Mittleman and von Holdt' quoted it without proof. )
But this is a rather unphysical case in that the bound
states, when they exist, have an infinite binding energy.
We then show that exactly the same critical moment
exists in the physical situation of a 6nite dipole, irrespec-
tive of the size of the dipole. Finally, we comment on the
physical implications of this result which will be seen to
cast doubt on the validity of Turner's explanation.

Let us dehne a "dimensionless dipole moment" 0, '.

2peD D
— -=2

h' ceo
or D=cs&(1.27)(10 "esu cm, (2)

where uo is the Bohr radius.
Equation (1) is separable in spherical coordinates.

Choosing the s axis along the dipole moment, and
putting

1
+(r,8, q )=-R(r) O~(8)c'""

II. THE POINT-DIPOLE CASE

Let e and jM stand for the charge and mass of the
electron, respectively, and D for the dipole moment of
the molecule, supposed to be point-like. The Schrodinger
equation for the wave function of the electron is written

( l't' 9 r
~

—s+s —e)v=0.
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where we have already taken advantage of the rota-
tion symmetry around the z axis, we obtain the two
equations

d~ C
+—2yZ)X=0,

t&

1 d d) m'—sm8—~+ +n cos8—C 0~=0.
slI18 N d8) SlI1 8

C is the separation constant, and m an integer.
The radial equation (4), which determines the energy

levels once C has been computed from Eq. (5), is the
same as the one for a central potential Cjr' Th. is
singular potential is known to have no bound states
at all if C& ——„,and bound states with in6nite negative
energies if C& —~.' In the latter case, this phenomenon
of "fall towards the center" is due to the strong sin-
gularity of the potential and will not occur for a 6nite
dipole. The problem is thus reduced to seeing whether
Eq. (5) allows for separation constants C(—~~. Hut
in Eq. (5), C appears as the eigenvalue of an operator
E which is the sum af the ordinary square of the
angular momentum I," and of the operator u cos8:

E=L'+n cos8.

Both U and ncos8 are operators which are bounded
from below, by 0 and —o., respectively, so that E
itself is certainly bounded from below. Its lowest
eigenvalue Cp thus obeys

According to a standard method, ' the set of all these
recursion relations can be transformed into a continued
fraction expansion for the eigenvalue C in terms of
itself and the parameter n. In the present case we obtain

3(2—C) 5(6—C)

(g)
(2k+1)Lk(k+1)—Cj

This is an implicit equation determining C as a function
of o.. It has a discrete inhnity of solutions which we
already know for o.=0:

C)(n=0) =l(1+1), l=0, 1, 2

The various functions C~(n) can be obtained from
Eq. (8) as power expansions in n', putting

Ci(n) =E(l+1)+cg'n'+cg'n4+ . .

and identifying the power expansions in o,' of both sides
of the Eq. (8). We are only interested in the lowest
eigenvalue which is computed as

0,'11 0! 133 0!'.=-+)- (-)
The number of terms computed is quite suIIj.cient for
determining the critical value np of the dipole moment,
which is the solution of the equation

Co(~o) = —l.
As a consequence, in order to have bound states, one
must have Cp& —~~, which requires n) ~~. This proves
the existence of a critical dipole moment O, p obeying

0.0& ~.

A numerical calculation yields

up=1 28 . .

corresponding to an electric dipole moment

(10)

But one can actually compute o.p. We start by noticing
the presence of the positive term m'/sin'8 in the
operator E, which implies that the lowest eigenvalue
Cp of E certainly will be found in the subspace m=0.
Let us then investigate Eq. (5) in the m=0 case. We
look for its solutions as sums of Legendre polynomials:

Dp = 1.63/ 10 "esu cm.

This value of o.p agrees with the one quoted by Mittle-
man and von Holdt. ' It can be compared with the
approximate value computed by Fox and Turner~ using
the %KB method:

Dpwx~=2. 19&10 "esu cm

O(8) = g de~(cos8).
l-o

Equation (5) is equivalent to the following three-term
recursion relations to be obeyed by the codhcients dg's: Dp~&'=1 65&10 "esu cm.

(6)
and has been closely approached by the latter authors'
using a variational method:

l
d~,+D(i+ 1)—C3d,

2l—1
l 1

+n d~g ——D. l= 0, 1, ~ .
21+3

5 See, for instance, L. D. Landau and K. M. Lifschitz, QNawtum
Mechanics (Pergainon Press Inc., London, 1958), Sec. 35.

We have thus shown that no bound states can exist
in a point-dipole 6eld if the dipole moment is smaller

than the critical value Dp.

6 See, for instance, P. M. Morse and H. I'eshbach, Methods of
Theoret2cg/ I.'hysics {McGraw-Hill Book Company, Inc. , New
York, 1953), Sec. 5.2.' K. Fox and J. E. Turner, Am. J. Phys. 34, 606 (1966).

8 K. Fox and J. E. Turner, J. Chem. Phys. 45, 1142 (1966).
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III. THE EXTENDED-DIPOLE CASE

The electron now moves in the combined electric
field of two opposite charges Q and —Q, separated by a
distance 2R. Calling rl and r2, respectively, the distances
from the electron to the two charges, we write the
Schrodinger equation

Ter,z I. Values of the electric dipole moments for various
molecules as compared to the critical va1ue,

Critical
H2S HCl NH3 value H~O 920 HF H202

D)&10'8
(in esu cm) 0.92 1.07 1.47 1.63 1.85 1.86 1.91 2.13

n 0.72 0.84 1.16 1.28 1.46 1.47 1.51 1.68

This equation is separable in prolate confocal co-
ordinates, defined by

rl r2 (» I ~l) .
2R

(13)

As usual, y will denote the azimuthal angle about the
axis of the fixed charges.

Ke further define a dimensionless energy parameter

2@828
(14)

Writing the wave function in the separated form

+(k,n, v) =X(&)1'(n)e'"",

we obtain the two equations

(17)

and a dimensionless dipole moment n, as previously:

2lieD 4ijeQR

h2 I|2

will all tend to minus inanity when the size R of the
dipole goes to zero.

In other words, for each value 0, such that the ex-
tended dipole potential possesses bound states, the
point-dipole potential must exhibit the phenomenon of
"fall towards the center, " i.e., in6nitely low-lying
bound states. But in the limit R~O we have to
recover the results obtained in the preceding section for
a point dipole, that is, no bound states at all for a dipole
moment below the critical value. The inescapable con-
clusion then is that the critical value Ds(11) is critical
for an extended dipole as well, irrespective of its size.
Below this value, there cannot exist any bound state.

It is gratifying that numerical computations of
energy leve1s in a finite-dipole field are completely
compatible with the existence of this critical moment. '
Because of the poor convergence of the expansions
used, these calculations have not been pushed below a
value of the dipole moment 0.~1.7, but in this region
the binding energies decrease very rapidly with de-
creasing n.

We could now try to compute explicitly the values
of the binding energies in that unknown region just
above the critical value. However, these energies prove
to be quite small. Indeed, already for the value 0. 1.7
or a=2.14&&10 " esu cm, the smallest for which cal-
culations have been done, the ground state has a bind-
ing energy as small as 6.3&&10 4 eV.

In view of this smallness, as compared typically to
molecular rotational excitations of, say, 10 '—10 ' eV,
we do not feel it worthwhile to investigate the exact
behavior of the binding energies as they go to zero with
the dipole moment tending to its critical value.

where C is the separation constant and m an integer.
Ke remark that the solutions of these equations only
depend on the two dimensionless parameters 0. and e.
In fact, no other independent dimensionless parameter
can be formed out of the quantities eQ, li, A, R, E..

The crucial fact now is that once the dipole moment
D (or its dimensionless expression n) is fixed, the size
R of the dipole only shows up as a scale factor for the
energy, according to (14). Then, if for a given value of
a., the equations (17)—(18) admit a series of bound states
e„', the corresponding physical binding energies

IV. DISCUSSION

It has been proposed by Turner4 that temporary
capture of the electron with rotational excitation of the
molecule could account for the peculiarities observed
in the scattering of electrons by some polar molecules. '
Such a mechanism, if allowed, would be most efficient
for molecules with a low enough moment of inertia,
so that their rotational energy levels have spacings small
compared to the thermal energies of the electrons.

Besides the molecules H20, D20, and H2S for which
the experiments have shown the mentioned discrep-
ancies with simple scattering theories, Turner suggests

&n s R. F. Wallis, R. Hermann, and H. Milnes, J. Moj Spectry. 4,
5$ (1960).
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that NH3, HF, Hcl, and H202 should exhibit the same
behavior. Table I gives the electric dipole moments of
these molecules as well as the critical moment (11).Of
course, neither of these molecules produces an electric
field identical to the one of an extended dipole. Never-
theless, the fact that the same critical value ho1ds for
a point dipole and for a finite dipole, leads one to the
conclusion that this critical value is quite insensitive to
the higher order multipole components of the electric
field, and essentially depends on the dipole moment. A
critical value very close to Do, as computed here,
certainly holds for any type of polar molecule.

It is seen in Table I that H2S, HC1, and NH3 have
dipole moments below the critical value, whereas the
moments of H20, D20, HF, and H202 lie above this
value. ' The former molecules thus cannot bind elec-
trons in their dipole fields and electron capture cannot

"Mittleman and von Holdt (Ref. 3) in their Fig. 3 attribute a
subcritical moment to H20. This is due to their omission of a
factor 2 when converting from the D's to the dimensionless a' s.

occur for them. This is especially significant for the
molecule H~S, which has been shown to have an anomal-

ous electron scattering cross section.
%e are thus led to question seriously the role of elec-

tron capture in the scattering of low-energy electrons

by polar molecules. At least, this mechanism cannot
operate universal)y, and further investigations clearly
are necessary to explain the enhanced cross sections

observed for some polar molecules.

Pote added in proof. After the present paper was sub-

mitted to this journal, the same problem was inde-

pendently solved by three other groups of workers.

M. H. Mittleman and V. P. Myerscough [Phys.
Letters 23, 545 (1966)j and J. E. Turner and K. Fox
(Phys. Letters 23, 547 (1966)] use rather complicated

methods, while %. B. Brown and R. K. Roberts

LJ. Chem. Phys. (to be published)$ use the same

method as ours and show that the presence of a repul-

sive radial core will not modify the value of the critical

dipole moment.

PHYSICAL REVIE%' VOLUME 153, NUM 8 ER 1 5 JAN UAR Y 1967

Single- and Double-Quantum Photodetachment of Negative Ious*
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The recent measurement of the transition probability for the double-quantum detachment of an electron

from I has prompted a new theoretical study of this problem. A central-field model for bound and free states
is used, in which a parameter is adjusted in the potential to yield the observed binding energies of the

negative ions. An implicit-sum method, requiring the solution of inhomogeneous radial equations, is used to
evaluate the sums over intermediate states. The results for I lie almost within the experimental uncertainty.

The cross sections for single-quantum photodetachment and electron elastic scattering (from the neutral

atom) arealsogivenfor theionsstudied: C, O, F,Si, S,Cl, B,I .

I. INTRODUCTION
'

N a recent experiment, Hall, Robinson, and Brans-
comb' measured the transition probability (W2) for

the the double-quantum photodetachment of an elec-

tron from I at the ruby-laser wavelength. Their result
is higher by a factor of 3 to 6 (considering the experi-
mental uncertainty) than a theoretical estimate made

by Geltman. ' The latter theoretical estimate was based
on the approximation that all the continuum states of

*This research was supported in part by the Advanced Re-
search Projects Agency (Project DEFENDER), monitored by the
U. S.Army Research Once-Durham, under Contract DA—31-124-
ARO —D—139.

t Present address: Physics Department, New York University,
University Heights, New York, New York.

f. Of the National Bureau of Standards and the University of
Colorado.

' J. L. Hall, E. J. Robinson, and L. M. Branscomb, Phys. Rev.
Letters 14, 1013 (1965).

' S. Geltman, Phys. Letters 4, 168 (1963);19, 616 (1965).

the negative ion may be represented by plane waves.

This approximation makes trivial the summation over

allowed intermediate states (which all lie in the con-

tinuum), and yields an expression for W2 which is

simply proportional to 0-1, the cross section for single-

quantum photodetachment. This latter cross section

is well known experimentally for I (Ref. 3), as well

as for a number of other negative ions. The present
work is an attempt to improve upon the plane-wave

approximation by treating one-electron continuum

states exacely in an assumed central field.

The interaction Hamiltonian between the radiation

field and an atomic electron is

e2e
II'= — p A(0)+ A'(0)

fSC 21ÃC

'B. Steiner, M. L. Seman, and L. M. Branscomb, J. Chem.
Phys. 37, 1200 (1962).


