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Possible Role of aNN Forces in Hypernuclei
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The e6'ect of a repulsive three-body ANN force on the A-N scattering lengths and the ~He4 —~H4 bind-
ing-energy difference is considered. It is found that a suitable three-body force strength needed to adjust the
h;N scattering lengths to the measured h.-p ones reduces substantially the additional Coulomb repulsion
in ~He4. Some remarks are made concerning the charge-symmetry-breaking components of the A-N
interaction.

I. INTRODUCTION

ECENTLY the A —p scattering lengths were
determined experimentally' ': a,= —2.46 F, a&

= —2.07 F (Ref. 1), and a,= —2.20 F, a, = —1.91 F
(Ref. 2). The errors are indicated by the equal-likeli-
hood contours in the (a„a,) plane shown in Fig. 3 of
Ref. 1.Also indicated there are the corresponding points
obtained from hypernuclear analysis. ' ' These points,
derived from binding energies of the s-shell hyper-
nuclei are characterized by a,/a&&4, in clear disagree-
ment with the results of A-p scattering. The singlet
scattering length, which is mainly determined by calcu-
lations on ~II', seems to agree with Refs. 1 and 2.
The trouble appears with the triplet scattering length,
which comes out in hypernuclear calculations lower

( —0.6F) than the experimental one. The triplet
scattering length is mainly determined in hypernuclear
calculations by +He'. All calculations assume a smooth,
central, spin-dependent A-E interaction of an intrinsic
range corresponding to two-pion exchange or E-meson
exchange, with or without a hard core. A review of the
uncertainties encountered in hypernuclear calculations
and the possible ways of dealing with them is to be
found in Ref. 6. In particular, the two modi6cations in
hypernuclear calculations on ~H' and ~He', suggested
by Bodmer, ' tend to correct for a& in the desired direc-
tion. Quantitatively, however, they are insufficient,
since they raise

~
a&

~
only to about 0.9 F.

Another eBect which has to be considered is that of a
charge-symmetry-breaking (CSB) component in the
A —E interaction which shows up in the gHe4 —qH'
binding-energy difference. ' ' Since the hypernuclei
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374 (1966).

Vs= Q ——s'W(e,"e,) (~,"~,)
i&j p~x

where i and j stand for the two nucleons and p,
' is the

pion Compton wavelength. For the s-shell hypernuclei
(e,"e,)(~; ~;)= —3. This form of Vs appears to rep-

FIG. 1.A long-range diagram contributing
to A.NN force.
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qH' and qHe', from which the scattering lengths are
calculated, constitute scalar isomultiplets, the CSB
component of the A—E interaction in these hypernuclei
is cancelled out. The scattering lengths derived in
such a way need not therefore be equal to the measured
A—p ones. indeed, the calculations of hEscat. —tering
lengths carried out with CSB potential, which fits the
+He —zH binding-energy difference, ' yield pronounced
differences in the A eand A.—p—scattering lengths. But
still, these cannot account for the experimental results
of h.—p scattering. (See Table I of Ref. 10., in particular,
cases a2 and b2 which correspond to the more theoret-
ically established' form of the CSB potential. ) The
difficulty is again the low value obtained for ~u&~.

There is still a more "conventional" possibility for
understanding the experimental A —P scattering lengths
on the basis of hypernuclear data, namely, contributions
of ANÃ three-obdy forces." " Figure 1 is a diagram
illustrating how three-body forces arise. The range of
this force is not short at all compared to the 4—Ã
two-body force range. Its common form used in most
hypernuclear calculations is



resent only its asymptotic shape, while noncentral,
nonseparable components are very likely to dominate
at short distances. '4 It is quite obvious that a short-
range three-body force will not seriously affect the very
loosely bound system ~H', but may affect ~He' because
of its tighter binding and large number of bonds (six).
The presence of a strong repulsive (W) 0) three-body
force would therefore be accompanied by a larger
average two-body A.—X interaction in &He' than in the
usual treatment. Since the average A—Ã interaction
in ~He' is dominated by the triplet A —X interaction,
one may increase ~a~| in this way.

In Sec. II we briefly review the way u, and a& are
obtained from hypernuclei in the presence of a three-
body interaction. The strength of this interaction is then
fixed subject to the experimental values for u, and a&.

Section III is devoted to calculating the combined
effect of two-body and three-body interactions on the
radial mode of compression of the nuclear core in the
2=4 hypernuclei. Likewise, the problem of charge-
symmetry breaking in the A —E interaction is examined
within the framework of the quark model. In the
concluding section we discuss our results and their
relevance to the ~He4 —~H4 binding energy difference,
as well as to other related hypernuclear problems.

II. THREE-BODY FORCES AND A.-1V
SCATTERING LENGTHS

Most hypernuclear calculations~4, 5, 8,is, i3 with only
two-body forces, assume some definite central A—Ã
interaction of intrinsic range corresponding to two-pion
or E-meson exchange. The volume integrals of the
interaction in the singlet state and in the triplet state,
U, and V&, respectively, are then found by using the
binding energies of some hypernuclei, usually zH' and
&He'. The values of U, and U& may be easily translated'
into the scattering lengths a, and u~. The inclusion of a
hard core in the A —E potential poses no new problem
in deriving the scattering lengths. Here we shall restrict
ourselves to the case in which the intrinsic range
corresponds to two-pion exchange. Reference 15 gives
U, = —380&20 MeV, U, = —180&20 MeV (without
hard core). The corresponding scattering lengths are':
a, = —(2.4 s.s+") F, a~ ———(0.52+0.12) F. For com-
parison we also quote the scattering lengths obtained'
with a hard core of 0.4 F: u, = —(2.89 s.4r+"') F,
a~= —(0.71&0.06) F. As mentioned eariler

~
a,

~

is
significantly lower than the experimental value.

It was shown by Dalitz" that for a three-body force
of the type

Vs(A,i,j)= ', W(e,"e,)(~,"~;—)i—(r,g)i (r;,) (2)

the volume integral U~ of a hypernucleus containing X
nucleons (which is a linear combination of U, and U~)

'4 G. Sach, Nuovo Cirnento 11, 73 (1959).
5 B.W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959).

~6R. H. Dalitz, Enrico Fermi Institute of Nuclear Studies
Report EI'INS-61-48 (unpublished).

is modified by adding to it the three-body contribution

WN = sWN(N —1) d'r12&'re(rls)t (r1A)t (r2L), (3)

where p(r») is the correlation function between pairs
of nucleons normalized to unity. It has been pointed
out"" that it is sufhcient to compute the integral of
(3) with p(ris) appropriate to He4. (We shall denote
this integral by w.) The value of W& is then given by

Wzr = ', WN(N -1)riw, —

where g is a correction factor. For qH' one has q=0.6.
The two-body results for U, and V&, as derived from
V2 and U4, are to be replaced by

U,+s(1—r))wW, Ug —(2+-,'(1—i)))wW. (4)

It is evident that U„and therefore a„ is only slightly
affected, while V&, and therefore u~, might change
appreciably. The presence of a strong repulsive three-
body force (W) 0) would increase the absolute value of
U~, thereby also increasing

~
a~

~

.
We now treat 8" as a parameter and seek. the value

which yields the experimental results for u, and a~.

The correlation function is taken to be

p(r)= ( e/2')'~se &'"'

where e=3/2R' and 2=1.44 F is the rms radius of
He4. This form is obtained from harmonic-oscillator
shell-model wave functions. For convenience in calcula-
tions we take u(r) of (2) to have the Gaussian form

v(r) = e ~"'. The choice of P is not self-evident and we

sha11 assume a series of values for it. For the present
let us fix it by requiring that e ~"' and e I'"/pr (where

p ' is the pion Coinpton wavelength) have the saine
intrinsic range. This les, ds to p=0.234 F '. The result
for x turns out to be

-2p (p+ e)

From (4) one then finds that W 8 MeV would shift

Vt, to the vicintity of U, and modify the scattering
lengths, yielding a& a, —2.0 F. In the presence of a
hard core the results are essentially the same: ~a,

~

turns out to be slightly larger. In the next section we
examine whether a three-body force with the above
value of t/V can inhuence significantly the binding-

energy difference between ~He' and ~H'.

III. THREE-BODY FORCES AND qHe4 —qH4

BINDING-ENERGY DIFFERENCE

A. Charge-Symmetry-Breaking EBects

The problem of ~He' —~H' binding-energy difference
was experimentally dealt with by Raymund, " who

"M. Reymund, Nuovo Cimento 52, 555 (1964).
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concluded that ABs(sHe4 qH—4)=0.30&0.14 MeV. A
recent investigation, "using more restrictive criteria of
acceptable data, yields 68~=0.12&0.17 MeV, which
is consistent with zero. Dalitz and Von Hippel' con-
cluded that CSB effects may lead to 68&——0.25&0.05
MeV. This should be corrected to AB~ 0.20 MeV
since more accurate values for the Z+-Z mass difference
are available now. One assumes in their derivation that
the charge-symmetry-violating AAx vertex is generated
through the electromagnetic mixing of Z', A and g, x'..

('I
I ) ('I 'In)

g~s~= —2 — + ggs . (6)
M(Z) —M(A) ~s(&)—~s(~)

(This is formula (10) of Ref. 9.) Use has been made of
the SU(3) relation grs ———g~s„. The two off-diagonal
matrix elements are then calculated by postulating
certain transformation properties for the electro-
magnetic mass operator. The results read

(zoIbM IA)
=0.013&0.002, (Refs. 9 and 19)

M(Z) —M(A)

(~oIa~ I&) =—0.0105&0.0013, (Ref. 9)
nzs(r/) —m'(s-)

(7)

Putting in the experimental values of the M's one gets

(Z'I 8M
I
A) = (1/2v3) [5.7&3.0—(6.5&1.0)]

= —0.23&0.94 MeV.
(See Refs. 21 and 19, respectively. ) (8)

Hence,

(Z'
I
8M

I A)/[M (Z) —M (A)]= —0.003m 0.012.

The significance of this number is of course very
doubtful because of the large experimental error. The
same procedure applies to g, vr mixing. Here the further
assumption is made that the nonstrange quark-anti-
quark electromagnetic interaction is proportional to the
product of their charges. The mixing turns out to be

i' C. Mayeur eI al. , Nuovo Cimento 43, 180 (1966).
"A. H. Rosenfeld e/ a/. , Rev. Mod. Phys. 37, 634 (1965).
'0 A. Gal (to be published)."G.M. Pjerrou et a/. , Phys. Rev. Letters 14, 275 (1965).

and are large compared to the usual electromagnetic
parameter of n/rr =0.0023.

The results are not the same, however, in the quark
model. Using quark wave functions which are assumed
to be symmetric in their spin-isospin components, one
obtains quite generally" that

(Z'
I
BM

I
A) = (1/2~3 ( [M("* )—M ( *s)]

—LM(= )—M(-"')])

given by
cosP+v2 sinP

(~sIb~I~) =- ([sm.—sm, ]
+-;[~(+)—~( o)]), (»

where 8m„—bm„1.9 MeV is known" from the baryon
case and P is the mixing angle of r/ and Xs:g = r/s cosP —r/r

sinP." For IPI (34s [P=&10 or &23s is implied by
SU(3) square mass relations; for a further discussion of
this question see Ref. 22], the resulting (s.oI8mIr/)/

[m(r/) —m(n.)] is less in magnitude than before and also
has the opposite sign. Thus in the quark model, the
CSB contribution to the ~He4 —&H' binding-energy
difference might be smaller than previously believed
and even of opposite sign.

B. Nuclear-Structure Effects

It is well known' that the A, occupying an s orbit in
the A =4 hypernuclei, compresses the nuclear core by
interacting via two-body attractive forces with the
nucleons. Thus, allowing only for a radial mode of
compression, Dalitz and Downs found a compression
of about 11%%uz (for nuclear stiffness of E'=60 MeV)
in the A =4 hypernuclei. A more realistic calculation by
Herndon, Tang, and Schmid, ' including a hard core of
0.4 F in the A.—E interaction, yields about the same
amount of compression. The additional Coulomb
repulsion between the two protons of gHe4, when

brought nearer on the average, contributes about —0.1
MeV to 68~. This is in the opposite direction that of the
experimental va'lues. On the other hand a repulsive
three-body ASS interaction induces repulsive two-

body forces between the nucleons, which tend to ex-

pand the nuclear core. On the whole, the nuclear core
may retain its previous dimensions and the additional
Coulomb interaction may drop out. We shall now in-

vestigate this e6ect with the asymptotic form of the
three-body force discussed earlier. We allow for varia-
tions of the nuclear core only through the radial mode.
The neglect of other modes does not seem to constitute
a serious deficiency, since the additional Coulomb
interaction is determined mostly by this mode. How-
ever, a drawback of our calculation is that we have to
assume some form of the three-nucleon wave function
and some value for the nuclear stiffness. We also note
that the noncentral short-range components of the
three-body force are neglected here. It is felt that only
the long-range part of this force may further correlate
the nucleons in addition to the correlation caused by
the hard core of the nucleon-nucleon interaction.

I,et IIO stand for the nuclear three-body Hamiltonian
(in the c.m. system) and Ps its eigenfunction corre-
sponding to the ground state: He's Eels. H is the-—
total Hamiltonian of the 2=4 hypernucleus and we

"For a discussion of the q-X mixing-angle problem see G.
Alexander, H. J. Lipkin, and F. Scheck, Phys. Rev. Letters 17,
412 (1966).
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shall assume that to a good approximation the total
wavefunction may be written as a product fp(r),
where r is the A coordinate relative to the center of mass
of the three nucleons. f is taken to differ from Pp only
by its radial extension, while p(r) is taken as the
best trial wave function of the form

q (r) =L(e ""'+se ")

given by Dalitz" using only central attractive two-body
A-S interactions of a Gaussian type. L is a normaliza-
tion constant and the other parameters are 2'=0.336,
v=0.277 F ' x=0.045 F ' Now the total hypernuclear
energy is approximately given by

TABLE I. The equilibrium 5 and the corresponding additional
Coulomb repulsion in &He4. P is the three-body-force range
parameter. Po =0.234 F

~, (MeV)
X=40 E=60 E=80 E=40 E=60 E=80
MeV MeV MeV MeV MeV MeV

No three-
body force

Po
2Po
4Po

0.186 0.132 0.103
0.129 0.092 0.071
0.073 0.054 0,043
0.031 0.024 0.020

0.169 0.114 0.087
0,112 0.076 0.058
0.060 0.043 0.034
0.024 0.019 0.015

E and tt/' should be given in MeV while U3 in MeV F'.
The equilibrium 8 is therefore determined by the
relation

which for small radial variations around Pp may be
expanded as

0.00851 Up+0. 3634 W

X+2(—0.0044 Up —0.054 W)
(12)

(10)

Here b=R/Ro —1, where Rp and R are the rms radii
of the free nuclear core and the compressed one,
respectively. E is the nuclear-stiffness coefficient
estimated as E=60 MeV for He'. ' The matrix element
on the right-hand side of (10) consists of the A kinetic
energy relative to the nuclear center of mass and the
expectation values of the two-body and the three-body
A.-S interaction. The kinetic energy is independent of 8,
while the interaction terms depend on 8 through the
8 dependence of f. Expanding the right-hand side of
(10) in powers of b and neglecting higher powers than
the second, we shall fi.nd the value of 8 which minimizes
the energy K We shall not attempt to reproduce E in
this manner, since the f's we shall use are known to
give poor agreement with binding energies. However,
we shall choose f's so as to reproduce quite well the
electromagnetic form factors and Coulomb energy of
the nuclear three-body system. Following Schi6'4 we
take go=de —

& '&"»'+"»'+'»'& a=0 384 F ' Our f's are
then of the form P=Ce»'&"»'+'»'+'»'&, where y(1+5)
=0,. A and C are normalization constants. The two-
body A-S interaction, averaged with the spin functions
of ~He4, is taken to be of a Gaussian form

Vp(i,h) = ', Up(b/7r)N'e "'".-
The range parameter b=0.935 F ' corresponds to
two-pion exchange. The m(r) of (2) is also taken in a
similar form: p(r)=e e"', P=Po=0.234 F ' for one-pion
exchange. All calculations are performed analytically in
triangular coordinates. With the values thus chosen for
the parameters we get

E Eo=7 73 MeV+(001—038 Up+0 292 W)
—(0.00851 Up+0. 3634 W)b

+(-,'E—0.0044 Up —0.054 W)bo. (11)

~3 R. H. Dalitz, Phys. Rev. 112, 605 (1958).
~4 L. I. Schi8, Phys. Rev. 133, B802 (1964).

For U3 and 8' we take the values discussed in Sec. II in
connection with the scattering-length problem, namely
W 8 MeV, Uo=g(U, +Ui) =—3X360=—1080 MeV
F'. Calculations were performed for E=40, 60, and
80 MeV. The results are shown in Table I.Also indicated
there are the results for different three-body range
parameters, P=2Pp aild P=4Pp which inay correspond
to the average of the inner part of the three-body
interaction. By increasing P, the value of the integral w

t see Eq. (5)) decreases. Since it is the product mW
which appears in the scattering-length problem Lsee
Eq. (4)j, the calculations are now performed taking
also different values for W: W'=30 MeV for P=2Po
and W= 136 MeV for P =4Pp.

The results of Table I show clearly that the three-
body interaction can reduce considerably the compres-
sion of the nuclear core. Thus, the additional Coulomb
interaction in +He' may contribute to ABJ, only about
—0.05 MeV and even less. It is interesting to point out
in this connection a qualitative difference between the
two-body interaction and the three-body one. The
contribution of the two-body interaction to the binding
energy is dominated by its 8-independent part, while
the contribution to the compression is determined by
its term linear in 8. The same applies of course to the
three-body interaction. Now, the ratio of the b-in-

dependent term to the coef6cient of the linear term in 5

is Drom (11)j 1.22 for the two-body interaction, while
it is only 0.80 for the three-body interaction. For P = 2Pp
and P=4Pp the difference is even more pronounced, the
ratios being 0.55 and 0.43, respectively. This means
that three-body ASS interactions which induce two-
body interactions among nucleons are more capable of
correlating the nucleons than two-body AS interactions.
The latter induce only a single-nucleon potential which
affects the energy strongly. Unlike the results of
calculating the equilibrium b' (for two-body A Eforces-
alone) in Ref. 8, we find that the results are quite
sensitive to the value assumed for the stiGness coeK-
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cient. In particular, the value E=40 MeV seems to
yield appreciably larger values for 8 than those of other
treatments. ' ' The other two values, E=60 MeV and
E= 80 MeV are in a good agreement with Refs. 5 and 8.

Iv. DISCUSSION

From the results of the previous section it is clear
that a repulsive three-body AXE interaction, when
taken strong enough to give the correct A-E scattering
lengths, might considerably diminish the compression
of the nuclear core due to the two-body A-E force.
The &He4 —&H4 binding-energy difference due to the
additional Coulomb repulsion between the two protons
of &He4 is thereby reduced to only about —0.05 MeV.
We also remark that if initially He' is more diffuse
than H', then the repulsive AXE three-body interaction
in the 3=4 hypernuclei results, contrary to the two-
body interaction, in 68+~0 (in the right direction).
However, unless definite conclusions about the radii
of the nuclear cores He' and H' are arrived at, we prefer
to deal with charge-independent wave functions. '4

The value of W used in our calculation L8 MeV for a
Gaussian v(r) of range parameter Ps and therefore about
twice that for a Yukawa-type v(r)j is quite large
compared to the theoretical estimate" of 8' 2 MeV.
It was, however, pointed out by Dalitz" that higher
order diagrams, in particular the one in which the
intermediate Z in Fig. 1 is replaced by I'*, may modify
considerably the value of 8'.

A large-three body repulsion is not supported by the
analysis of &He' and &C"made in Ref. 13.It is concluded
there that only a small three-body force is compatible
with the hypernuclear binding energies. However, it
seems to us desirable at the present time to extract as
much information as possible from the s-shell hyper-
nuclei alone. The p-shell ones still pose many unsolved
questions. ' We would like to mention the ~Ii'-qBe'
large binding-energy difference of about 2 MeV."
Bodmer and Murphy" have already noted that this
large value may perhaps be connected with a strong
(of the same order of magnitude as ours) three-body
repulsion.

The effect of the AES three-body force on the nuclear

extensions is not likely to show up quantitatively in
heavier hypernuclei. The h cannot compress the p-shell
nucleons to the same extent as the s-shell nucleons.
Also, the relative eKciency of the three-body interaction
is reduced in this case. To illustrate, we have taken two

p nucleons to be represented by a shell-model harmonic-
oscillator wave function

The two nucleons are L Scou-pled to S=0, I= 1. (This
might be the case with qHe' and qBe"). The radial
extension a~ of the p nucleons is assumed to vary
around 2F."The linear terms in bu„, which result from
the expectation values of V2 and V3 are then —0.00269
U4 and —0.0470 W, respectively. U4 ——3 U,+U, is
expressed in MeV F' and W in MeV, P and b are the
same as in (11), while the A wave function is slightly
more concentrated. In (11) the ratio of two-body to
three-body linear terms is 3.16, while here it is (for
the same W) 10.30, indicating that mainly the two-
body A-S interactions are responsible for the nuclear
extensions.

Looking for p-shell hypernuclei belonging to the
same isomultiplet, we point out that the slight ~Be'-~He'
binding-energy difference (Bq(qBe') =5.94&0.77 MeV,
Bz(&He')=5.06+0.39 MeV)" is more likely to be
explained as being due to the different core sizes."
This follows from the weak binding of the p nucleons in
these core nuclei. (It should be remembered that Be'
is particle-unstable. ) On the other hand, the binding
energies of qLis and qBes (I=—', ) are equal to each
other": 6.60&0.13 MeV, compared to 6.57&0.20 MeV,
respectively.
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