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The same argument holds again for the broad state
near 20 MeV. A definite state at 20.040.5 MeV in °Li
was recently observed!® as a D-wave d-*He interaction
with a tentative spin assignment of $+ or §-+; the
mirror level in *He has only tentative support.®16
Comparative (p,) and (p,°He) data permit us to dis-
tinguish between the two possible total spin configura-
tions for this state, 2D and “D. The appearance of a
state at 19.94-0.4 MeV in the "Li(p,*He)°He data and
the absence of transitions to the presumed mirror level
at 20 MeV in the "Li(p,£)’Li data imply that the latter
transition is S forbidden and that the state is
4D3/2 or 5/2-17

15 T. A. Tombrello, A. D. Bacher, and R. J. Spiger, Bull. Am.
Phys. Soc. 10, 423 (1965).

16 S. J. Bame and J. E. Perry, Phys. Rev. 107, 1616 (1957).

17 Preliminary results of a 7Li(p,£)°Li and $Li(p,d)°Li experiment
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A careful search was made for the first 7=% state
in the mass-5 system. No states other than those dis-
cussed above were observed. Since the lowest T=%
state would be expected to be a doublet in total spin,
the (p,f) reaction could populate it and would be
expected to be fairly sensitive—except for the high
triton continuum background—because of the above-
mentioned absence of other transitions in the region
about 20 MeV of excitation. In order to permit a more
sensitive search for a possible 7'=$ state, a coincidence
experiment capable of observing the decay properties of
levels of *He and °Li from 16.6- to 28-MeV excitation
is in progress.

at 155 MeV appear to support these spin assignments. D.
Bachelier, M. Bernas, I. Brissaud, F. Chavy, and P. Radvanyi
(private communication).
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A general formulation of the Coulomb disintegration of complex nuclei is presented using the semiclassical
approximation. This assumes that the center of gravity of the incident nucleus moves along a Rutherford
orbit in the Coulomb field of the target nucleus. The main point of the formulation is the following: The
configuration space of the product nuclei is divided into the external region and the internal region. In the
external region, the wave function is assumed to be an outgoing free spherical wave. This wave function is
then connected continuously to the internal wave function, which we take, following the Kapur-Peierls
method, to be a superposition of compound-state eigenfunctions of the incident nucleus. This method is
applied to the Coulomb disintegration of ®Li and compared with the results which Gluckstern and Breit
have already obtained. Some discussion about higher order corrections, which modify considerably the
first-order perturbation calculation in the case of ¢Li, and about the stripping mechanism is added.

I. INTRODUCTION

HE study of the interaction of two complex nuclei

is a newly developed field of research, in which

theoretical results remain very few, in contrast with the

experimental results which have been accumulating
very rapidly in recent years.

Theoretically, the phenomena are expected to become
simplest when the distance of the closest approach of
two nuclei remains larger than the sum of their radii,
preventing any nuclear force from acting effectively
between the incident and the target nuclei. Even in
this simplest case, we can expect many interesting types
of reactions because of the intense Coulomb force. For
example, Coulomb excitations of the target or the inci-
dent nucleus have been studied! extensively, both experi-

* Work supported by the U. S. Atomic Energy Commission.

1 On leave of absence from Tokyo University of Education,
Tokyo, Japan.

1K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther,

Rev. Mod. Phys. 28, 432 (1956); K. Alder and A. Winther, Kgl.
Danske Videnskab. Selskab, Mat. Fys. Medd. 32, No. 8 (1960).

mentally and theoretically, and have furnished much
information about the spectroscopy of the nuclei.

However, Coulomb disintegration of the nuclei, which
is expected to occur with a considerable probability in
collisions of complex nuclei, has not yet been studied
so fully, because of some difficulties with the detection
techniques. For example, when « particles are observed
in some heavy-ion reactions, it is not at all simple to
distinguish « particles ejected from the direct Coulomb
disintegration of the incident nucleus from those pro-
vided through the evaporation of the compound nucleus,
or through the stripping or knockout processes.

In this respect, theoretical investigation of the Cou-
lomb disintegration cross section, which is relatively
easy to perform compared with other, more complicated
nuclear processes, might serve to eliminate Coulomb
contributions and separate out purely nuclear contribu-
tions from the observed cross sections. Furthermore, as
will be discussed later, we might expect rather pure
Coulomb disintegration of the incident nucleus in the
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external Coulomb field of the target nucleus for lower
incident energies and forward-ejection angles of the
reaction products. In such situations, the angular dis-
tribution and energy distribution of the disintegration
products would give information about lower unstable
excited levels of the incident nucleus.

Numerous calculations have been published on the
Coulomb disintegration of the deuteron? but we have
only a few examples of calculations for complex nuclei.?

Recently, observations of a particles’by Anderson,*
in which a gold target was bombarded by SLi nuclei
with energies from 20 to 65 MeV, were interpreted by
Gluckstern and Breit’ as a Coulomb disintegration
process °Li — a+d. Gluckstern and Breit have assumed
that, at least in the ®Li case, Coulomb excitations of the
lower excited levels (unstable for °Li — a+d) and sub-
sequent decays are the main processes of the Coulomb
disintegration. Concerning the higher order approxima-
tions, they have pointed out the effect of the finiteness
of the lifetimes of the excited levels and the qualitative
fits obtained for the energy distribution and the angular
distribution seem to be convincing proof of their above
mentioned assumptions, though some details of the
anisotropy of the directional distribution of the ejected
« particles are omitted in their paper.

Bearing this situation in mind, we shall give in the
present paper a more general formulation of the
Coulomb disintegration cross section of complex nuclei.

The center of mass of the incident nucleus is assumed
to move along a Rutherford orbit in the Coulomb field
of the target nucleus. This approximation is justified
under the following two conditions: First, ZZ'e?/fg>1,
where Z, Z' are the atomic numbers of the target and
the incident nuclei, respectively, and v, is the incident
velocity; second, the energy loss by the Coulomb
excitation is very small compared with the kinetic
energy of the incident nucleus. These conditions are
generally satisfied in the Coulomb disintegration under
consideration.

Now, the protons in the incident nucleus feel the time-
dependent Coulomb forces from the target nucleus, and
these perturbations may induce the splitting of the
incident nucleus into two parts. The use of a plane wave

2 J. R. Oppenheimer, Phys. Rev. 47, 845 (1945) ; S. M. Dancoff,
ibid. 72, 1017 (1947); L. D. Landau and E. M. Lifshitz, Zh.
Eksperim. i Teor. Fiz. 18, 750 (1948); C. J. Mullin and E.
Guth, Phys. Rev. 82, 141 (1951); Y. Nishida, Progr. Theoret.
Phys. (Kyoto) 19, 389 (1958); R. Gold and C. Wong, Phys. Rev.
132, 2586 (1963).

3V. I. Mamasakhilsov and G. A. Chilashvili, Zh. Eksperim. i
Teor. Fiz. 32, 806 (1956) [English transl.: Soviet Phys.—JETP
5, 661 (1957)]; J. M. Hansteen, Nucl. Phys. 19, 309 (1960); J. M.
Hansteen and I. Kanestrom, 7b7d. 46, 303 (1963); J. M. Hansteen
and H. W. Wittern, Phys. Rev. 137, B524 (1965).

4C. E. Anderson, in Proceedings of the Second Conference on
Reactions between Complex Nucler, 1960, edited by A. Zucker,
E. C. Halbert, and F. T. Howard (John Wiley & Sons, Inc.,
New York, 1960), p. 67.

5R. L. Gluckstern and G. Breit, in Proceedings of the Second
Conference on Reactions between Complex Nuclei, 1960, edited by
A. Zucker, E. C. Halbert, and F. T. Howard (John Wiley & Sons,
Inc., New York, 1960), p. 77.
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for the description of the relative motion of these disinte-
gration products is by no means adequate, because the
kinetic energy of the relative motion is generally small
(less than several MeV) and further, the contribution
to the integral in the matrix elements of the perturbation
comes mainly from the part of configuration space where
the internal wave functions of the product nuclei over-
lap considerably.

The main point of our formulation is the following:
The configuration space of the product nuclei is divided
into the external region, where the relative distance of
the two product nuclei is larger than a certain channel
radius a;, and the internal region, where the relative
distance is smaller than @,. In the external region, the
wave function is assumed to be an outgoing spherical
wave of free motion. This wave function is then con-
nected continuously to the internal wave function,
which we take, following the Kapur-Peierls method,®
to be a superposition of the compound-state eigen-
functions of the incident nucleus.

This method very naturally leads to a generalization
of the Gluckstern-Breit treatment, in the sense that the
finite life times of the compound states can be fully
taken into account. This point may be of greater im-
portance when the excited states leading to the final
disintegration have larger widths.

However, since the experimental data are still very
scarce, we apply our differential cross sections to the
®Li— a+d case, already investigated by the above
authors, and compare our results with theirs.

We also mention that, in some cases, first-order per-
turbation theory is insufficient and higher order correc-
tions are important. Indeed, when the disintegration
width of an excited level is very small, we must take
account of the possibility that the incident nucleus, once
excited in the Coulomb field, might be de-excited again
before it has enough time to go into the final disinte-
grated states. Breit and Gluckstern have given an exact
detailed treatment of the process.” We present here an
alternative treatment which, though not exact, yields
with very little effort corrections which modify the
first-order results.

Finally, some discussion of the nuclear effect is added.

II. METHOD OF CALCULATION

As mentioned in Sec. I, the center of mass of the inci-
dent nucleus is assumed to move, even after the dis-
integration, in a classical orbit in the Coulomb field of
the target nucleus.

For t—— o, the incident nucleus is in its ground state
Jo, M, described by the eigenfunction ¥ s . The per-
turbing Coulomb potential of the target nucleus (atomic
number Z) on the incident nucleus (atomic number Z’)

6 P, L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166,
277 (1938); G. E. Brown, Rev. Mod. Phys. 31, 893 (1959).
7 G. Breit and R. L. Gluckstern, Nucl. Phys. 20, 188 (1950).
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is given by
w i Ze? 272 2.1
S R-n| R '

where R is the position vector of the center of mass of
the incident nucleus measured from that of the target
nucleus, while r; denotes the position vector of the ith
proton in the target nucleus with respect to its center of
mass. The variation of R(f) with time is determined
from the classical orbital motion of the projectile.

For t— + 0, the incident nucleus is supposed to be
disintegrated by the perturbation H’ into two fragments
of mass My and M,. The probability amplitude of such
disintegration is given in first-order perturbation theory
by

1 00
bk,s,lm(t)z‘—h/ <‘I’k,s,lm|H/l\I,JoMo)
wmJ -

K= GCMWeEi—Waoidy  (2,2)
where ¥ ; 1 is the energy-normalized eigenfunction of
the final state, in which product nuclei fly away with the
relative momentum 7k, channel index s, and relative
orbital angular-momentum quantum numbers I, .
Here E,=7%%%/2p, is the relative kinetic energy,
we=MM,/(M1+M,) is the effective mass, W, is the
sum of the binding energies of the product nuclei, and
W, is the binding energy of the incident nucleus in its
ground state.
Expansion of H’ into spherical harmonics gives

AnZe® » A
bk,s.lm= . Z Z (2)\+ 1)—1
’Lh A=1 p=—\
X <‘I/Ic,s,lm I Z ri)\yky* (Qr) I‘I’JoMl))S)\H ) (2°3)
with

e [T

ewkatdt
RM1 (t)

where 7wps=Er+W,—W, and R(¢), Qr(f) are the
length and the directional angles of the vector R. The
integral .Sy, is familiar in the study of Coulomb excita-
tion and has been evaluated by Alder ef al.!

The difference between the present reaction and
Coulomb excitation is that ¥, s, is now not one of a
set of discrete excited levels but a continuous level of
the disintegrated product nuclei. The simplest approxi-
mation for ¥g,.,m would be a plane wave of relative
motion for product nuclei multiplied by their internal-
channel eigenfunctions; however, the main contribu-
tions to the matrix element in Eq. (2.3) arise from the
part of configuration space for which ¥y ,,1m overlaps
strongly with the ground-state eigenfunction ¥ j,u,.
Thus the use of a plane wave hardly seems to be justified.

It becomes preferable, then, to represent ¥y, im in
the important region of configuration space as a super-
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position of the compound-state eigenfunctions for the
incident nucleus. This will be treated in the following
section.

III. CALCULATION OF THE MATRIX ELEMENT

We now divide configuration space into two parts:
the external region, where the relative distance [r|=r
of two product nuclei is larger than a certain channel
radius @,, and the internal region, where 7 is smaller
than a,.

In the external region we choose ¥y, s,im to be a pro-
duct of the energy-normalized wave function for rela-
tive motion,

v(E)Loukr)/r ]V 1m(2r) (3.1

with the normalization constant v= (2u.k/7#%)'/2, and
the channel eigenfunction of internal variables &,

B, (§)= X (juma,jams]jsms)

mi,m2
Xxjvru W (El)szmz(z) (52) . (3-2)

The X’s are the eigenfunctions of the two product
nuclei, 1 and 2, with angular momenta 7;, m,; (i=1, 2),
while the Clebsch-Gordan coefficient (jumy,jams| 7sms)
combines them into the channel eigenfunction with
angular momentum j,m,.

Thus,

Wr,s,1m= v (k)L 02(k7) /7Y 1m(Qr) s,
The radial wave function ¢;(k7) can be taken as
oi(kr) = (1/2ik)[ 101D (kr) — =0, (kr)]  (3.4)
with
1P (kr)=1ikrh O (kr), @17 (kr)=—ikrh;® (kr).

The phase shift §; must be chosen so that ¢;(%7) and
dei(kr)/dr are connected continuously to the internal
radial wave function at r=a,.

If we define X,,1, 7 (£,2) as

Xo,t, o= 2 (fome,lm|TM)®, ()Y 1m(r),

mg,m

r>a,. (3.3)

(3.5)

then we have an alternative expression for ¥y, 1, which
is convenient for calculational purposes:

Vs, im= V(k)[g&z(k?’)/f] JZM(jsms,lm]]M)Xs,;,JM. (36)

We have chosen ¢; above to represent free motion,
but in general, the relative momentum %%k may be small
and the influence of the Coulomb repulsion between the
product nuclei may not be negligible. However, as will
be shown later, this difficulty can be remedied by re-
placing this penetration factor with an experimental one.

Now, in the internal region, we expand ¥y, im into
the compound-state eigenfunction ®,7» as given by
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the Kapur-Peierls method, which satisfies

(H=W p)®psu=0, r<a,
H=H&+T{R)+V(¥).

H (¥) is the Hamiltonian of the internal nuclear particles
of the projectile, T'(R) is the kinetic energy of the inci-
dent particle, and V(¥) is the interaction potential
among the internal nuclear particles. The compound-
state eigenfunction ®,sar is subject to the following
boundary condition at r=a,:

(3.7)

xs,l.JM* 3 dﬂrd£= (fs,l(+)""a's—]) xs,Z,JM*
7

X®pruddg, (3.8)
with
I @ 1 doy™ (ksr)
s, 0 = )
01 (k1) dr

(3.9

where 7%k, is the channel momentum. The wave function
&,7 is the complex conjugate of only the radial part
of ®,7. It is obtained in a similar way and is subject
to the same boundary condition if we change (+) in
Egs. (3.8) and (3.9) into (—).

The orthogonality condition is

/ S pr a1 pyudr =N pyOpp 87500217, (3.10)
int

where the constant N ,; does not deviate appreciably
from unity for sharp resonance levels.
Now, we put

Vioum= 2. Chroim,psu®prn,

oI, M

r<a, (3.11)

and, using Green’s theorem, the coefficients Crsim,pra
are found to be

hlas, v(k)e Pt
2us @1 (ko)
S ®praa*Xs 1, 1A AE
><N 20 (Bt W= 8pr+3iT0)

(jsmalm| T M)

Ckslm,pJM= -

(3.12)

where 8,7 and 3T,; are the real and the imaginary
part of the complex eigenvalue Wy, and E; and W,
are defined just below Eq. (2.2).

The contribution to the integral of the matrix element
of the electric multipole moment in Eq. (2.3),

(‘I/k,s,lmlz; r,;)‘Y)\,‘*(Qr) ]\I,J0M0> )

comes in general from the external region »>a,. How-
ever, if we choose the channel radius a, reasonably large
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so that the higher levels are not contaminated, then we
may safely disregard the contribution of the external
region and take ¥y, s, to be given by Eq. (3.11). Thus,

&rops,tm| 22 2 V0H Q) [Yronre)= 2 Cratm,prn™
i »,J.M

X <‘I>pJM|Z fi)‘Y)\u*(Qr) I‘I’J0M0>' (3-13)

Rigorously speaking, it must be demonstrated that the
choice of the large a, required by the neglect of the ex-
terior region in the calculation of Coulomb excitation is
consistent with the requirement that the physical
levels should be reproduced within the accuracy needed
in the numerical application, because the larger a; is,
the more closely spread are the levels. However, as we
show later in the example of °Li— a--d, the above
treatment seems to be proper in an approximate sense,
and we assume that the individual pJM terms in Eq.
(3.13) with smaller excitation energies and small I',/’s
represent Coulomb excitations with subsequent decays,
which have been discussed by Gluckstern and Breit.
Summation over many highly excited levels in Eq.
(3.13) may represent more direct Coulomb disintegra-
tion processes.

IV. DIFFERENTIAL CROSS SECTION

A classical orbit in the Coulomb field is determined
by two parameters, the impact parameter b and the
angle ¢, which characterizes the direction of the orbital
plane (see Fig. 1).

The differential cross section of a disintegration pro-
cess, in which an incoming nucleus in an orbit defined
by (b,¢s) breaks up into the channel s, and product
nuclei fly away so that the energy of the relative motion
has the values between Ej and Ex+dE; while the rela-
tive momentum vector points into the solid-angle ele-
ment dQ; measured from the asymptotic direction of
the classical orbit, is now given by

do=bdbd oydP (k,5, j e, d) . (4.1)

The probability of disintegration, dP (%,s,7:m.,d%), can

y
ll \
! Fic. 1. A classical
Rutherford trajec-
R tory in the Coulomb
! — field of the target
i $ nucleus.
J \ b
2 > 0
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be written as®

1
AP (ki 198) = QB 3 S| bt om0 50V 1 @) 2, 4.2)

0+1 My mg l,m

where the previous dz,s,1m is written in full as s, j,m,,m. Also the previous 8, is written as &;,; to show its dependence
on the channel index s.

Now, using Egs. (2.3), (3.12), and (3.13), it is found that

wZe?

bk,s,fama,lmz

" LTS 2 (TMMu|JoM o) (Gomadm | TM) (T (| Tx [T o)
(2 Ap »d, M

—#%a, v(ks)ebs

2/13 (‘43 «) (ksas)

*
(/épJM*xs,l,JMdﬂﬂiE> /NpJ(Ek'*'Ws—é’pJ'—%iF‘pJ) y (4'3)

and thus, from Eq. (4.1), we obtain

2 2 XD BIITIT o) (=0 (TM Nt | T oM o) (smeylmn | T M)

pJ, M l,m N

1 4 Ze?\?
do=bdbd oyl EdQ; > Z< )
2Jo0+1 30 ms\ £

—#%a, v(k)ee [ [

3}
e 1O (Rate)\

XS)\yylm (Qlc)

% 2
pJM*xs,l,JMdgrdf) /NpJ(Ek-I-Ws—ng—%iPpJ) . (4.4)

In deriving these formulas, we have put

(Wpru| 2 rd V@) [ Wroarey= TM M| JoM o) pT || T2 o} (4.5)

where (pJ||T1[|Jo) is the reduced matrix element. :

The phase factor ¢?s in Eq. (4.4), when necessary, can be obtained by requiring the continuity of the external
solution Eq. (3.6) and the internal solution Eq. (3.11) on the channel surface 7= a,, as mentioned previously.

Equation (4.4) is quite general whenever our classical description of the motion of the center of mass of the inci-
dent nucleus is justified, and Eq. (4.4) contains modes of disintegration through the intermediate excitations of
discrete excited states, as well as more direct disintegration modes.

In the following, however, we confine ourselves to discussion of disintegration only through those low-lying
discrete excited levels which contribute mainly to the processes to be analyzed later.

In these cases, we can simplify Eq. (4.4) in the following ways: (i) We disregard the interference terms between
different pJ terms, which is justified when the haziness of the identification of the pJ levels is not considered and it
is not necessary to bring distant levels into consideration. In other words, when the sharp resonance terms do not
overlap appreciably, this procedure appears reasonable. (ii) We also disregard the interferences between different
! terms. This simplification seems to be justified by the following reasons: (i) The relative energy Ej is generally
low, and higher / waves have smaller penetration factors, and so only the lowest ! value is of importance; (i) When
some cluster property dominates, the lower excited levels may correspond to a single value of /, just as in the example
of ¢Li; (iii) Phase shifts 8;,, might have random values, so that interference terms between different ! values would
practically vanish.

After these simplifications, we obtain, in place of Eq. (4.4),

do=bdbd i Brd®s——— 3 z(%zeZ>2 Los.a/2m IZ 5 S (1)
7 * k2]o+1 Mo ms\  # 27 1 (B W—8pr)2+(Tps)% M m A
XTI TN o) (TMNu| T oM o) (fomalm| TM)Sru(0) Y 1m (@) |2, (4.6)
in which
a2k, 2
e / ®pr2*Xs 1,200 dE (4.7)
o, sl PPREY T oI M Xs, 1,7 M

C}: N. FX Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford University Press, London, 1965), 3rd ed.,
ap. XXT.
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F16. 2. Geometrical relations of the
various momentum vectors.

is the partial width in the pJ level for the decay mode
s, I. As mentioned previously, we can remedy our
omission of the Coulomb repulsion between the disinte-
gration products simply by assuming that the pJ level
decays only into the Coulomb disintegration channel
and using the experimentally determined value for
T',7,s,1 in the right-hand side of Eq. (4.7). In Eq. (4.6),
we have also put NV ,;~1 and disregarded the difference
between ®,72r and @2z

It may be worth while to remark that integrations of
do given above with respect to all variables give simply

o= Z (PFJ.s.Z/FpJ>‘7pJ,Coulomb- (48)
pd,s,l
0 »7,Coutomb 10 Eq. (4.8), which is written as
0 pJ,Coulomb™= %az (41rZe2/h)2 Z)(Z)\‘i‘ 1)"‘3
XBAE, Jo— I u|Sal?, (4.9)
with
a=27'e2/(M1+M,)ve,
/( 1 2)7)0 (4'10)

BA(E, Jo— J)= (2T o+1) [{pJ || T2 T0) |2,

is the well-known cross section of the Coulomb excita-
tion for the level pJ, while I,z /T ps is the branching
ratio of the decay of this level into the channel s with
the angular momentum /.

Contrary to the simple result [Eq. (4.8)] for the total
cross section, evaluation of the energy distribution and
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V. ENERGY DISTRIBUTION AND
ANGULAR DISTRIBUTION

Equation (4.6) is expressed in a coordinate system
which is moving with the center of mass of the incident
nucleus on a classical Coulomb trajectory. To obtain the
energy distribution or the angular distribution of the
product nucleus 1, we must, first, rewrite Eq. (4.6) with
respect to the momentum variables and angle variables
of the product nucleus 1, referred to the fixed coordinate
system with its z axis pointing in the incident direction,
and second, we must carry out the integration with
respect to various Coulomb trajectories (see Fig. 1).

The momentum of the nucleus M1, which we denote
as 7iky, is the sum of the relative momentum %K and %K',
the latter defined to be

#K'= (My/M+M,)7K, (5.1)
where %K is the momentum vector pointing in the direc-
tion of the asymptote of the classical orbit and having
the constant magnitude

hK=[2(M1+M5)E]'". (5.2)
E, is the kinetic energy of the incident nucleus. We
assume, throughout this paper, that the target nucleus
is infinitely heavy.

Thus we have

ki=k+K’. (5.3
The geometrical relations of the above three vectors
are illustrated in Fig. 2.

Direction angles for k; and K’ are (61,¢1) and (6, ¢5),
respectively, while those for k, referred to the polar
axis 7/, are (a,7). The angle between K’ and k; is denoted
by 8.

Now it can be easily shown that

dEdek = h2k/ Msdk sinadad'y
=nhk 12//.Lskdk1 sinﬂdﬁdv

=M1k1/uskdE1 sinﬁdﬁd'y y (54)

which are useful relations for the purpose of carrying
out the integrations in Eq. (4.6).

bdbdpp in its turn can also be transformed to the
variables df, d ¢ as follows:

the angular distribution of one of the disintegration pro- bdbd op=a*f(01,¢1,8,7) sinb1db:d¢1, (5.5)
ducts needs much involved mathematical analysis, and
this will be carried out in the following section. with f(01,¢1,8,y) defined by

1—cosB cosf;—sin?B sin%y—-sinf cosy (sin26;—sin?B sin?y)!/2  sinB cosy+- (sin?d;—sin?B sin%y)!/? 5:6)

f(el, ¢176;'Y)'_

(cosB—cosb1)?

(sin%0;— sin?B sin2y)1/2

The derivation of this expression is given in the Appendix.
To rewrite Eq. (4.6) completely in the variables, E1(=#%/2M 1), 61, ¢1, 8, v, the following relations are further
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of use:
k= (K"*+k2—2K'k1 cosB)/2, (5.7)
cosa= (k22— K"?*—F?)/2K'k, (5.8)
sinB cosy— (sin26;—sin2g sin%y)!/2
b=a cot(6/2)=a : , (5.9)
cosf3—cosb,

where the last relation [Eq. (5.9)] is derived also in the Appendix.
Integration of Eq. (4.6) with respect to various Coulomb trajectories for the fixed values of 61, ¢1 now corre-
sponds to integration with respect to the variables 8 and v, which correspondence can also be understood from Fig. 2.
The differential cross section which is convenient for the discussion of energy distribution or angular distribution
is thus found to be

d
dU(k1701;§01)=// ’ Sinﬁdﬁdy, (5-10)
a2 (B,v)
da’ 47rZ(32 2 Mlkl I‘p] 31/27r 1
—o(-") =2 oy 3 £ EIE T S
dﬂ(ﬂ,’y) [/ ,U,sk pJ,l (Ek+W 81,,])2"— (2 pJ)2 2J0+1 Mo ms M m \pu

XTI o) (TM M| ToM o) (stms,lm | T M) Snu(8,k) Y tm(cosay) [2. - (5.11)
S in this formula is given by

1
Sau(Bk) =——2 Dy} (—3m—130, —3m, —3m) Vo (3m,0) [ (6,8) (5.12)

‘Z)()(Z u

where D> is the well-known matrix representation of the rotation operator, while the integral

0 [coshw+ e+ (e2—1) sinhw
I)\ﬂ, (07}::) — / etk(e sinhw+w) dw ,
—o (e coshw—1)M#
with
e=(1/sin30), &= (a/hvo)(Ert+W,—W,) (5.13)

has already been evaluated and tabulated! for important values of parameters.

VI. A USEFUL LIMITING CASE

The main complexity of Eq. (5.11) arises from the circumstance that Sx.(6,k) and ¥ . (cose,y) depend, through
the relations in Egs. (5.7), (5.8), and (5.9), on the variables 8, v. The very complex structure of Eq. (5.11) makes
it desirable to search for some limiting cases which might lead to simpler results.

We assume, for this purpose, that &§,;>W,, or that the available kinetic energy for the relative motion of the
product pair of nuclei is very small, in the sense that 2<K’. In this case, as can be seen from Fig. 2, the angle 8
remains always very small, irrespective of the direction of the vector k. Thus, when we take the limit 8 — 0, Eq.
(5.6) and Eq. (5.9) show that f(61,¢1,8,y) — (1—cosb;)2=1% 51n‘4101, as 6 — 6.

Now, in this limit, Eq. (5.11) is simplified to the following expression:

o 2(41rZe2>2M1k1dE1 e Tpr.o/ 2
=3a

a6y 7 351 3pIp SR

usk Sln4101 »J,1 (Ek+W é’p_,)2—|— (2 pJ‘)2 2J0+1 Mo ms 2 m Ap
XPINTNT ) (TM Ma| JoM o) (Fstmslm | TM)Snu(01,8) Y m(cosay) [2. (6.1)

In heavy-ion reactions the incident energy Eo=7%k?/2(M 1+ M) frequently has a magnitude from several MeV
to about 10 MeV per nucleon, while &,;— W, remains several MeV. Thus our assumption #<<X" is not too restric-
tive, but is satisfied in many cases of interest. Our numerical calculations for the case °Li — a-+d in the following
section will also be done starting from Eq. (6.1).

We now turn to the Gluckstern-Breit calculation referred to in the introduction and examine the relationships
between their cross section and ours given by Eq. (6.1).

For very sharp levels with small T',s, one may use the approximation

(Bxd-We—Epr)* 4 (Tps/2)) 1 = 21/ Tpr)0(ExtWe— 651, (6.2)
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through which the £’s in Eq. (6.1) can be replaced by ks= (2usE;)'/%/#, with E;= 8,7—W,. Then integration with
respect to 8 and v can be easily performed and we obtain, for K'—k,<k1<K'+k,,

do (El,ﬂl) = :};(12

(47I'Z62>2 MldEldQl I‘pJ sl

& 5% 5 (Gt M—m,| TM)? / | ¥ stm(cose ) |y

hZKlk sm4101 »J,l I‘p_]' 2J0+1 Mo ms M
X |2 CA1)KpT [ TA| T o) (TM, N Mo— M | T oM 0)Sx, 200-2(91,%5) |25 (6.3)
Y

otherwise, we obtain

do(E1,01)=0. (6.4)
In the above we have

cosa®= (k?—K"?—k32)/2Kks. (6.5)
If we further disregard the k1 dependence of | ¥} a—m,(cosa*,y) |2 by replacing it with its mean value,

Q@417 3 Y am,| 2=1/4,

M—ms
then we can also perform the summations on Mo, M, m,. Thus Eq. (6.3) is reduced to a much simpler formula:
AnZe*\? M1dEdQ T,r
)
for K'—ks<ki1<K'+Fks, while otherwise,

S @) TBAE, To— J)Zl Sna(B1,k:) |2, (6.6)

d(f(El,Ql) =ia2<
1K'k, sin%0y 7,0 2T,7 A

do (E1,Q1) =0. (67)

This is essentially Gluckstern and Breit’s formula, which these authors have derived in a more elementary way.

Gluckstern and Breit’s formula is an approximation where the breadth of the level ', is disregarded, and gives,
as shown by Egs. (6.6) and (6.7), a rectangular energy distribution which vanishes outside K'—k, <k <K'4ks,
or, written in the energy variable, outside

M1E0 1/2 MZES 1/2—2 M1E0 1/2 M2Es 1/2—2
(G o) J=odGin) +n) | 6
M1+M2 M1+M2 M1+M2 M1+M2
In actual cases, however, the finiteness of the breadth of excited levels might affect the energy distribution and the
angular distribution considerably, and some general discussion of this point will be worthwhile.

To make a rough estimation, let us replace all 2-dependent factors in Eq. (6.1) (except the resonance denomi-
nator) with their values at k=£k,. Integration with respect to 8 and v then gives

27 T dO’
do (B, )= / dy /
0 o d2(B,v)
/ dy / b ik,
4 dﬂ(ﬁ,'}/) h2Klk1

47!'262 2 M]_ dEldQ]_ 1 E’ Pp,)',sl/Zﬂ' 1 L
~1(—2) sl i)z [ o
[/ K’ sm4101 »J,1l k (Ek"—Es)2+ (%ij)g 2]0+1 Mo ms J g

X [% > )\Z AU PT || TN o) TM | T oM o) (Gsmmsiim| TM)Snu(01,k5) Y im(cosa®, ) |2,  (6.9)

sinﬁdﬂ

with
M1EN'?  ((M1+My)Eq) 122 MAENY2  ((M14My)Eq) 122
G e L G A ] e
Mz M2 M2 Mz
The energy integral in Eq. (6.9) is easily evaluated to be
B Ty7.01/2m Tprs 2(E"—E')/T
F(E)= rlet dE=—""" arctan i (6.11)

5 (Ex—E)* (3T,,)? 7T pr 1+ 4(E"—E) (E'—E)/Tps?
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which represents the main E; dependence of the differential cross section do(E1,Q;) and replaces the rectangular
distribution in the previous §-function approximation. The general behavior of F (E;) is shown in Fig. 3 for the case
E>E>T ;. The energy distribution has its center at about M1Eo/ (M1+M,), and the breadth

12M1M 1/2
AE1=|:—-—~—‘E0ES:] .
(MM )2

These parameters are useful for the identification of resonance levels which contribute to the disintegration process.
0E,in Fig. 3 contains a factor I' ,;/ E, ; thus the rectangular shape of Gluckstern and Breit’s calculation is expected to
appear whenever I',;<<E,.

It is to be remarked that, while F (E;) given by Eq. (6.11) is the main E;-dependent factor in Eq. (6.9), the latter
formula contains other E;-dependent factors [Sy.(01,ks) and ¥ (cose™,y)] which will give some modulation, dif-
ficult to predict, to the energy distribution curve.

In this situation we shall give, in the next section, results of our numerical calculations for the case of
6Li— ad, which is just the case discussed by Gluckstern and Breit.

VII. APPLICATION TO THE COULOMB DISINTEGRATION °Li — a-d

We carry out numerical calculations, starting directly from Eq. (6.1). Here, we take account of the £ dependence
of Sy.(01,k) and ¥V m(cosa,y). Our differential cross section is now expressed by

471'282)2 My dE1dQl 1 B)\(E, ]o—-)]) B! %PJ
no ) WK’ sin'io, Tk, (2]0+1)2(2)\+1)2/ , (Ey—E,)+(T,)?

do(E1Qy) = ia2<

X{ZZZ(jsms, lM—ms[JM)2/ WlYz.M—ms(cosa,v)IQd'Y(fM, AM o— M | J oM 0)*| S Mo—M(alyk)lz}dEk' (7.1)
0

Mo M ms

Following Gluckstern and Breit, we take three ex- as that of Gluckstern and Breit. The main difference,
cited states of SLi with 7=0 and J= 3%, 2%, 1%, as are however, appears in the shape of the energy distribu-
shown in Fig. 4. tions when Li disintegrates through the excited states

We have omitted the suffix p and the excited levels 2%+ and 1*. In these cases the rectangular energy distri-
are simply denoted by J. The partial width 'y is butions are replaced by the smoothly tailed ones, as
identified with the total width I'ys, because the y-ray
width is extremely small. Only one value of /, namely
1=2, is assumed. Accordingly, the value of X is also set
equal to 2.

The values of E; and Iy are shown in Table I, and we
see that the condition I'y<XE;, which is necessary for
the d8-function approximation of the resonance factor,
is very well satisfied for the first excited state, but not

I
I
!
i
|
1
!
|
!
T
|

T E]
so well for higher levels. i Mo
. . . . . . 3E, —d M M2
In Fig. 5, energy distributions and angular distribu- . )
tions of the emitted a particles are shown for some F16. 3. Behavior of the function F(E1), where
emitted angles and energies for 61-MeV and 32-MeV Agxfg{le Jlé’z/ (Zl\;f 1+ M) EoEs 12,
incident SLi energies. For the 3* state we approximate 0By =m (Cps/ EJALL.
the resonance factor in Eq. (7.1) with a  function, which
leads, naturally, to the same results that Gluckstern it —1?‘:’,'—Mev\
and Breit have already obtained. The energy-integrated . 48 \
total angular distribution remains essentially the same L s \ ‘\‘
AR
. NN
TasLe I. Values of E, and T for each excited level of ¢Li. Fi6. 4. Level scheme of °Li. )‘\\\\
o 2.188 A\
e E. (MeV) T (MeV) T o N,
\\Q o
3+ 0.71 0.02 ¢ atd
2+ 3.05 0.6
1+ 4.03 1.0 "

oL
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SI' Eq: 6l MeV
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F16. 5. (a) Calculated angular distributions of emitted o particles for 1+ — 3* transition: Ey=61 MeV; F;=235, 40, and 45 MeV.
(b) Calculated angular distributions of emitted & particles for 1* — 2+ transition : Eg=61 MeV; E; =30, 40, and 50 MeV. (c) Calculated
angular distributions of emitted & particles for 1+ — 1% transition: Eo=61 MeV; E;=30, 40, and 50 MeV. (d) Calculated angular
distributions of emitted « particles for 1* — 3* transition: Ey=32 MeV; E;=17, 20, and 25 MeV. (e) Calculated angular distributions
of emitted « particles for 17 — 2+ transition: =32 MeV; E; =15, 20, 25, and 30 MeV. (f) Calculated angular distributions of emitted
« particles for 1+ — 1% transition: £,=232 MeV; £, =15, 20, 25, and 30 MeV. (g) Calculated energy distributions of emitted & particles
for 1T — 3% transition: Eo=61 MeV; 6:=20°, 30°, 40°, and 60°. (h) Calculated energy distributions of emitted « particles for 1+ — 2+
transition: Eo=61 MeV; 6:=20°, 30°, 40°, and 60°. (i) Calculated energy distributions of emitted « particles for 1+ — 1+ transition:
Ey=61 MeV; 6, =20°, 30°, 40°, and 60°. (j) Calculated energy distributions of emitted & particles for 1+ — 3+ transition: Eg=232 MeV;
6:=20°, 60°, 80°, 100°, and 120°. (k) Calculated energy distributions of emitted « particles for 1+ — 2+ transition: Eo=32 MeV;
6:=60°, 80°, 100°, and 120°. (1) Calculated energy distributions of emitted & particles for 1+ — 1+ transition: E,=32 MeV; 6; =60°
80°, 100°, and 120°.

)

were roughly shown by Eq. (6.11) and in Fig. 3. The
effects of the non-§-function approximation are more
conspicuous for the 1+ state than the 27 state and for
61 MeV than 32 MeV, as is also readily understood
from examining Eq. (6.11).

As long as we confine ourselves to first-order pertur-
bation theory, these modifications remain unimportant
because of the small intensities of 1+— 2+ 1+— 1+

VIII. DISCUSSION ON HIGHER ORDER AP-
PROXIMATIONS AND NUCLEAR EFFECT

All calculations in the previous sections are the first-
order perturbation calculations of Coulomb excitation
and the subsequent decay of the excited levels. Here we
would like to give some qualitative discussion about the
validity of the first-order approximation and the possible
consequences of the higher order effects.

transitions relative to that of 1t — 3*. However, as
will be discussed later, these intensity ratios are modified
considerably by the higher order effect, and tailings of
the 1*— 2+ and 1+ — 1% distributions will make re-
markable contributions to the total distribution.

One of the important higher order effects for our
problem is the damping effect. It is known® from a formal
viewpoint that the second-order reorientation effect
associated with transitions among the sublevels of the

9 G. Breit and J. P. Lazarus, Phys. Rev. 100, 942 (1955).
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Figure 5 (continued).

excited states is of the same order as the de-excitation
effect. Since no energy change is involved in the former,
transitions among the various magnetic sublevels are
favored. The fact that these two effects enter in the same
order of the Coulomb excitation has been examined in
detail by Breit and Gluckstern.” Even if the transitions
between magnetic substates are neglected, it still may
be worth while to mention the importance of the effect
of the finite lifetime of the upper levels, at least in the
6Li case. We can illustrate this in a qualitative and
intuitive way.

Let us introduce vs(b)/%, the probability per unit
time for the Coulomb de-excitation of an excited level
J to the ground state when the nucleus moves along the
Coulomb orbit with impact parameter 5. A necessary
condition for the validity of the previous first-order
calculation is

L'r>>vs(0), 8.1)

or, in other words, that the disintegration takes place
so rapidly that the excited nucleus does not have
enough time to make a second Coulomb interaction

with the target nucleus going back again to the ground
state. Otherwise, we must take into account the proba-
bility of this backward process, which will introduce a
factor

Ty/[Ts4vs(0)] (8.2)

multiplied by the first-order disintegration probability.

Of course, the definition of the probability per unit
time v 7(b) in the framework of our classical method is
not quite evident, because there the probability of a
transition is given only through the time integral from
t=— to {=-+c in Eq. (2.4). Nevertheless, for our
qualitative argument, we can conclude that the main
contributions to the time integral come only from the
rather narrow integration domain near (=0; that is,
from the time interval while the incident nucleus
traverses the portion of its path located near the point
of the closest approach, separated by the distance Rmin
from the center of mass of the target nucleus. Then it
is plausible to take the effective path length as also
comparable to Ruyin.
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TasLE II. Values of de-excitation probability per unit time for
each excited level for typical scattering angles.

Jr
() 3+ 2+ 1+
(2) Eo=61 MeV
20° 0.0028 0.0018 0.00075
30° 0.082 0.019 0.0096
40° 0.23 0.080 0.041
60° 0.90 0.36 0.19
(b) Eo=32 MeV
20° 0.000075 ~0 ~0
60° 0.031 0.0013 0.00018
80° 0.070 0.0037 0.00060
100° 0.098 0.0057 0.00095
120° 0.10 0.0057 0.00096

As is well known, Rni, varies with the scattering
angle 0 as
Ruin=0a(1+4[1/sin}6]).

Thus, v.7(b) is obtained by equating

(8.3)

[v7(8)/%]X (time of flight through the effective length
of orbit)= (total de-excitation probability P ;,).

(8.4)

Now, the time of flight through the path length Ruin
is given by Rmin/v, where v is the orbital velocity at the
point of the closest approach, which is obtained from
the conservation of angular momentum, Ruinv=bv,.
Thus, Eq. (8.4) becomes

Lvr(0)/ 7 ][ Rmse/bv0]= P sy s
or, remembering b=a cot3f,
v7(0)= (Eo/m)Ps1,(0) sind/[1+4-sin(6/2) F, (8.5)

where n=ZZ'¢?/iv. Table II shows vs(0) for typical
values of the parameters and Table III shows corre-
sponding values of I'y/[T s4v7(f)]. In this calculation
we used the value of Py.,z,(6) which Gluckstern and

TasiE III. Correction factors due to the damping
effect for each disintegration process.

J=

01 3+ 2+ 1+
(@) Ey=61 MeV

20° 0.88 1.0 1.0

30° 0.20 0.97 0.99

40° 0.080 0.88 0.96

60° 0.022 0.63 0.84
(b) Eo=32 MeV

20° 1.0 ~1 ~1

60° 0.39 1.0 10

80° 0.22 0.99 10

100° 0.17 0.99 1.0

120° 0.16 0.99 1.0

KOSUKE NAKAMURA
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Breit have estimated : that is, P=0.05 for §=30°, J=3,
E1;=061 MeV, and P=0.21 for =120°, J=3, Er;=32
MeV.10

The intensity of 1+ — 3+ is diminished considerably
by the damping effect, while 1+— 2+ and 1+— 1+
are little affected, and this trend becomes more apparent
for larger angles. Figures 6(a), 6(b), 7(a), and 7(b)
show the corrections when the above analysis is applied
to the Gluckstern-Breit first-order calculations in Ref. 5.

The above estimation of the damping effect is cer-
tainly approximate and too much reliance must not be
given to the detailed quantitative results. The value of
By(E, 17— 3%) used by Gluckstern and Breit is about
10—% cm?*, which is not unreasonable. This fact shows
that the important part of the ejected a particles
certainly comes from the Coulomb disintegration of Li,
which basically justifies use of the above values of P.

There are some other higher order effects which have
so far been neglected in this treatment. First, our
treatment involves a strong limitation on the number of
low-lying excited states and it is not valid, in general,
if the incident projectile is heavier than °Li, since the
electric field surrounding the target nucleus becomes so
intense that higher excitation processes are not negli-
gible. And if the electric interaction becomes so strong
that many levels are actively involved in the excitation
process, one has to solve directly the set of coupled equa-
tions which describe the population of the nuclear states
during the collision, as the Copenhagen group' has
already pointed out.

To the second order of perturbation theory, the
probability amplitude dx.,:m® for a transition from
the initial state Wy, ,,1m of the incident nucleus is given by

bk,s,lm(2)=bif(l) (w)—l"Zn binf ) (8-6)

where b;;®(w) is used as the first-order amplitude
instead of Eq. (2.2), and

bing= iystm | H' (©) | n)ee2tdt
=y /_ (W l
t
X | Wal H' (') [ ¥ romppe—ierdt! . (8.7)
The frequencies w1, w,, and w are given by
1= (Wo—W,)/1,
wy= (Wa—Ex—W) /%, (8.8)

w= Wo—E—W,)/#,

where the energy of the intermediate state is denoted
by W,. The double integral in Eq. (8.7) is evaluated

10 Numerals in the above tables are somewhat arbitrary because
the employment of Ruin/2 for the collision time is arbitrary, as
mentioned in the text. On this point see Ref. 7, especially Egs.
(9) and (10).
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by Alder ef al.! and it gives to the total cross section.!* This is because for large &,
L the £7! in the second term of Eq. (8.9) is large compared
bing=5bin(@01)bns (w22) to the exponentially decreasing function of £ in Iy (6,£)
. in Eq. (8.10).
7 ® b; bny(we— n . . .
+—@ / in(wrtg)bas (@2 Q)dq , (8.9) In the summation over the multipole orders, the main
2 J_e q contribution to the second-order cross section will arise

where @ stands for the principal part of the integral.
The b;;®(w) is obtained from Eq. (2.3), (4.5), and
(5.12), and is found to be

bis® ()= (%ZeZ/ihvo)g > S

=1 p=N>\ pu’

X (TM \u| JoMo){pJ || T\||T o)
XDM#')\ —-%7"_%0: _%7": _%7")

XY}\IL’ %T7O)I>\lt’ (012) (810)

Substituting Eq. (8.10) into Eq. (8.9) and inserting
the result into Egs. (4.2) and (4.1), the differential
cross section to second order may be written as

do=doW4de WD 4-dec@ . (8.11)

Here, the first term represents the first-order excitation
cross section which we have already obtained in Eq.
(4.4) or Eq. (4.6), the second term is the interference
term between first-order and second-order differential
cross sections, and the third term is the second-order
excitation. These last two terms are explicitly calcu-
lated in the Copenhagen review,! and we know that if
the intermediate energy levels are well above that of
the final state, they may give a significant contribution

from the lowest N permitted by the selection rules for
the nuclear matrix elements, as is the case for the first-
order cross section.

Next we shall touch on the multipole excitation by
successive transitions leading to a final state, a process
which may become important with increasing charge of
the projectile. For instance, if a heavy-ion projectile
with 0% spin and parity in its ground state has the 4+
state in a collective band, it should be excited by two
E2 transitions via the intermediate 2+ state with quite
high probability, even though the direct excitation of
4+ state by a single F4 transition is very improbable.
In this case, the double quadrupole excitation cross
section may be obtained approximately from Eq. (8.9),
on the basis of the semiclassical treatment, as

UEzEz(Ii—>In—>If)“ (fc/40'2)0'E2(I'i_> In)
Xop([,— 1), (8.12)

where f. is a correction factor less than 1.2 The im-
portance of the double E2 transition compared to the
direct E4 transition is easily seen if we evaluate their

1 See Ref. 1 and also J. O. Newton, in Nuclear Structure and
Electromagnetic Interactions, edited by N. MacDonald (Plenum
Press, Inc., New York, 1965), pp. 287 ff.

12 G, Breit and R. L. Gluckstern, in Handbuch der Physik,
edited by S. Flugge (Springer-Verlag, Berlin, 1959), Vol. 41,
Sec. 1, pp. 548 ff.
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ratio. Using Eq. (8.12),

0’E4(O — 4) ( fvo >2
O'EzEz(O —2— 4) ZI62
623044(E4)

feBoos(E2)Bas(E2)

(8.13)

in which the probability of cascade excitation versus
crossover excitation rapidly increases as the charge of
the projectile increases.

In our present case, however, we cannot examine the
validity of the above theory of Coulomb disintegration
by multiple-excitation processes because of the lack of
the experimental data.

Furthermore, there remain to be studied other higher
order effects. For example, the polarization of the inci-
dent nucleus in the intense Coulomb field is not as easy
to estimate as the damping effect, and must be reserved
for future study.

Another source of discrepancy would be the nuclear
effect. This effect might be expected to become import-
ant when the distance of closest approach of the two
particles is less than the sum of their radii. This is
expected for large angles of a-particle emission (larger
than 40° for Erni~60 MeV, larger than 110° for
E1;~30 MeV), and hence a smaller angular region
might correspond to pure Coulomb disintegration.
However, the nuclear surface is certainly not sharp,
and exponential tails of the nuclear potential would give
rise to some modifications of the assumed Coulomb
orbits. As was pointed out first by Kammuri,'* such a
nuclear potential is indeed essential for the interpreta-
tion of neutron-transfer reactions in high-energy heavy-
ion collisions. The effects of such a nuclear potential
for Coulomb excitations and Coulomb disintegrations
remain to be studied.

Finally, we add here a short remark about a possible
stripping mechanism which would give «-particle
emission. For higher energy collisions of heavy ions, the
attractive nuclear potential will certainly play an im-
portant role. Indeed, Kammuri has shown that in
grazing collisions this attractive nuclear potential
tends to cancel the repulsive Coulomb force, and the
deflection angle of the incident particles in the pure
Coulomb field approaches zero, instead of the finite
angle 8 determined by sin}6= (R/a—1)"* (R is the sum
of radii of two colliding nuclei, and ¢ is defined in Sec.
IV). Thus, we might expect that the stripped « particles
would have a forward-peaked angular distribution,
just as neutrons stripped off from high-energy deuterons
exhibit a strong forward peaking. a particles observed
by Knox' from Au to Rh bombarded by 160-MeV

P
13 T, Kammuri, Progr. Theoret. Phys. (Kyoto) 28, 934 (1962).
“W. J. Knox, in Proceedings of the Second Conference on

Reactions between Complex Nuclei, 1960, edited by A. Zucker,

E. C. Halbert, and F. T. Howard (John Wiley & Sons, Inc.,

New York, 1960), p. 263.
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180 have shown just such strong forward peakings. On
the other hand, preliminary estimates of Breit, Mc-
Intosh, and Rawitscher indicate!® that stripping contri-
butions in the case of °Li— o-+d may be compar-
able with the observed cross sections and angular
distributions.

IX. CONCLUDING REMARKS

A general theory is given for the differential cross
section for the Coulomb disintegration of a complex
nucleus. The usual classical orbit method is employed
to describe the motion of the center of mass of the inci-
dent nucleus in the Coulomb field of the target nucleus.
The wave function for the final state, in which the inci-
dent nucleus splits into two fragments, is constructed
from the compound-nucleus theory of Kapur and
Peierls. First-order perturbation theory is used to obtain
the differential cross section.

An explicit expression of the differential cross section
is given for a special but practically important case, in
which lower unstable excited states contribute to the
disintegration process without appreciable interference.
This expression is evaluated numerically to obtain the
energy and angular distribution of ejected « particles
when a gold target is bombarded by Li ions of energy
from 20 to 65 MeV. This seems to be the only existing
data in which Coulomb disintegration would play an
important role; indeed, Gluckstern and Breit’s theory
gives a general quantitative fit to the observed results
along this approach.

Our numerical computations give results essentially
analogous to the simplified theory of the above authors.
Our energy spectrum of « particles (Fig. 5) has some
fine distortion superimposed upon the Gluckstern and
Breit spectrum, but considerable discrepancies from
the observed results still remain unresolved as to the
detailed behavior of the energy spectrum. Our angular
distribution of « particles is found to be practically the
same as that of the above authors.

Our expression for the differential cross section, dis-
cussed above, is obtained from first-order perturbation
theory just as was that of Gluckstern and Breit. How-
ever, we require a more detailed analysis of the higher
order effects than is presented here in order to obtain
both qualitative and quantitative agreement with
experiment.

Concerning one of the higher order effects, rough
estimates are given for the case °LLi — a--d of the proba-
bility of the backward jump of a once-excited nucleus
into the elastic-scattering channel. This probability is
found to be very large and considerably affects the
angular and the energy distributions of « particles
computed in the first-order approximation. The effects
of this damping correction applied to the first-order
angular distributions and the energy distributions are
shown in Figs. 6, 7(a), and 7(b), but we dare not insist

15 See Ref. 5, p. 81, item 4.
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that this correction has improved the agreement with
the observed results.

The intensity ratios between 1+ — 3+, 1+ — 2+ and
1+ — 1+ excitations are also affected considerably by
the damping corrections, and hence the shape of the
energy spectrum will change; but the observed sharply
peaked spectrum cannot be reached through these
corrections.

Concerning the stripping mechanism, it may give
results which are not clearly negligible in comparison
with electrodisintegration. Even though we grant that
the stripping process and the electrodisintegration
process give similar contributions to the Coulomb
excitation cross section, we can only conclude that an
analysis of the data cannot easily distinguish between
the simultaneous presence of both effects and the
presence of just one of them.
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APPENDIX: DERIVATION OF EQUATION (5.6)

Figure 8 illustrates the relative orientations of k;
and K’. The z axis is chosen in the direction of incidence.

COULOMB DISINTEGRATION OF COMPLEX NUCLEI
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z F1c. 8. Geometrical relations of the
various momentum vectors and their

angles.

From the spherical triangle, we get the following
three relations:

sin(@1— @) =sinB siny/sinf;, (A1)
cos((g1— <Pb*7+7r)/2)_COS((01+ﬁ)/2) (A2)
sin(C/2) B cos0 ’
cos((e1— pt+vy—m)/2) sin((6:+8)/2)
= . (A3)
sin(C/2) sin%@

Eliminating sin(C/2) from Egs. (A2) and (A3), we
obtain

cos((e1— @p+v—m)/2)
cos((e1— po—v+m)/2)
sin((¢1— ¢s+7)/2)
sin((¢1— 0s—7)/2)

From Egs. (A1) and (A4) we can further eliminate
¢1— @p and get

cotif tan(% (0:48)) =
or,

—cot36 tan(3 (61+R8)) =

(A4)

sinB cosy= (sin?6;— sin23 sin2y)!/2
cotif=

,  (AS)
cosf3— cosby

in which the plus sign must be chosen for our cases
of interest where 3 remains very small. Thus we obtain
Eq. (5.9) and consequently Eq. (5.6) in the text.



