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as strong as the 0+ state on this assumption, due to the
number of available neutrons. The experimental ratio
of spectroscopic factors is 1.75~0.45, which agrees
within the limits of error.

If the ground state of C"were deformed, the presence
of a d5~2' configuration would not be so surprising. For
values of Nilsson's deformation parameter 8&0.3, the
E=—,

' member of the d5~2 band is brought down quite
far from the level at 8=0; practically degenerate with
the p1/2 level. "

The 10.84 MeV, 1 and 11.83 MeV, (I ) States

Both of these states are excited by s&~2 pickup, and
are wide. The agreement with the DWBA predictions
was poor for the 10.84 MeV state, but l=0 gave the
best fit. One possible reason for the failure of DWBA

"S. G. Nilsson and B. R. Mottelson, Kgl. Danske Vidensk
Selskab, Mat. Fys. Skrifter 1, No. 8 (1959).

for these two states lies in their short lifetime which is
of the same order of magnitude as the interaction time.

It seems improbable that these states would be formed

by pickup of a is&~2 neutron, since the corresponding
particle-hole excitation energy found by Vinh-Mau and
Brown" is 31 MeV. It appears more likely that these
states are excited through a configuration of the type
Ps/2 2~1/2 Pl/2
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A new collective model for 6nite nuclei is presented which treats all of the four types of excitations of
nuclear matter in arbitrary orbital-angular-momentum states. The model avoids the normal assumption
of a constant ground-state density by generating the collective motion through a coordinate-scale-factor
transformation of the ground-state density distribution. The cross sections for excitation of these generalized
collective states by inelastic electron scattering are calculated for monopole and quadrupole oscillations.
A specific application to the 180 inelastic scattering of electrons from "0 is given. It is shown that the
model exhausts the corresponding multipole sum rules.

I. INTRODUCTION

HE nuclear photoeffect is strikingly dominated'
by the giant electric dipole resonance which was

erst described by Goldhaber and Teller'- as a dipole
oscillation of the protons as a whole against the neutrons
as a whole in the nucleus. If one considers nuclear
matter as made up of four interacting Ruids, spin-up

~ Supported in part by a grant from the U. S. National Science
Foundation.

f Supported in part by a grant from the U. S. Air Force 0%ce
of Scienti6c Research.' E. Hayward, Rev. Mod. Phys. 35, 324 (1963).' M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).

and -down protons and spin-up and -down neutrons,
three other types of "normal modes" are possible. '
These three are the compressio/sal mode, all four fluids
in phase, the spi/3 mode, spin-up nucleons against spin-
down nucleons, and the spi23 isospin mode, s-pin-up
protons and spin-down neutrons against the other two
Quids. Following this nomenclature, we shall designate
the Goldhaber-Teller mode as the isosPiN mode.

A phenomenological quantized oscillator model of the

8W. Wild, Bayr. Akad. Wiss. Mat. -Naturw. Klasse 18, 371
(1956); S. Fallieros, R. A. Ferrell, and M. K. Pal, Nucl. Phys. 1S,
363 (1960); A. E. Glassgold, W. Heckrotte, and K. M. Watson,
Ann. Phys. (N. Y.) 6, 1 (1959).
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isospin dipole state has been introduced by Walecka, '
and was later generalized by I)beralis (and independ-
ently by Lewis) to include the spin-isospin dipole
states. In a 0+, T=O nucleus, the latter oscillation
gives rise to 2, 1, or 0 states (the excited state spin
is 1) which are excited by the inelastic backscattering
of electrons and play an important role in p, capture' '
and in neutrino absorption" by complex nuclei.
Recently, the 20.4-MeV state in 'He has been identified
as a compressional monopole state, "and the oscillator
model was further generalized to describe this vibration.
The Fra»&urt group has considered isospin monopole
and quadrupole" states and found some evidence for
the latter. " It is clear that the number of di6erent
low-lying collective states can be quite large.

It is the purpose of this paper to completely generalize
the oscillator model and to consider collective vibrations
of the nuclear Quids in general multipole states. For
each multipole the four modes give rise to states with
the given L value, two with S=0 (compressional (T=0)
and isospin (T=1)] and two with S=1 [spin (T=O)
and spin-isospin (2'= 1)j.The spin-orbit splitting which
occurs in nature removes the J degeneracy of the latter
pair of states and, in general, one has eight collective
states for each multipole.

The multipolarity of the electromagnetic transition
connecting the collective state to the ground state
should not be confused with the multipolarity of the
nuclear Quid vibration. Since we are dealing only with
T=O nuclei with 0+ ground states, a complete descrip-
tion of each state is obtained by specifying (a) the
angular momentum and parity of the state, (b) which

of the four collective modes of nuclear matter it repre-
sents, and (c) the multipole order of the fluid oscilla-
tions. For example, the familiar giant dipole state is
termed the "1 isospin dipole" while the three collec-
tive states of the spin-isospin mode with I.=2 are the
"1+(2+,3+) spin-isospin quadrupoles. "

On the following pages we present, besides the density
matrices describing oscillations with general I., explicit
cross sections for the excitation of monopole and quad-
rupole oscillations of the four modes by inelastic
electron scattering. (The dipole states have been
treated already. 4') A comparison with experiment is

made for "0, for which purpose the energies and

4 J. GoMemberg, Y. Torizuka, W. C. Barber, and J.D. Walecka,
Nucl. Phys. 43, 242, (1963).

6 H. Uberall, Phys. Rev. 137, B502 (1965).' F. H. Lewis, Bull. Arn. Phys. Soc. 10, 583 (1965).
~ H. Oberall, Nuovo Cimento 41, 25 (1966).
L. L. Foldy and J. D. Walecka, Nuovo Cimento 34, 1026

(1964).' H. Uberall, Phys. Rev. 139, B1239 (1965).
"H. Uberall, Phys. Rev. 137, B502 (1965)."C. Werntz and H. Oberall, Phys. Rev. 149, 762 (1966)."D.Drechsel, Nucl. Phys. 78, 465 (1966)."R.Ligensa, W. Greiner, and M. Danos, Phys. Rev. Letters

16, 364 (1966).

widths of the states were taken from particle-hole
calculations. '4 "

Here the trace is taken over the spin, isospin, and
spatial coordinates of all A nucleons, and n represents
quantum numbers other than the total angular mo-
mentum j which designate a state. If the final state is a
collective state derived from the initial state one makes
a phenomenological theory of the process represented in
Eq. (1) by replacing

~ j;, m;,n;)(jy, mf, cry~ by a density
matrix C(j mf~, a )fin spin, isospin, and configuration
space:

The trace is taken with respect to a single spin, isospin,
and space variable. In general, C is derived from the
ground state density by a time-dependent displace-
ment of some sort and is linear in a displacement
parameter. If an oscillator Hamiltonian is dered in
terms of the displacement and its conjugate momen-
tum, the oscillation can be quantized and C becomes a
combination of creation and. annihilation operators.
Then the matrix element M is defined by

M=(«~tr(OC(j f mfrzf)) ~0), (3)

where t0) is the vacuum state and Nip designates the
number and frequency of oscillation quanta in the anal
state.

The density matrices 4 for the four modes can be
obtained from the ground-state density distribution
pp(r) in a straightforward way. In this derivation we
assume (1) the ground-state matter distribution pp(r)
is spherically symmetric and represents a nucleus with
Z=X=A/2, (2) L and S are good quantum numbers,
and (3) for given L and S, there is J degeneracy. This
latter assumption will be given up in the applications.

Our ansatz is that the multipole oscillations are
introduced by making a scale-factor transformation"
of the ground-state density distribution, po

pp(r) ~ pp(r(1 rp)) =pp(—r)+p'(r),
p'(r) = rp(d/dr) pp(r) . — (4a)

1 B.M. Spicer and J. M. Eisenberg, Nulc. Phys. 63, 520 (1965)."E. Boeker, thesis, University of Amsterdam, 1963 (un-
published)."L.J. Tassie, Austral. J. Phys. 9, 407 (1956); J. J. GriKn,
Phys. Rev. 108, 328 (1957); A. M. Lane and E. D. Pendlebury,
Nucl. Phys. 15, 39 (1960).

IL COLLECTIVE STATE-DESCRIPTION

The goal of any nuclear theory is the calculation of
matrix elements of single-particle operators, 0;, which
generate transitions between initial and final states,
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In the special case that p'represents a monopole vibra- 1/2m. Using the expressions in Eqs. (5), (8), and (9)
tion, conservation of matter requires that Eq. (4a) wefindfor thechargedistributions
be modi6ed to

p'(r) = —(1/r') rp(d/dr)r'po(r). (4b)

The scale factor y is expanded in a multipole series

A d
p, (r) =p;(r) = —r p—o Q—(r/R)' —"ni„Yi (r),

l,m

(10a)

y=Q (r/R)' "ni„Yi„(P),
lm

"=0, l=0

"=2, l)0

p.(r) =p.-'(r) =0

and for the magnetic moment distributions

where the expansion coeflicients nl are to become
operators. To describe the four different modes the
excess density must be a matrix in spin and isospin
space as well as a function in coordinate space. Con-
sider the isospin mode in which the protons are 180'
out of phase with the neutrons. The density matrix
C; must take the form

@ =~xAr, p'

because it satisfies

tr{-,'(1+r,)c;}=—tr{-,'(1—r,)c;}
= 2Ap'

and

p.;(r)=p;;(r) =0,

A (p+p d..;()=-
~

~;.'—"Z (/R)'- .Y.(p),
2m( 2 dr

(10b)
A p„—p~ d

p,, ;;(r)= — ~b;„.r po g—(r/R) —"i„Yi (P)
2m 2 ) dr

The current density can be found if an expression
for the velocity v is obtained which satis6es the equa-
tion of continuity

p'= —& (vp)= &'(vp—o)
tr{-,'(1+o.,)c;}= tr{-', (1—o2)c;}=0. (&b) where

In the above equation the trace is taken only over
spin and isospin space. Similar considerations for the
other three modes lead to the fundamental expressions
for the compressional, spin, isospin, and spin-isospin
density matrices, namely,

d
C,= ',Ar p—o P-(r—/R)' —"ni„Yi„(r),

l, m

~iAo r poP(r/R)' —"n~ Yi (r),
dy l m

p'= r~p, (r)—
dr

r d
poZ—(r/—R)' "P iY (i)r

p, dy l, na

We have introduced P& =pn& which upon quantiza-
tion of our oscillator will become the momentum
conjugate to ni . We obtain the velocity be expanding
v in a complete set of spherical vector harmonics'

d
C;= ,'Ar, r pp P (r/R—)'—"ni„Y—i (r),

dy lm

yl-a+11
Z AAiL, -

l,m, L, p, g&—&
Yiz,"(r'), (12)

d
C', ;=—~Av, o r poP(r/R)' ."ni Y—i (r).

l, m

I'he subscript m' to the spin matrix 0 denotes the s
projection of the total spin, ~1, 0.

Electrons are scattered by the transition charge,
current and magnetic moment densities inherent in the
C's of Eq. (8). The charge, p(r), and magnetic moment
p(r), densities are given by

)2~+1~»2

kri (13)

For monopole vibrations

and determine the expansion coefBcients Al~ such that
Eq. (11) is satisfied. It is shown in the Appendix that
there is only one nonzero coefficient for a given /,
that for L=/ —1. Its value is

()=t {l(1+*)~},
(9)

v=(Poo/p)r (14)

tr{~p~(2(1+r,))+p„(-,'(1—r,))7r4}, Vector density matrices F describing the matter Qux
densities for the four modes are constructed as in

where P„and P are the magnetic moments of the' 17 A. R. Edmonds, Arlgljcr Momentum zn Quantum Mechurizcs
proton and neutron in units of nuclear magnetons, (Princeton University Press, Princeton, New Jersey, &95'7).
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Eq. (8),
Fp = —4A vpp,

We see that the reduced mass becomes, "after using the
relation P~„'t=Pt „,

F,= ——,'Aa„vpp,

Fi= gA rzvpp,
1 A~s—s = 4~ 7'zo m'&Po ~ Hence, for /, m;

2l+1 Am (r"—'"+')

4~ R2~-2
(22)

Current densities j(r) are obtained from

j= tr{-,'(1+r,)F}.
The results are

(16)

Rl—a 2~l
(leo~

I
n~

I 0)= I
. (23)

(r" '"+') (2l+1)mAo)))

III. ELECTRON-SCATTEMNG CROSS SECTIONS
j.(r) = j'(r) = —kAvpo

j (r) =j.-'(r) =0 (17)

The magnitudes of matrix elements of the charge,
current, and magnetization densities are fixed upon
quantization of the displacements nq in Eq. (5).
Because of the orthogonality of the Yq (r), the oscillator
Hamiltonian can be written as

For suKciently light nuclei the Born approximation
can be used to calculate the cross section for inelastic
electron scattering in which collective states of the
nucleus are excited. The cross section is'

do. k2 8mO2- 1
v.(0) Z IPrll~. (q)ll~') I'

dQ k, A4 v=0 2J~+1

1
plm)plm+ Z gp~ &lmf&lm p

l,m 2p, l, m
(18)

00

+Vr(e) 2 (1(~.IIT~'(q) ll~~) I'
&=i 2J;+1

where a~ and pq are de6ned in terms of creation and
annihilation operators at 't and a& by

( 1 1/9

[ .t+(-1)- .7,
&2pa (

pCO~
'12

p(„i ——[ug„—(—1)"a( „7.
2

(19)

As usual, the c~ 's obey the commutation rules

[a(„,u( „.t7= b(pb„„. (20)

The frequency ~& corresponds to the energy assigned to
the state and the effective mass p is determined by the
theory. The procedure is to calculate the kinetic energy
of the oscillation using the kinetic-energy density im-
plied by the velocity v in Eq. (12) and to equate this
to the kinetic energy part of the Hamiltonian in Eq.
(18). Thus

+
I (jcllT~"(q) ll~~)1') (24)

Mz~ dr p(r)j z(qr——) Yz~(r), (24a)

T~~" q' drj(r) VXj——&(qr)Y» (r), (24b)

In the above equation kq and k~ are the incident and
scattered momenta (the electron mass is neglected, as is
nuclear recoil), a=1/137, q=km —kq, &m=q' —(4—4)'
0 is the electron scattering angle, and the two angular
functions Vr, (8) and Vr(e) are given by

Vz(0) = 2kik2(A4/q4) cos'(0/2),

Vr(0) = (2k,k2/q') [sin'(0/2) 7
X [(kg+k2)' —2kqk2 cos'(S/2)7. (25a)

The reduced matrix elements are those of the operators

E=-', rNA dr v'pp(r) Tg~"' —— drjg(qr) Ygg (r) j (r), (24c)

1 y2l—2a+4

=2mA Q —P(, PpmAKA( r, dr po(r)
lm, L p2 R2l—2
t',m'. L'

Tz&'I'=q drj z(qr)Yzz~(r). p(r), (24d)

dQYgz, Ypr, ."' (21)
Tq~ 4= dry(r) VXjq(qr)Yqq (r). (24e)

mA (r"-'~')
( 1)"Pi&i P A—u, ',

&,~2@2 4XR2' '" L

with R the rrns radius of the charge distribution,
(r") the Nth moment of the charge distribution, and
where the orthogonality of the Y&1.

" has been used.

MJ~ is the Coulomb multipole operator while T~~',
and T~~ are the transverse electric and magnetic
multipole operators; ep(r), ej(r), and ep(r) are the

"F.H. Lewis, Jr., and J. D. Kalecka, Phys. Rev. DB, M49
(1964).
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nucleon charge, current, and magnetic moment den-
sities. The reduced matrix elements are defined by the
Wigner-Eckart theorem' as

(mr+1)"'(Jfxfl 0Rgul J,M;&
= (~*~'~/lf I ~r~r)(~r II3f ~ll~'& (»b)

In the giant dipole region of nuclear levels, one can
expect that states representing all four modes of
nuclear excitation will occur and that monopole and
quadrupole vibration will be present as well as dipole.
For this reason we have calculated the matrix elements
and cross sections for excitation of all those states
which have a monopole or quadrupole spatial depend-
ence. (The dipole states have been considered in earlier
work). Using Eqs. (10) and (17) for the nuclear den-
sities, the following nonzero reduced matrix elements
are obtained:

Motto pote

Matrix elements for the spin-wave excitations are
not listed but are the same as those for the spin-isospin
states except for a factor of p„+p„rather than p„—p„.
The smallness of the square of this factor makes them
unobservable in electron scattering. The frequencies or

in the above equations refer to the observed energies
and are, of course, different for each of the eight states
listed above. In a,ll cases F'(q) is the derivative with
respect to q of the elastic form factor normalized so
that F(0)=1.

The cross sections for the states are as follows:

Monopole

(do
/

do ks n' Al F'(q)]'
'V (t/); (27')

kdQ, kdQ r kr A4 4R'mo/

(do ks ns A LF'(q)]s
1+.

kdQ . ; kr 6" 2Rsnuo

p+. (oll~ollo&. = (oll~ollo&'

1 ( A )1/2
qF'(q);

(4s.) '/'R (8m')
(26a)

Quadrupole

f/ o /' q-'

XI —Vr(e) . (27b)

Py Pn 1
1+; «llr" IIo&.-'=

2im (4n-) '/'R

/
A ~'/'

Xl I
q'F'(q).

l,4m~
(26b)

Quadrupole

2+

1

Py Pn
1+; (1llr;"llo&, ,=

2im (4~) '/'R

2+;

A
X

I I q'F'(q); (26e)
&20m(s)

Ijn

( A )1/2
qF'(q), (26c)

(2llrs' Ilo&,= (2llr Ilo), (26d)

F'(q);
(4') '/'R l 8mcol

1

2+.
7

(do) do ks n' Al F'(q)]'
l dQ), dQ; kr A4 2R'mco

X I
q'Vz, (0)+esca)'Vr(tt)]; (28a)

The above cross sections are rough upper limits on
the physical cross sections because the matrix elements
for the various multipole transitions exhaust approxi-
mate sum rules. If Q is a sum of single-particle operators
and H is the Hamiltonian for a nuclear system, it is
easy to show" that

(ol [Q, l a,Q]]l0&=2g (z.—zo) l(uIQlo&l . (29)

In our case, the operator Q has the form

t
do ks n' Al F'(q)]'

2+
kdQ, ; kr 6' 2R'm~.3+-

/, —
/
-l' q'

I

—Vs (e)» 1 ' . (28b)
2 /m'

3+. (3llr mollo&

2m (47r) '/'R

) A y
'/'

Xl I qsF'(q), (26f)
&4m+&

(/, —u-)

2mi (47r)'/sR

( A ) r/s

X I I
q'F'(q) . (26g)

5rtuo)

Q=Z f(r~) rs"'

~,(')~ ('),

(30)

"R.A. Ferrell, Phys. Rev. 107, 1631 (1957).

One recognizes that the spin and isospin operators which
appear are part of the set of 15 generators of the Lie
group SU4. If one makes the assumption that the nu-
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clear potential has SU4 symmetry (Wigner super-
multiplet theory) and, further, that it is velocity-
independent, the operator Q commutes with the
potential-energy operator and one can show that

A

2 ~.l&nIQIo&l'= &oI & L«f(r')O'Io&
n 2m 1=1

(31) & ~-l&nl 2 Js(«~)rs"los"llo&l'
n i

Sum rules for the transverse matrix elements are
somewhat more complicated, so we con6ne ourselves
to the matrix element appropriate to the 1+ spin-
isospin monopole state. Because of the monopole dis-
tribution of the magnetization density p(r), the appro-
priate sum rule is

(o I Lvf(r) 3'Io&
2m

The sum rule is exactly valid if Q contains no spin and
isospin operators. "The monopole, dipole, and quadru-
pole sum rules for those states that are excited by the
Coulomb Geld of the electron are:

Monopole

p ~„l &nl 2 ' lo&l =2 ~„l &nl Z 'sr, "&lo

(o I (vj,(qr))'I 0). (34)
2m

The right-hand side, to lowest order in q' is is q4R'(2/2ns).
The matrix element on the left-hand side is related to
our model reduced matrix element LEq. (26b)] by the
equation

&I'I 2 is(qr~) s "los"'I o&=
3

2A
Z~-l&nl p r, rsl'l~„lO

(32a,)
1 (p„-p„) iq

2ns 2 (6n-)'i'
(35)

Dipole

2 ~-l&nl Z s'Io&l'=Z ~-l&nl & e' s"'Io&l'

(32b)

Upon substitution of the value of the model reduced
matrix element, one sees that the sum rule of Eq. (34)
is exhausted by our 1+ spin-isospin monopole state.

IV. APPLICATION TO ' 0
The nucleus "0 has been intensively studied both

theoretically and experimentally, and one can hope to
identify the various collective states in its spectrum.
For this reason, we have selected it as an example.
Since our model provides no energies, these must be
obtained either from experiment or from shell-model
calculations. However, there are certain guidelines
which the collective model does provide.

In the erst place, for a given collective nuclear mode
a relationship between the energies of the multipole
oscillations can be established. In the dipole and
quadrupole oscillation no radial nodes are introduced,
while a radial node does occur in the monopole oscilla-
tion. If one returns to a model with constant nuclear
density and a sharp edge" and sets up a wave equation
for the excess density p&'(r), the boundary condition for
the three densities are

=g co„l&nl g s;rsi'&o„'Io&l'=
n 2m

QNudrg pole

P eo„l (nl P fo(r, ) IO&I'=& ~-I &nl 2 fo(r')rs"'I o&I'

(32c)
4A

=g ~„l&nl g fo(r;)rsvp'l~„&'llo&l'= R'

with fo(r)=2ss —x'—ys. In the above equations, R'
again represents the mean-square radius.

The proof that our Coulomb matrix elements obey
these sum rules is straightforward As an example, we
treat the matrix element for the 2+ compressional
quadrupole state. We erst note that Eq. (32c) can be
rewritten, to lowest order in q', as

4A q4

Z -l&2li~sllO&l'=
n m 9+64~

where the definitions of Eqs. (24a) and (25b) have been
used. Returning to Eq. (26c), it is apparent that
eol &2IIMsllo&l' is equal to the right-hand side of the
above quadrupole sum rule upon taking

(37)1: +o.co2= 1:1.51:1.59.

Thus, the monopole and quadrupole oscillations are
roughly degenerate and somewhat higher in energy
than the dipole. The same ordering is, of course, also

F'(q) =—-'qR'+

ss M. Gell-Mann and V. Telegdi, Phys. Rev. 91, 169 (1953).
2' Helmut Steinwedel and J. Hans D. Jensen, Naturfrsch. SA,

413 (1950)

po'(r) ln =0,
r" vpg'(r)la=/ vps'(r)=0. (36)

(33)
Computing the lowest roots kiR of the appropriate
Bessel functions and setting coi ~ ki, one Gnds that
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expected on the basis of simple shell model arguments
where the unperturbed states would have the ratio
1:2:2.

A second general guideline is provided by the
nuclear matter calculation of Glassgold et al. ' These
authors found that the compressional mode excitation
is much lower in energy than the other three (in fact
the energy is complex since it is in the region of the
unperturbed particle and, hole energies), that the spin
mode is next lowest in energy, and that the isospin and
spin-isospin modes lie highest and are nearly degenerate.
This is precisely the ordering found in 'He where the
0+ compressional monopole state" is at 20.4 MeV, the
2 spin dipole state at 22.2 MeV, and the T=1 dipole
states at somewhat higher energies. " '4

Inelastic-electron scattering cross sections have been
6 for 0 at an ang]e of 1&0 7 and at this

angle, only the transverse matrix elements contribute.
For that reason we do not discuss the two purely
Coulomb states, the 0+ compressional monopole (the
"breathing mode" state) and the 0+ isospin monopole.
The positions and widths of all the other states, except
the 3+ spin-isospin quadrupole can be estimated
from the calculation of Spicer and Eisenberg. '4 The
2+ compressional quadrupole and 2+ isospin quadrupole
states are characterized by having large E2 transition
strengths. Spicer and Eisenberg calculate a 2+ T=O
state in "0 at 14.48 MeV which has 58.8%%u~ of the
strength and which contains as its principal con6gura-
tion (1ps/s)

—
'(1fr/2) We associate this state with the

13.0-MeV peak in the data of Vanpraet. "Spicer and
Eisenberg Gnd the 2+ T= 1 state with large E2 strength
(44.9%) at 25.6 MeV which has as its principal con-
figuration also (1ps/s) '(1f7/s). The 2+ sp~n-isospin
quadrupole state is harder to obtain from the shell-
model calculation since it has nonzero quadrupole
strength only if I.S coupling holds. However, Spicer
and Kisenberg find a 2+, T= 1 state at 30.62 MeV whose
major configuration is (1ps/s) '(1fs/s), and which is
the most likely candidate. )We note that states with a
predominant configuration (1ps/s) (2p3/s), etc., are
ruled out because of the radial node in the transition
density. )

The positions of the 1+ states are also somewhat more
ambiguous than the 2+ states with large quadrupole
strength. These states cannot be excited strongly by
low momentum-transfer reactions such as gamma ab-
sorption, so with either the shell model of the collec-
tive model, the matrix elements are very small. For this
reason the matrix elements are not given by Spicer and
Eisenberg and we must attempt to identify the col-
lective states from their principal con6guration. The

ss Paul Szydlik and Carl Werntz, Phys. Rev. 138, 8866 (1965);
Erratum, 140, A134 (1965)."A. de-Shalit and J. D. Walecka, Phys. Rev. 147, 763 (1966)."T. A. Tombrello, Phys. Rev. 138, 340 (1965)."J. Goldemberg and %. L. Barber, Phys. Rev. 134, 8963
(1964)."G. J.Vanpraet, Nucl. Phys. 74, 219 (1965).

1+ spin-isospin quadrupole state can be associated with
the 1+, 7= 1 level at 31.53 MeV which has as its main
configuration (1ps/s) '(1fs/s), since the only other
possible state, the one which is chiefiy (1s&/s) '(1ds/s),
is at 49.96 MeV. Since the monopole energies should
be nearly degenerate with the quadrupole energies, the
most reasonable choice for the 1+ spin-isospin monopole
state is the one at 28.82 MeV with configuration
(ips/s) '(2pi/..). Another possibility is the state at
19.98 MeV which we have retained throughout our
calculations as an alternate monopole 1+ state.

Because of spin-orbit splitting the spin-isospin
quadrupole state should appear as separate 1+, 2+,
and 3+ states. We have already considered the 1+
and 2+. Spicer and Eisenberg did not include 3+
states in their calculations, so we must rely chieQy
on experiment and on analogy with the 0, 1, 2
dipole triplet. We have put the 3+ spin-isospin quadru-
pole state at 23.0 MeV so that it lies approximately
the same distance below the 2+ isospin state as the 2+
spin-isospin state lies above, as in the dipole case.
Its main conhguration may be conjectured to be
(1ps/s) '(1fr/s)

A spectrum of "0 showing our assumed energy as-
signments appears in Fig. 1.The negative parity dipole
states from Ref. 7 have also been added. The two pos-
sible energy values for the 1+ spin-isospin monopole
state are indicated by dotted lines.
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FIG. 1. Level scheme of collective states and their decay
channels. The dotted lines show the two possible choices for the
1+ spin-isospin monopole state. The negative parity states have
been taken from Ref. 7.
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TABLE I. Particle widths and decay channel energies (both
in MeV) of collective states in "0 which can appear in 180'
electron scattering. The upper line refers to transitions to the
ground states, the lower line to transitions to the third excited
states of the daughter nuclei. The last column gives the widths
selected for the electroexcitation cross sections. The negati
parity states are from Table II of Ref. 7.

(for T=1, T,=o)

Energy
(MeV) Bn('& rss«& r~ Bp&s& rp&'& rp rtozState

19.4
13.1
18.5
12.2
16.9
10.6
13.9
7.6

12.9
6.6

7.8 2 (39)0.14 4.3
4.2
0.16 2.9
2.8
0.03 8.2
8.2
0.44 2.9
2.5
0.5 2.8
2.3

3.515.8
9 7

14.9
8.8

13.3
7.2

10.3
4.2
9.3
3.2

0.14
3.4
0.14
2.1
0.03
7.5
0.35
2.0
0.4
1.4

1 s-i Q 31.5

5.1 22.230.62+ s-z Q

where X,~(") are the particle-hole mixing coefficients
defined in Ref. 15. In "0 transitions can occur most
easily from one-particle —one-hole states, with the hole
in the p shell, to the odd parity (iptrs) ' ground
state and (1psrs) ' third excited state in "0 or "N.
(The low-lying spectra of these nuclei also are shown in

15.7 57.529.01+ s-z M

5.2 22.326.02 iQ

4.6 1.51.825.01 siD

2
1.5

3 szQ
1 iD

23.0
22.5 0.8 1.6

0.8
7.4 7.4

2.30.7 10.4
4.1
8.9
2.6
7.9
1.6
0.9

0.6
0.1
6.1

6.8
0.7
5.3 - 13.5 56.11+ s-i M (aIt) 21.0

dFdndE4.3 0.2 0.2 0.3 0.7
0.4

0.9 1.02 s-i D 20.0
4

k, = 85MeV
1.02 cQ 13.0

2

2 I+m

altIn order to compare the calculated cross section with

experiment, the neutron and proton widths of the

levels must be known. These can be calculated from

R-matrix theory" if the particle and hole con6guration

mixing coeKcients are known, using the relationv

5
I GT

k, = 60 MeV

2 2+
T=0

ri —(IO "cm'/sr)
dn, /

I
I

,' I'm (alt)
I

I

I
I

I
I

I'I
I g+

I I I l I I I I I I I I I

l2 l6 20 24 28. 32 MeV

Fro. 3. Theoretical electroexcitations cross sections of the col-
lective states in '60 for primary electron energies of 60 and 85
MeV and 8=180'.

Fig. 1.) Hence in calculating the widths one must
calculate neutrons and proton widths for decay to
both levels. The results of the calculation are shown in
Table I (along with the results of Ref. 7 for the dipole
states). It is apparent that the calculated widths are
too large, a result which is due to the inherent un-
certainties in applying R-matrix theory to the shell
model and to the neglect of all but the main particle
and hole configurations for the 6nal state. The last
column gives the value of F used in our calculation,
where these have been chosen to conform with the
observed experimental widths but roughly retain the
relative magnitude indicated by the shell model states.

The expressions for the cross sections in Eqs. (27)
and (28) have been used to calculate these as a function
of momentum transfer for the states which are im-
portant in electron scattering through 180, see Fig. 2.
These cross sections, after being multiplied by Lorentz

6

/
/

/
/2
/

/

l60 200l2080

Fxo. 2. Theoretical cross sections for inelastic electron excita-
tion of the collective states in '60 as a function of momentum
transfer, 8= 180 .

ve

The width I', ~ is in MeV, the channel radius (in
Fermis) is given by a=1.4A'", E~ is the penetration
factor, and the reduced widths are given by
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is satisfied. Using standard equations given in Ed-
monds, '7 we 6nd that

—r' ' — (l+1 '/'(d /+1)
pokr. " =—

~ I

—+R'-2 E2/+1 &dr r //

yl—1

X poF'/„(r), E.=/y 1,
R' '

0 EXCITATION ENERGY (MeV)

Fn. 4. Experimental electroexcitation cross section for '60
in the giant-dipole region with an incident electron energy of 59
MeV and 8=180'. The data points are taken from Vanpraet
Ref. 26.

and

l—1y '/'(d / —1~
po&/I,

R' ' E2/+1 (dr r

(A2)

factors using the widths of Table I, have been used
to calculate the differential spectrum for 180' in-
elastically scattered electrons, for diferent values of
the incident electron energies. Figure 3 shows the. cross
section for incident energies of 60 and 85 MeV. The
contribution of the alternate 1+ spin-isospin monopole,
indicated by the dashed line, was not included in the
envelope of the states. For comparison of theory and
experiment, the data of Vanpraet" for 59-MeV in-
cident electron energy is reproduced in Fig. 4. One
sees that our simple theory somewhat overestimates the
total strength but provides a rough picture as to the
distribution of strength.

In conclusion, we may say that at high momentum
transfers a sizeable number of collective states, in-
cluding higher multipoles, may contribute to the elec-
tron scattering cross section. While we cannot claim
to have correctly identi6ed every peak in the ex-
perimental inelastic-scattering cross sections, this cross
section does not appear to have much more complexity
than that given by the simple collective model we have
put forward. Our model predicts in a straightforward
way the relative strengths and q dependences of the
lowest collective states generated by the four excited
modes of nuclear matter and may be used as a guide
to "what to look for" as inelastic electron experi-
ments are pushed to higher momentum transfers.

APPENDIX

We want to 6nd coe%cients A lL so that the equation
of continuity, which takes the form

d 1r'—' 1——Pop — P/ I'/„(r)= —g -P/ Aiz, V
dy l, m peal

—2 2,m, L p

yl—1

X poI'& (r), I-=/ 1. —
gl—2

1 Pg
R.H.S.= —Q—

l

mph''

'
/+1 ~l/2—Al+
2/+1)

(dp,
X~ r' '+(2l+1)por' ' ~Vg„(r)

&dr

( l 1/2 (dp
+Ai

( (

r' —')Fi (r'). (A3)
E2/+1 E dr

Comparing this to the left-hand side, we obtain the two
equations

(/+1 1/2 ( / rI 1/2

1= -A(+~ yA/
(2/+ 1 (2/+ 1)

(A4)

( /+] 1/2

0= —A /~~ (2/1 1),
(2/+1

with the solutions

Al+ ——0,

Thus, the right-hand side (R.H.S.) of Eq. (Ai) can be
written

—yl—1

po(r)&~~ (r) (A1) (2!+1)"'


