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Bethe's treatment of three-body clusters is extended to the entire linked-cluster perturbation series.
The result is a completely rearranged expansion in terms of "compact clusters. " The spatial correlations
within these terms are all of quite short range. As a direct consequence, each of these new compact-cluster
terms is proportional to lf~' ', where h' is the number of momenta inside the Fermi sea which can be summed
independently after allowing for momentum conservation. The "small parameter" of the expansion is
x=p J'~ f ~'dr, where p is the ordinary nuclear density and f @ &=co—is the "wound" in the correlated two-
body (Bethe-Goldstone) wave function. In nuclear matter this x is of order 10%.This result requires that
the single-particle potentials be de6ned in terms of a certain subset of all the self-energy insertions. The
allowed insertions are those which can be evaluated entirely on the energy shell, by means of a "generalized
time-ordering" factorization. The totality of these insertions is said to constitute an "on-energy-shell mass
operator" M' . The resulting occupied-state potentials are quantitatively very similar to those of most
previous versions of nuclear-matter theory. However, the present intermediate-state potentials are small
enough (being only of order +1 MeV) to be safely ignored in practical calculations. This simplihcation is
oR'set by the need for a separate calculation of the three-body clusters. These single-particle potentials are
"physically meaningful" in the sense that they lead to an optimum treatment of the short-range correla-
tions. The bulk properties of nuclear systems are determined almost entirely by these short-range correla-
tions. It is therefore proposed that similar potentials be used in a many-body theory of Gnite nuclei. True
occupation numbers occur in a simple and natural way throughout the entire expansion. The formal and
practical consequences of this feature are carefully examined. It is argued that this is signi6cant for a theory
of Gnite nuclei. Comparisons are made with several diferent "renormalized" formulations of quantum
statistical mechanics, and also with the Green s-function theory of nuclear matter. The present formulation
tends to artiacially suppress the long-range correlations (e.g., pairing correlations) between particles near
the Fermi surface. This defect can be eliminated by using a degenerate analog of the Goldstone expansion.

I. INTRODUCTION

%0 developments in the Brueckner-Bethe-Gold-
stone theory of nuclear matter have emphasized

the need for a more complete understanding of the
higher order terms in this theory. On the one hand,
attempts to extend this theory to actual nuclei have
focused attention on the self-energy problem. Several
authors' ' have shown that the higher order terms which
have been associated with the "rearrangement energy"
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play an important role in determining the saturation
properties of actual nuclei. On the other hand, Bethe's
improved treatment of three-body clusters, ' to al/
orders of perturbation theory, represents a radical
departure from previous ideas about the convergence
of the theory. This treatment suggests the possibility
of systematically rearranging the entire perturbation
series, in such a way that a rapid rate of convergence
can be seen directly from the structure of the new series.
Such a "renormalized" perturbation series should make
the theory of nuclear matter more accurate and more
convincing than previously. It may also lead to more
con6dence in extensions of the theory to liquid He',
because there the practical problems of convergence are
much more severe. ' The main purpose of this paper

r H. A. Bethe, Phys. Rev. 138, B804 (1965). For an alternative
treatment, see also S. A. Moszkowski, Phys. Rev. 140, 8283
(1965).

8 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
(1958).
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Fro. 1. Examples of interaction (a) oB the energy shell,
and (b) on the energy shell.

is to present a renormalized perturbation theory of this
character.

%e believe that this expansion can also provide a
satisfactory formal description of the shell-model
potential. A brief justification for this view will be
given here. Most of our discussion of the problems raised
by the finite geometry will, however, be reserved for a
future paper.

The present rearranged expansion can be extended to
open-shell nuclei, and to systems with pairing and
random-phase correlations, by performing similar
partial summations in the context of the degenerate
linked-cluster formalism. "In principle, this approach
should therefore provide a gemtitative theoretical basis
for Landau's phenomenological theory of a Fermi
liquid, " insofar as this applies to nuclear matter and
liquid He'. Suitable degenerate analogues of the present
expansion will be discussed in a later paper. Ke have
found that the important subjects of the rearrangement
energy and the optical potential cannot be dealt with
adequately without invoking this degenerate formalism,
so these topics will not be discussed here.

A number of other many-body formalisms were con-
sidered during the course of this investigation. These
included the Green's-function method as well as the
perturbation methods of quantum statistical mechanics.
Comparisons are made with these other formalisms in
order to illustrate and defend the special features of
the present scheme. Ke believe that this is the most
satisfactory method for the nuclear many-body
problem. This is because the present method optimizes
the treatment of the short-range few-body correla-
tions. These are by far the most important correlations
for the bulk properties of nuclear systems. As mentioned
above, other types of correlations can be handled by
using degenerate analogues of this theory.

' C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).
rsB. D. Day, Ph.D. thesis, Cornell University, 1964 (un-

published). This study is quite similar to Ref. 9, both as to methods
and results, although the work eras done quite independently.

r' T. Morita, Progr. Theoret. Phys. (Kyoto) 29, 351 (1963).
'~B. H. Brandom, in Proceedings of the International School

of Physics "Enrico Fermi, " Course 36, Varenna, 1965 (to be
published).

'sB. H. Brandow, Rev. Mod. Phys. (to be published). This
paper pvill be referred to as LCE.

r4 L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956);
32, 59 (1957); 35, 97 (1958) LEnglish transls. : Soviet Phys. —
JETP 3, 920 (1957);5, 101 (1957);8, 70 (1959)g.

The entire rearranged expansion exhibits some inter-
esting formal relations which are sunnnarized by an
unusual variational principle. The physical signiGcance
of this variational principle is explored.

There are three basic ideas in the present formula-
tion, and these can all be expressed quite simply. These
are (i) compact clusters, (ii) on ene-rgy she-ll insertions,
and (iii) true occupation probabilities. These concepts are
introduced in Secs. II, III, and IV. The physical
motivations for this formulation are discussed in
Sec. V. The most interesting practical consequence is
the rapid initial rate of convergence. This is character-
ized by a "small parameter" I(:, which is numerically of
order 10jo for nuclear matter. The role of this parameter
is discussed more fully in the Appendix. In Sec. VI
the expansion is formulated more precisely in terms of
renormalized propagators. This leads to a remakable
mass operator sariational princi pie, the consequences of
which are examined in Sec. VII. In Sec. VIII this
expansion is compared with some other formal theories,
including the Green's-function theory of nuclear matter.
Section IX contains a summary of these results. Sec-
tions VI, VII, and VIII deal mainly with formal
questions, and are not essential for the remainder of
the paper.

II. INTERACTION ON AND OFF THE
ENERGY SHELL

The most important new idea in Bethe's three-body
cluster treatment is the philosophy that when several
particles have been excited out of the Fermi sea, they
should be allowed to interact with each other ie aO

possible ways before dropping back into the Fermi sea.
For two excited particles this prescription leads im-

mediately to the usual G matrix. It is also fairly straight-
forward for three particles, except that one must now be
careful to identify and subtract out some spurious
first- and second-order terms. Kith three particles,
however, one encounters a new feature. Except for the
"first" and "last" G matrices of the generalized ladders
in Bethe s summation, all of the G-matrix interactions
take place "oB the energy shell. " In other words, the
energy denominators within these G's must include the
excitation energy of the third, or "spectator, "particle.
This is illustrated in Fig. 1(a), where the off-energy-
shell denominator es is shown explicitly. For more than
three particles, the middle rungs of the generalized
ladders will be even further oG the energy shell.

On the other hand, it is well known that in the
"hole-bubble" diagram, which is superficially very
similar to Fig. 1(a), the middle G matrix should be
evaluated "on the energy shell. " This amounts to a
partial sulnmation of Goldstone diagrams, as Bethe,
Brandow, and Petschek (BBP)"have shown in detail.
The nature of this partial summation is indicated, in

"H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963).This paper will be referred to as BBP.
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Fig. 1(b). The idea is to generalize the relative "time"
ordering between the interactions in the "insertion"
and "skeleton" parts of the diagram, subject to only
one restriction. The relative position of one of the
v interactions in the insertion must be held fixed. In
almost all cases, this fixed or "time-boundary" inter-
action must be chosen as the upper one of the two
v interactions by which the insertion is connected to
its external lines. (In this form, the rule applies to all
of the insertions which we shall consider in Sec. IV.
A slight modification of this rule will be mentioned in
Sec. VI.) This "time boundary" is indicated in Fig. 1(b)
by a horizontal bar.

The on-energy-shell result follows from the "factori-
zation theorem, '" which is simply an algebraic identity
for the products of the energy denominators. The proof
of BBP was based on multiple-time integrals of the
type used by Goldstone. '~ Similar factorizations can be
carried out by means of the multiple-temperature
integrals of quantum statistical mechanics, and also
by means of Hugenholtz's convolution integrals. "A
purely algebraic proof of the basic identity has been
given by Frantz and Mills. "The possibility of applying
this idea to the theory of nuclear matter was first
suggested by Brueckner and Goldman. "

These considerations are vitally important for
quantitative calculations. When oR-energy-shell propa-
gation is handled correctly, "the repulsive eBect of the
hard core is so strongly enhanced that the Goldstone
diagrams for the three-body clusters form a diverging
series. ~20 Therefore it is necessary, and not merely a
refinement, to evaluate this series in closed form.
Bethe's calculations revealed that previous treatments
of three-body effects (which were only valid to third
order in G) had led to errors of order 10 MeV per
particle for the nuclear matter binding energy.

The "hole-bubble" insertion of Fig. 1(b) is well
known to be strongly attractive. Without the g.t.o.
(generalized-time-ordering) factorization, however, this
insertion would tend to be very far oR the energy shell.
It would therefore be strongly repulsive. Evidently,
the extra Goldstone diagrams which are included in the
g.t.o. treatment are also very important quantitatively.
The g.t.o. result is also much more convenient. The in-
sertion now depends only on the hole label m, so its in-
terpretation as a self-energy eRect is now unambiguous.

We conclude from this discussion that if any further
reordering of the Goldstone series is to be done for
systems with a strongly repulsive core, it will be essen-
tial to pay careful attention to the on or oR-energy-
shell features of the individual diagrams.

"L.M. Frantz and R. L. Mills, Nucl. Phys. 15, 16 (1960)."J.Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
"N. M. Hugenholtz, Physica 23, 381 (1957).
"K.A. Srueckner and D. T. Goldman, Phys. Rev. 117, 207

(1960).
2 This divergence had already been suggested by R. Rajaraman,

Phys. Rev. 131, 1244 (1963).

III. COMPACT CLUSTERS

The considerations of Sec. II suggest the following
program: When a diagram can be factorized into two
or more parts which are on the energy shell with respect
to each other, we shall say that these parts belong to
diBerent "compact parts. "But where this factorization
does not apply to some interaction, as in Fig. 1(a),
we shall say that this interaction belongs to the same
compact part as the "spectator particles" which are
responsible for the off-energy-shell eRect. The object is
then to perform partial summations of all the Goldstone
diagrams which have the same general structure in
terms of compact parts. In the final result, the various
compact parts must a11 be on the energy shell with
respect to each other.

To make these ideas more precise, we introduce the
concept of anirreducible compact part (i.c.p.).An I-body
i.c.p. is the sum of all Goldstone diagrams, or parts of
diagrams, in which n lines enter at the bottom and then
proceed to interact in all possible ways, subject to two
restrictions: (i) The intermediate states (internal
single-particle lines) must all be outside the Fermi sea.
(ii) Each of these Goldstone diagrams (or subdiagrams)
must include at least one G-matrix element whose
energy denominators contain the excitation energies of
all e particles. In other words, there must be inter-
mediate states somewhere (perhaps only within a
single one of the G matrices) in which all e particles
are excited.

For m=2 and m=3 the i.c.p. 's are just the usual G
matrix and Bethe's three-body cluster. In the latter
case it is apparent, especially in the higher orders, that
the Goldstone diagrams all have a very compact
topological structure. Their sum is also compact in
coordinate space, in the sense that the correlations
are of very short range, hence the name "compact
cluster. "

The new diagrams are not all "irreducibly compact. "
In general, each of the new diagrams will consist of
several irreducible compact parts. Several examples are
shown in Fig. 2 to illustrate the analysis of some typical
Goldstone diagrams. Each rectangle indicates an i.c.p.

Note that the topology of the third diagram in Fig. 2
has allowed the hole-scattering interaction to be
factorized, permitting this G matrix to become an
i.c.p. all by itself. (In cases where there can be no con-
fusion, it is generally more convenient to represent the
two-body i.c.p. 's by the usual wiggly-line convention
for G.) Factorizations similar to this third, example can
be carried out whenever all of the lines entering the
bottoms of two or more i.c.p.'s are "hole" lines. The
same is true whenever all the lines leaving the tops of
two or more i.c.p. 's are hole lines.

The last example in Fig. 2 demonstrates that the
diagram analysis, as stated so far, is sometimes am-

biguous. The rniddle 6 matrix could be associated with
either the upper or the lower of the two i.c.p.'s. This
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FiG. 2. Analysis of
some typical Gold-
stone diagrams into
their irreducible com-
pact parts.

It seems likely that the present expansion could be ob-
tained by suitable rearrangements of their expansion.
Also, their diagram rules might be helpful if one should
wish to express the rules for the new series directly in
terms of the i.c.p.'s.

Mohling has used the Lee-Yang expansion as the
starting point for his theory of nuclear matter. '4

However, he has expanded the multiple-collision opera-
tors in terms of two-body reaction matrices, which is
just what we are now trying to avoid. Other features of
Mohling's theory are discussed in Refs. 25 and 26.

IV. SINGLE-PARTICLE POTENTIALS

n I

=)k' L, ~m

ambiguity can arise whenever two i.c.p. 's are connected
together by two or more upgoing or "particle" lines.
The ambiguity disappears if one adapts the convention
that all interactions among these "connecting particle
lines" must be associated with the lover of the two
i.c.p. s. The upper i.c.p. must begin with an interaction
involving some particle other than those in the connect-
ing lines. (The words upper and lower could just as well

be interchanged here, as long as the rule is followed
consistently. )

This is as far as we have carried the analysis of the
most general compact-cluster diagram. The details of
any particular diagram can be deduced from the rules
for the Goldstone expansion. The foregoing discussion
will suf5ce for the purposes of this paper.

At this point we should comment on the similarity
to the expansion of Lee and Vang for quantum statis-
tical mechanics. ""Our e-body i.c.p. 's correspond to
their n-body generalized ladders, or multiple collision
operators. There is an important diBerence, however.
In their expansion, the exclusion effect of the almost-
fully-occupied Fermi sea is not taken into account
consistently from the beginning. The intermediate-
state particle lines which connect up the various general-
ized ladders carry statistical weighting factors (corre-
sponding to the usual exclusion operator and to the
true occupation probabilities discussed here in Sec.
VI), but this is Not true of the intermediate states within
their ladders. Diagrams corresponding to the exclusion
effect within' their ladders can, however, be identified
among the higher order terms of their expansion. "

"T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959);
117, 22 (1960).

22 C. Bloch, in StuChes As Statsstscul 3fechunscs, edited by J.
de Boer and G. E. Uhlenbeck (North-Holland Publishing Com-
pany, Amsterdam, 1965), Vol. III.

~I am grateful to Dr. A. G. Petschek for explaining this to
me. See also Refs. 22 and 25.

The ixnportance of summing out the self-energy
insertions by introducing single-particle potentials is
quite familiar in nuclear matter theory. The present
scheme restricts our choice of self-energy insertions to
just those ones which can be placed entirely on the
energy shell by the g.t.o. factorization. Fortunately,
these insertions are very easy to identify. All one need
do is to examine their external lines, by means of which

they are connected to the skeleton. The on-energy-
shell insertions are just those for which the external
lines cross over each other. The reason for this should be
clear from our discussion of Fig. 1(b).

The sum of all these allowed insertions defines an
"on-energy-shell mass operator" M'". Similarly, one
can say that the sum of all the self-energy-like parts
which do rot satisfy this crossed-line rule will define an
"oR-energy-shell mass operator" Mot'. (In a later
paper we shall attribute the bulk of the rearrangement
energy to M'".) The simple external-line rule breaks
down in cases where the external lines are joined directly
to each other by a single v interaction. Since this e is
the first term of a Brueckner ladder, we assign these
insertions to M'" in the case of normally occupied or
"hole" states, and to 3E"' for the intermediate or
"particle" states. The contributions to M'" can all be
expressed in terms of irreducible compact parts, as
described in the previous section.

We shall now describe the first few terms in U(b)
and U(m). We follow the notation of BBP, where
intermediate states are denoted by a, b, c, etc. , and
normally occupied states are labelled l, m, rI,, etc.

Intermediate-State Potentia1s

The intermediate-state insertions are easily disposed
of. They all have the general form shown in Fig. 3(a).
This structure suggests a simple physical interpretation
for U(b). Since the intermediate state b is now occupied,
as part of the "skeleton" cluster, the exclusion principle
must prevent "other" particles from scattering into

"F.Mohling, Phys. Rev. 122, 1043 (1961); 122, 1062 (1961);
124, 583 (1961);and 128, 1365 (1962).

"A. G. Petschek, Ann. Rev, Nucl. Sci. 14, 29 (1964)."J. S.Bell, in Proceedirtgs of the Itltherford Jgbilee Ilterlationat
Comferewce, Martchester, 1961 (Academic Press Inc., New York,
1961),p. 373.
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this state. This blocking effect decreases the phase space
available to all the "other" clusters, so this must de-
crease the total binding energy. According to Eq. (4.1),
below, this must correspond to a positive U(b).

The leading term is shown in Fig. 3(b). We have
estimated this to be about +1.5 MeV for ks ——ks, de-
creasing to around +.75 MeV at ks=w/2c= 2.6k', the
latter being a typical value for the momenta of the
intermediate states admixed by a hard core of radius
c. LSee Eq. (7.17) of BBP.At present we are assuming
k~ ——1.36 F ' and c=0.45 F. These estimates for U(b)
were obtained by scaling from Fig. 14 of BBP. One
should note that the units in this Ggure are based on the
Brueckner-Gammel-Thaler value of c, namely 0.40
F.) Assuming +1 MeV for the average value of
U(b), one can see from Eq. (4.1) that this contributes
only around +0.1 MeV to the total E/E. This shows
that U(b) is quite negligible for nuclear matter. One
should, however, expect this to be relatively larger and
more significant for liquid He'.

The reason why U(b) is so small is that when particles
are excited out of the Fermi sea, they are usually thrown
very far out by the hard core. The probability that two
clusters will be competing for the same state b is
therefore very small.

The occupation probabilities of the intermediate
states are typically only of order 0.15%. This can be
seen as follows. Typical values for the momenta of
states inside and outside of the Fermi sea are (+0.6)kg
and 2.6 kp, respectively. The probability of a state in
the Fermi sea being empty is around 0.12 [see Eq. (4.2)
below); therefore, the probability of an intermediate
state being filled should be of order 0.12&(L(+0.6)/2. 6j'
=0.3%.This is actually an overestimate, because of the
long "tail" in the momentum distribution caused by a
hard core. This can be seen in Fig. 14 of BBP.

Occuyied-State Potentials

The potentials U(m) for the normally occupied states
are much larger and more interesting. The leading
terms are shown in Fig. 4. The 6rst term is the usual
"hole-bubble" insertion. This term has been extensively
discussed in the literature. Following Ref. 1 we shall
call this the "two-body Hartree-Fock potential"
Us(m). By analogy, we shall call the next term the
"three-body Hartree-Fock potential" Us(m). For an
"average particle" in the Fermi sea, this term is
three times as large as Bethe's three-body cluster energy
Es/E, for the same reason that (Us(m)), is twice the
two-body cluster energy E&/cV.

FIG. 3. Self-energy in-
sertions for the inter-
mediate states. All have
the general form (a).
The leading term is (b).

m

(g) = lJ&irnl

(b) I

+ ~ + . = U (ml
3

(c)
n

x'Q
+ = US2(ml

(d) I

= iJ (m)

FIG. 4. The leading terms for the potential of an occupied state
m: (a) the two-body Hartree-Fock potential U&, (b) the three-
body Hartree-Fock potential U((, (c) the two-body saturation
potential Us&, and (d) the three-body saturation potential Usa.

fI. = P r dr. (4 2)

Here p is the ordinary nuclear density, and f=g —P&o
is the "wound" in the correlated two-body (Bethe-
Goldstone) wave function, calculated for an "average
pair" in the Fermi sea. For the sake of illustration, we
shall assume that ~=0.12 at the normal nuclear matter
density. LThis value of « is based on preliminary results

"S.A. Moszkowski and B. I.. Scott, Ann. Phys. (N. Y.) ll,
65 (1960).

Three-Body Cluster Energy

It will be helpful to have some numerical estimates
for the various terms in E/X and U(m). We shall now
estimate Es/X, the three-body compact-cluster energy,
by following Bethe's argument. ' He has shown that this
can be calculated as if it were a self-energy correction
to Es/1V. )It would be wrong, of course, to say that the
three-body clusters are simp/y a self-energy correction
to the two-body clusters. We have already argued that
Es//1V and Es/E should be calculated separately. This
self-energy argument should simply be viewed as a
convenient way to estimate Es/1V. It does not imply
any change in the calculation of E&/X, which should be
carried out with U(b) =0, as discussed above. )

According to the 6-matrix perturbation theory of
Moszkowski and Scott" and BBP, the t."barge in the
two-body interaction energy which results from a
moderate change in the single-particle potentials is
simply

8(Es/E) =«L(bU(b)). —(bU(m)), j. (4.1)

The dimensionless coeKcient is
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of calculations by Dahll and Pstgaard. "The normal
nuclear matter density is taken to be"" 4+=1.36 F ',
p=0.17 F s.j The 8U(b)'s in (4.1) should be averaged
with respect to I(k&If')Is, the square of the Fourier
transform of f (Fig. 14, BBP),whereas a simple average
over the states in the Fermi sea will generally sufFice
for 5U(rn).

Bethe's prescription for the appropriate (5U(b)),„
is roughly the following. One should first calculate U(b)
the old way, as described in BBP. The hard-core con-
tribution to this U(b) should then be reduced by a
factor of 3 to take account of all the higher order
Goldstone diagrams within the compact three-body
cluster. According to line 5 of Table II of Bethe's
paper, the appropriate value of (bU(b)), is around
—30 MeV. This is to be multiplied by ~=0.12.We shall
then subtract oQ 3 of this result, to account in a rough
way for the reduced effectiveness of the tensor force in
the more complicated three-body geometry. [About s of
our estimate for ~ is due to the tensor-induced 'D~ wave.
See Fig. 13 of BBP and also Fig. 2(a) of Brueckner and
Masterson. ") Our final result is Es/N= —2.4 MeV.
(This is larger than Bethe's result, mainly because we
assume a larger value for the parameter x.) From this
we obtain (Us(rn)), =3 Es/N= —7.2 MeV. These

figures are obviously very rough. Still, they demonstrate
that the three-body terms are quite significant, and
that they really deserve a careful treatment.

Two-Body Cluster Energy

We can now estimate Es/N. Following Weisskopf, "
we usslme that the theory and the bare two-body inter-
action are both correct, in the sense that they should give
the correct results. %e then neglect all the higher order
contributions, so that

E/N = ss Tr+Es//N+Es/N. -(4.3)

Inserting E/N= —16 MeV, s Tr =+23 MeV, and
Es/N= —2.4 MeV, we find that Es/N =—36.6 MeV. It
follows that

(Us(rn)), =2Es/N= —73 MeV.

True Occupation Probabilities, Saturation Potentials

The third term shown in Fig. 4 is also quite signi6-
cant. This represents a renormalization of Us(ns) due to

"G. Dahll and E. Pstgaard (private communication). These
investigators are making a detailed study of the two-body cor-
relations, including tests of various approximation methods for
G, (h

~ t ), and e. The calculations are based on a hard-core potential,
instead of a soft core, simply as a matter of convenience. The
above estimate assumes that —', of tt: arises from the large 'DI wave
induced by the tensor force. Recent results indicate that the 'D1
contribution is considerably larger than this, and that ~ may be
as large as 0.16."L. R. B. Klton, Xactear Sises (Oxford University Press,
London, 1961).

'e B.H. Brandow (to be published).
31 K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128,

2267 (1962).
'~ P. Qejsskopf, Nucf. Phys. 3, 423 (195$).

the fact that the normally occupied states n are actually
occupied less than 100%of the time. This interpretation
was erst proposed by Thouless. "The closed-diagram
part on the right-hand side of Fig. 4(c) is the first non-
trivial term in Thouless' expansion'4 for the true single-
particle occupation probability

(4 4)

Here@, is the true wave function for the X-body ground
state, normalized to unity. (For the normally occupied
states, the 6rst term in Thouless' expansion is just
unity. ) For an "average state" n I k„=(/0.6)k&], the
contribution to 1—I' from this diagram part is just
the x of (4.2). We shall assume, for the sake of illustra, —

tion, that (1 P), =—x=0.12. The contribution from
Fig. 4(c) is

Uss(m) = (P„—1)..Us(ns), (4.5)

and its average value is therefore (Ues(ns)), »= (P —1),„
(Us(m)), »= (—0.12)X (—73 MeV) =+8.8 MeV. We
have argued elsewhere that this term plays an important
role in determining the saturation properties of actual
nuclei. ' For this reason we call it the "two-body satura-
tion potential" U82.

The last term in U(nr) which we shall consider is the
"three-body saturation potential"

(4.6)

This is shown in Fig. 4(d). It is quite analogous to
Ug2, in the sense that it represents a corresponding
renormalization of U3. Replacing P„by 1—~, we And
that (P„P„),—1=x'—2x, hence (Ups(rn)), =+1.6
MeV, which is not quite negligible. In particular, this
term has a very strong density dependence, and for this
reason we think it may be signidcant for finite systems.

One should note that the saturation terms U82+ Ups
together constitute around —15% of the total U(ns).
This is large enough so that one should consider correc-
tions to the simple assumption (P„), = 1—x. A consis-
tent treatment of al/ the higher order contributions
coming from two-body correlations is described in
LCE.is LSee also Eqs. (6.3), (6.4) below. jThe decrease
of I'„due to the three-body correlations should also
be examined, as well as the differences between the in-
dividual I' 's and their average value.

Since the quantities E & 1 occur here in a natural way,
one should expect to 6nd similar terms associated with
the intermediate or "particle" states. This is indeed
true, as shown in Sec. VI. The effect of these terms is to
multiply each particle line by a weighting factor of
(1—Pb). In practice, however, their effect is not worth
considering for two reasons: (i) The P&'s are very small
to begin with. We have argued at the beginning of this

"D.J. Thouless, Phys. Rev. 112, 906 {1959).
'4 D. J. Thouless, The Qgaetaec Mechaltcs of Many Body-

5ystems (Academic Press Inc. , New York, 1961), p. 47. I'or an
alternative derivation, see A. E. Glassgold, W. Heckrotte, aq.d
gj.. M. rtltatson, Phys. 1tev. $15, 1374 ($959),
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section that their order of magnitude is only 0.15%%u~;

(ii) If these terms are treated as perturbations, it is
easily seen that there are no terms in the total energy
which are linear in Pq. Their effect erst appears in terms
of order P~Py . The argument is completely analogous
to the discussion in Sec. VI of the energy corrections
arising from P„&j..

V. PHYSICAL MOTIVATIONS AND
CONSEQUENCES

The particular choices of rearrangements or partial
summations made in Secs. III and IV are based on two
assumptions: (1) that the normally occupied states are
nearly always occupied, and similarly that the inter-
mediate states are nearly always empty, and (2) that
the most important correlations are between particles
deep within the Fermi sea. These assumptions are well
justi6ed for nuclear matter, and presumably also for
liquid He'.

The correlations between particles deep in the Fermi
sea must heal rapidly. This is due primarily to exclusion,
as Gomez, Walecka, and Weisskopf" have emphasized,
but the reference-spectrum method'5 has demonstrated
that the single-particle potential energies and the o6-
energy-shell sects also contribute in an important
way. For all of these reasons, the correlations within the
compact-cluster diagrams must be of quite short range.

It follows directly from this rapid healing property
that the order of magnitude of a general compact-cluster
diagram is proportional to I(.

"' ', where ~ is the quantity
introduced in (4.2). Here It' is the number of irtdepertd
ertt hole-line summations. (Note that momentum con-
servation can sometimes restrict the hole-line summa-
tions. ) This means that the Brueckner-Bethe-Goldstone
theory has anally been cast into a form which has an
obvious small parameter. A general argument for this
K

' proportionality is given here in the Appendix.
That ~ should be the natural expansion parameter is

not hard to guess. Essentially the same parameter can
be found in the jastrow cluster expansion. so

According to (4.2), tt is just the density multiplied by
the volume of the "wound" l. This volume can be re-
garded as a more precise de6nition of the "healing dis-
tance" introduced by Gomez et ttt. The connection is

(5.1)

(We include a factor of ss for the probability that two

's L. C. Gomez, J. D. Walecka, and V. F. Weisskopi, Ann.
Phys. (N. Y.) 3, 241 (1958).

'See, for example, S. Drell and K. Huang, Phys. Rev. 91,
1527 (1953);R. Jastrow, ibid. 98, 1479 (1.955); K. A. Srueckner,
C. A. Levinson, and H. M. Mahmoud, ibid 95, 217 (1954).
(Appendix); J. S. Sell and E. J. Squires, Phil. Mag. Suppl. 10,
211 (1961);J. W. Clark and P. Westhaus, Phys. Rev. 141, 833
(1966).This last paper contains an extensive review of the litera-
ture, as well as a thorough discussion of the higher order terms.

PIG. 5. Correction terms
due to scattering within the
Fermi sea.

particles can, interact in a relative S state, since
~

f'~'

refers here to an "average pair".) For tr=0.12 and
p=0.17 F ', this ) turns out to be 0.61 F. One should
note that this is considerably smaller than the "separa-
tion distance" of Moszkowski and Scott,"which can
also be considered a healing distance. The present
definition is more relevant for questions of convergence.

Gomez et at. proposed that the convergence of nuclear
matter theory could be understood from the fact that
the healing distance is considerably smaller than the
average particle spacing. We see that tt is just (s) () /ro), s

where ro ——(4vrp/3) ' '= 1.12 F.' ' This observation has
been used for many years as a plausibility argument for
various forms of "independent-pair" approximations.
Bethe's work was the 6rst to show how this essentially
geometric quantity emerges from the perturbation
formalism.

Another important feature is that ~ contains a factor
of p, thus we are expanding in powers of the density.
Hugenholtz observed long ago" that this should be the
most natural procedure for a low-density system. One
should note, however, that this is rot a simple Taylor
expansion in p. We are only using p to order the terms
according to their general orders of magnitude. The
detailed p dependence of each term remains rather
complicated. Indeed, it would not be sensible to use a
straight Taylor expansion in p for a bound, saturating
system, since at low densities the system becomes un-
stable against condensation into "droplets. " (This ob-
jection does not apply to an unbound system such as
a hard-sphere gas.)

We now consider two examples to illustrate some
further aspects of the expansion. All three of the G
matrices in Fig. 5(a) are on the energy shell, and each
is therefore an i.c.p. This diagram results from the
unsymmetrical treatment of the "particle" and "hole"
states. "Upgoing" ladders are summed out immediately,
as required by the hard core, whereas the "downgoing"
ladders, of which Fig. 5(a) is the simplest example, are
treated as perturbations. A number of people have ob-
served that the downgoing ladders can be included along
with the upgoing ones by a suitable redefinition of
G."The reason for rejecting this proposal is that this

"N. M. Hugenholtz, Physica 23, 533 (1957)."S.M. Galitski, Zh. Eksperim. i Teor. Fiz. 34, 151 (1958)
/English transl. : Soviet Phys. —JETP 7, 104 (1958)g; F.
Iwamoto, Progr. Theoret. Phys. (Kyoto) 22, 903 (1959); 2B, 871
(1960); J. S. R. Chisholm and E. J. Squires, NucL Phys. 13,
156 (1959);M. L. Mehta, ibid 12, 333 (1959);S. A.. Moszkowski
and A. M. Sessler, ibid 18, 669 (1960);D. J..Thouless, Ann. Phys.
(N. Y.) 10, 553 (1960);R. E. Prange, in Lectures oe Field Theory
artd the Mawy Body Program, ed-ited by E. R. Caianiello (Aca-
demic Press Inc. , New York, 1962);A. G. Petschek (unpublished);
E.L. Lomon and M. McMillan, Ann. Phys. (N. Y.) 2B, 439 (1963).
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would destroy the very useful "healing" property of the
correlations, and thereby ruin the rapid convergence of
the higher order terms. Their G matrix is also more
dificult to compute accurately.

The effect of the hole-hole scatterings is so small that
they may quite properly be regarded as perturbations.
Following the discussion of Rajaraman, "we estimate
that the contribution of Fig. 5(a) is only of order—0.25 MeV. This is less than 1% of Es//X. Rajaraman
has shown that this term is especially small because the
requirements of momentum and spin conservation both
very strongly reduce the phase space for the hole-line
summations.

Figure 5(b) represents the scattering of particle m
into state I during the time particle / is elsewhere. This
is also only a small perturbation, because the hole in
state / is only virtual. "All four of the G matrices are on
the energy shell (and are therefore i.c.p. 's), but the
middle energy denominator is very large. We estimate
that the E/E contribution from this term is only of
order —0.2 MeU.

These two diagrams represent the simplest corrections
to the initial assumption that no intermediate states
are available within the Fermi sea. The perturbations
are extremely small, which demonstrates that this
assumption is an excellent starting point for the expan-
sion. As with all the other terms in the compact-cluster
series, the higher order analogues of these processes must
decrease rapidly with increasing numbers of independent
hole-line summations. On the other hand, the number of
distinct diagrams increases very rapidly with the num-
ber of hole lines, since these terms are not "compressed"
into i.c.p. 's the way the repeated particle-interaction
ladders are. For this reason it appears very likely that
we are dealing with an asymptotic expansion. " But
this should not detract from the practical utility of the
expansion, since the point at which the series might
begin to diverge should be very far beyond any number
of terms that one could compute in practice.

Long-Range Correlations and Degeneracy

The rapid decrease in the magnitudes of the erst few
terms of our expansion is certainly physically meaning-
ful, because the binding energy is clearly dominated by
the short-range few-body correlations. On the other
hand, one knows that there are long-range correlations
among the particles near the Fermi surface. These are
important for phenomena such as pairing and collective
oscillations.

~ R. Rajaraman, Phys. Rev. 129, 265 (1963).
40 This diagram has been discussed previously by K. A.

Brueckner and D. T. Goldman, Phys. Rev. 117, 207 (1960),
and by K. A. Brueckner, J. L. Gammel, and J. T. Kubis, ibid
118, 1438 (1960).

"Other aspects of the asymptotic nature of the Goldstone
expansion have been discussed by A. Katz, Nucl. Phys. 20,
663 (1960) and The cony-Body Problem, edited by C. Fronsdal
(W. A. Benjamin and Company, New York, 1962), and by G. A.
Baker, Phys. Rev. 131, 1869 (1963).

These long-range effects are arti6cially suppressed by
the large energy denominators. Note that the occupied-
state potentials are strongly attractive, while the inter-
mediate-state potentials are all weakly repulsive. This
places a lower bound of quite large magnitude ()100
MeV) on all of the energy denominators. This means
that the long-range effects are relegated to the terms
of very high order. In a formal sense these effects are
still contained in the expansion, but they are quite
inaccessible for practical purposes.

Consider the famous example of the BCS correlations.
These correspond to a very strong mixing, or near
degeneracy, of the low-lying con6gurations. 42 This
invalidates the nondegenerate assumption upon which
the Goldstone expansion and the present one are based.
This means that there must almost certainly be a
divergence somewhere in the formalism. In some pre-
vious formulations of nuclear matter theory, the BCS
phenomenon could produce a divergence already in the
leading term consisting of a single G matrix. In the
present case this must take the form of an asymptotic
divergence. This latter form of divergence is much less
offensive. Of course it would be nice to eliminate this
divergence and to be able to study the BCS correlations
in detail. This can be done by an extension of the present
scheme. (It may well be, however, that the resulting
expansion is still asymptotically divergent for other
reasons, as mentioned above. )

Long-range correlations between particles near the
Fermi surface can generally be thought of in terms of a
strong con6guration mixing of the low-lying unperturbed
eigenstates (1V-body Slater determinants). This problem
can be handled by employing the present types of
partial summations in the context of the degenerate
linked-cluster expansions.

These degenerate expansions have a very useful
feature. They permit a clean separation (at least in
principle) between the problem of the short-range
correlations, which form the main subject of nuclear-
matter theory, and the long-range correlations which
are studied in Fermi liquid theory and in the shell
model. The "closed-shell" part of the problem is
treated exactly as in the Goldstone expansion, whereas
the "valence particles" near the Fermi surface are
treated by means of a "reduced Harniltonian. " The
latter is quite analogous to the semiphenomenological
Hamiltonians introduced by Bardeen, Cooper, and
Schreiffer, 43 and by Landau. '4 For Gnite nuclei this can
be identified with the usual shell-model Hamiltonian.
The result is convenient and not at all surprising. But it
is nice that this can be formulated precisely.

This clean separation of the many-body problem was
accomplished by Bloch and Horowitz. '" However,
their treatment of the degenerate or valence part of the
system was subject to unlinked-cluster difhculties.

4' N. N. Bogolubov, Physica 26, S1 (1960).I J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).
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This restricted applications of their formalism to
nuclei with only a few valence particles. We have re-
moved this limitation by deriving a completely linked
version of their expansion"" following a previous
attempt by Morita. "

In applying this formalism, the 6rst step is to derive
and calculate the appropriate reduced Hamiltonian.
The partial summations of this paper should be useful
here. The second step is to solve the resulting secular
equation. In most cases this can only be done approxi-
mately. The BCS and random-phase techniques may
be introduced at this stage. Another possibility is to
treat the reduced Hamiltonian by a second application
of linked-cluster perturbation methods. In such an
approach one must be careful not to confuse the new
diagrams with the "compact-cluster" diagrams used in
the erst step. The old and new diagrams span different
con6guration spaces.

By analogy with the Fermi liquid theory, one can
say that the reduced Hamiltonian describes the system's
"quasiparticle" degrees of freedom. This is one way of
giving a precise meaning to the notion of a Landau
quasiparticle. The new diagrams just mentioned are
therefore "quasiparticle diagrams. " Further discussion
of the degenerate formalism will be reserved for a
later paper.

VI. FORMULATION IN TERMS OF
RENORMALIZED PROPAGATORS

The full consequences of introducing the on-energy-
shell mass operator M'" can most conveniently be
expressed in terms of renormalized propagators. To
avoid possible confusion, we wish to emphasize that the
term "propagator" will be used here simply to mean a
class of partial summations. These summations can all
be carried out by pure algebraic, time-independent
methods. There are many points in common between
a Green's function and this concept of a propagator,
but it is important to realize that they difter in detail.
In particular, we do rot use the causal Green's function.
We shall introduce the propagator concept by easy
stages.

Let us return to Fig. 1(b). This consists of two self-
energy parts connected by two "propagator" line
segments. We have tacitly assumed that the left-hand
part is the "skeleton, "the right-hand part representing a
self-energy insertion into this skeleton. This assumption
can be generalized as follows. Consider all thepropaga-
tor line segments belonging to a particular "self-energy
cycle." For a translationally invariant system these
propagator segments will all carry the same label, and,
together with the "skeleton" and "insertion" parts, they
will form a closed loop. Examples are shown in Fig. 6.
If one now examines the relative "times" of the upper
ends of all the propagator segments, one of them will,
of course, be the highest. It is very tempting to say that
the skeleton is that part which is attached to the highest

FxG. 6. Diagrams
corresponding to the
expansion of Eq.
(6.1).

(c)

point contained in the set of all the propagator line
segments.

U =M '"(E' +U ). (6.1)

The diagrams for the on-energy-shell mass operator
M'"(pp) are evaluated according to the usual rules, ~
with the following modifications. First, erase the external
lines. The overall sign factor is (—1)'+", where t and
h are now the numbers of iett.'real closed loops and hole-
line segments. Secondly, close the diagram by adding a
single line to replace the pair of external lines. In
determining the energy denominators this line carries
an "unknown" energy ~. These rules apply to the
3fp(a&) for intermediate states, as well as for 3f (~).

One should note that in (6.1) we have written E '
for the unperturbed energy instead of just the kinetic
energy T . This is to emphasize that very similar
results are obtained when one starts with a "counter
term" in the unperturbed Hamiltonian Hp=T+UP,
V=@—UP. The final U emerging from (6.1) is then
the difference between what one would obtain for
E =T and the "unperturbed" potential U . In
any event, the toto/ potential U +U ' should be inde-
pendent of the starting point V '. It is especially

~ A concise and unambiguous statement of the diagram rules
is given in LCE.

Self-Energy Propagator

Suppose, for the moment, that we adopt this conven-
tion. Now take a given skeleton part and add all possible
self-energy insertions to its propagator line, including
each insertion an arbitrary number of times. In accord-
ance with the above convention, the time boundaries of
these insertions must all be placed below the time
boundary of the skeleton. The relative time ordering
of the insertions can be quite arbitrary in other respects.
After applying the g.t.o. factorization, the result will
simply be to replace the "unperturbed propagator
energy" E P by the "full propagatorenergy" E +U
in the denominators at all the levels where this line
m appears in the skeleton. The potential U Lpreviously
written U(m)7 is determined by the equation
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KX
(a) (b) FIG. 7 Diagrams

summed by the com-
plete propagator for
state e.

(c)

4s J. Des Cloiseaux, Nucl. Phys. 20, 321 (1960). See also A.
Klein, Ref. 47.

useful to allow for this generalization in the Gnite case,
as will be discussed in a later paper. There we will want
to choose the U' 's, which will constitute the "shell-
model potential, " such that the "corrections" arising
from (6.1) will turn out to be zero.

The structure of the diagrammatic expansion which
corresponds to (6.1) can most easily be understood by
working backwards from the result. Let us expand the
potential U out of the denominators of the skeleton,
as illustrated in Fig. 6(a), and then replace each "poten-
tial interaction" by a mass-operator diagram. Following
the discussion of Fig. 1(b), the time boundary of each
insertion must be Axed at the level of the U interaction
which it represents. The g.t.o. factorization can then be
reversed to convert each on-energy-shell insertion into
a sum of Goldstone diagrams with various relative time
orders. This last step is illustrated in Fig. 6 (b).Note that
this leads to a string of insertions whose time-boundaries
occur in the "natural order" shown in Fig. 6(a). The
complete self-energy expansion also includes many
insertions whose time boundaries are rot in this natural
order. A simple example is shown in Fig. 6 (c).There the
lower time boundary belongs to a "second generation"
insertion, corresponding to a self-energy correction to
the denominators of the "erst-generation" insertions
shown in Fig. 6(b). In higher orders there are also
"third-generation" insertions which correct the energy
denominators of the "second-generation" insertions, and
so on. The complete expansion corresponding to (6.1)
contains insertions into insertions ad iegnitum, in other
words, "higher-generation" insertions of all orders.
This general structure of the propagator expansion has
been extensively discussed in LCE (Secs. III and IV).
LDes Cloizeaux's has discussed the perturbative expan-
sion of (6.1) from a different point of view, in terms of
Lagrange's expansion formula. The detailed relation
between Lagrange's formula and the diagrammatic
expansion is, however, far from transparent. )

The virtue of de6ning the skeleton as the self-energy
part with the highest time boundary is that this would
appear, from a naive analysis, to eliminate the over-
counting problem in the renormalized expansion of the
closed diagrams. This is only an illusion, however. For
example, this would not eliminate the overcounting
problem discussed below in connection with Fig. 8(f).

Worse still, this would overlook an important class of
diagrams which can be summed out by a more general
definition of the propagators.

el% „&s&(cu)
U (2)

Q)ms+~ o0

(6.2)

This is just the second-order term in U multiplied by
the lowest order contribution to the quantity I' —1. It
can be shown, from Thouless's expansion for the expec-
tation value of a general one-body operator, '4 that the
true occupation probability of state e is

I'„=(e, i a.+a.—
i e,)

83f ((o)-—'

~=@ '+U
(6.3)

Here +, is the true wave function of the interacting
ground state. Diagrams 7 (c) and 7(d) correspond to the
6rst term of the geometric series

(1—cV') '=1+%'+ (M')'+ (6 4)

The comp/ete renormalised propagator for state n will
now be dined as the partial summation of all repeti-
tions of insertions of the on-energy-shell mass operator,
without any restrictions on the positions of their time
boundaries. The time boundary of the skeleton can now
be overlapped, as in diagrams 7(c) and 7(d), by an
arbitrary number of self-energy parts. These parts
correspond to the geometric series (6.4). Other self-
energy parts will lie entirely below the skeleton time
boundary, as in diagrams 7(a) and 7(b), or entirely
above this. Their effect is simply to replace E„by8 s+ U„ in all the energy denominators of the skeleton,
and similarly in (6.4).

For those insertions lying entirely above the skeleton
time boundary, it is necessary to redelne the insertion
time boundary as the lower one of the two v interactions
by which the external lines are connected to the inser-
tion. After this modilcation, it can easily be seen that
the complete propagator is a "faithful" partial sum-

Complete Propagator

Consider the four diagrams shown in Fig. 7. The
right-hand sides of these diagrams all represent inser-
tions into a self-energy diagram for U .Here there is no
doubt which side is inserted into the other, since the
"skeleton" side is now determined by the external lines.
All four of these diagrams are distinct, and therefore it
would be nice to choose a renormalization scheme which
would automatically include them all. We shall do this
by rede6ning what is meant by the propagator for the
state rI,.

First, we should point out the significance of diagrams
7(c) and 7(d). The factorization theorem shows that
their sum is equal to
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mation, i.e., it includes each possible relative time
ordering once and only once.

In addition to the expected self-energy correction,
this partial-summation multiplies the downgoing line
n by a factor I'„.Note that there is Oe/y one factor of I'
for the renormalized downgoing line, no matter how
many interactions occur in other parts of the skeleton
during the "time" interval between the ends of this
line. Ke have used this result in the previous section,
where the I' —1 corrections to U were called "satura-
tion" terms.

The complete propagator for an intermediate state
b is quite similar. The main diGerence is in the physical
interpretation of the weighting factor for the upgoing
line. This factor is

ctM s((o)

co EP+Ug ~

(6.5)

Overcounting of the Interaction Energy Diagrams

One might naively guess that the original Goldstone
series would be reproduced by summing all the irre-
ducible closed diagrams (skeletons with no self-energy
insertions) and interpreting each line as a complete
propagator. This is quite wrong because this procedure
counts many of the higher order Goldstone diagrams
two or more times. This can easily be seen from Fig. 7.
If we close the line m on itself and then sum the indices
m and n over all occupied states, we obtain two distinct
Goldstone diagrams which are each counted twice.
(This particular problem does not occur when self-

energy propagators are used instead of complete

propagator s.)
A related problem is that the two-body interaction

energy of nuclear matter, Es/flan= —36 MeV, would
appear to be reduced by a factor of (P P„)„=(1—z)'
=0.78. Quite fortunately, this strong renormalization
of Es/'Jl't does not occur. This can easily be seen by
introducing U into the unperturbed Hamiltonian and
subtracting this from the perturbation. The relevant
terms in the interaction-energy expansion are shown in
Fig. 8. The shaded parts represent the weighting factor
corrections (P —1), (P„—1), i.e., they correspond to
the entire geometric series in (6.4). Consider the dia-
gram 8(f), which resembles the Uss(m) contribution to
8(c). In factorizing the ends of this diagram, one finds
that each of the corresponding Goldstone diagrams is
counted twice. The ends become indistinguishable when
either one, (P —1) or (P„—1), can contain the highest
interaction of the entire diagram, so one must give the
factorized diagram a weight of —,.This is quite analogous
to the factor of s in diagram 8 (a) .The Us(tts) and Us(tts)
terms in diagram 8(c) just cancel off the diagrams 8(d)
and 8(e). The Uss(tts) term is now twice as large as
8(f), however, so the final expression contains a left-

DE = o 0+ At tl+ --&& —U
m n

i~) (b) (&)

~++ -, ~+
(d) (e)

+ *

(yv~g + I t t tl +
FIG. 8. Diagrams i11ustrating the overcounting problem.

The argument depends only on the most basic topo-
logical features of diagrams containing self-energy
insertions. The same argument leads to quite similar
expressions for several other types of renormalized
perturbation expansions, all in the context of quantum
statistical mechanics. "4' These will be discussed brieRy
in Sec. VIII.

In the present context, ™~is just the "naive" expres-
sion mentioned above, namely the sum of all irreducible
skeleton diagrams with each line representing a com-
plete propagator. This term becomes an ordinary func-
tion of all of the potentials and occupation probabilities,

.B=X)(U,P).

The next term becomes

(6.7)

r =Q U„P —Q Us(1 —Ps) . (6.8)

This can be represented symbolically as the trace of the
product of the mass operator and the complete propaga-
tor, thanks to the relation

—=Trpb. (6.9)

The index j runs over all the m's and all the b's. The
contours C; must enclose the poles at EP+ U;, but must
exclude all other poles of "b".The plus sign in (6.9) is
for the normally-occupied states m. A minus sign is
needed for the intermediate states b because, according
to the diagram rules, there is a sign change when a
mass-operator diagram for Ms is "closed" to produce a

"C.Bloch, Physics 26, S62 (1960).

over term equal to mitsus 8(f). This overcounting
problem was noted by 3rueckner, Gammel, and
Kubis. ~

Bloch4' "has shown that this overcounting problem
can be solved in a very clean and simple manner. His
analysis shows that the Goldstone energy series is re-
produced by a combination of three terms,

(6.6)
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skdeton diagram for AE. From topological arguments4'
it can easily be shown that L, is just twice the tree
expectation value of the basic two-body interaction e.
In other words,

—,
' Tr3fg= (%,)v(4,). (6.10)

The last term q just corresponds to the diagram-
matic expansion of Eq. (6.1), summed over all single-

particle states. Thus,

="c=Z U —E Us.
tn b

(6.11)

It is interesting to note that the second term in (6.12)
is just the same as the diagram in Fig. 8(c). The third
term can be represented similarly.

From the practical standpoint, this elegant solution
of the overcounting problem is not vitally necessary.
Its greatest value lies in the insight it gives concerning
the general structure of the series. We have seen, from
the elementary discussion accompanying Fig. 8, that
there are no terms in the final expression for E/X which

are proportional to (P ) or (P P ), contrary to
what one might have guessed from the most naive
considerations. The leading overcounting correction
is only of order —((P —1)(P„—1)),r && (Es/X)
= —g'(Es/Ã) =+0.5 MeV, and the higher corrections
are all much smaller. The discussion of corrections due
to P»0 is entirely similar. There the elementary
argument shows that the leading correction is
—(P,Ps)e~)&(Es/E), which is utterly negligible. For
the liquid He' problem, however, these overcounting
corrections are surely much larger. In this case the
elegant closed form (6.12) may be useful as a convenient

way of including many small but not entirely negligible

higher order terms.

Applications of the Complete Propagators,
Finite Nuclei

Ke have just seen that the use of complete propaga-
tors, as opposed to self-energy propagators, is not worth-

while for a conventional nuclear matter calculation.
The labor of carrying the P's throughout a calculation
cannot be justified in terms of increased accuracy.
Instead, it is much more convenient to treat the small

overcounting eGects as perturbations.
The situation is very diferent for the case of a 6nite

nucleus. Suppose, for example, that one wishes to

4' See, for example, A. Klein, Lectures oe The Marly-j3ody
Problem, lVaPles, 196Z, edited by E. R. Caianiello (Academic
Press Inc. , New York, 1962) and T. D. Schnltz, Qnantnm Field
Theory and the Many Body Problem -(Gordon and Breach Science
Publishers, Inc. , New York, 1964).

The 6nal expression for the interaction energy is

therefore

AE= $(U,P)+Q U (1—P )—Q UsPs. (6.12)

calculate the proton density distribution. The correct
formal procedure is to use the Thouless expansion for
the true expectation value of the proton density opera-
tor. This series differs from that of the interaction
energy hE by the fact that the density operator now

appears somewhere within each diagram.
This special operator can now be used to resolve the

ambiguity about which part of the diagram is the
skeleton. The skeleton is the part containing this
operator, and all the other mass-operator parts are
insertions. This is similar to the case of Fig. /, where the
external lines were used to resolve the ambiguity.

Now that the skeleton is unique, there is no longer
any possibility of overcounting. It is therefore clear that
the convergence of the Thouless expansion is signi6-
cantly improved by using complete propagators every-
where. The same argument applies for the expectation
value of any other operator. We therefore conclude that
the renormalized propagators optimize the convergence
of the total Nuclear wave fgrtctiort. ' This is a much more
sensitive criterion for the definition of the shell-model
potential than can be obtained from energy considera-
tions alone. This is why we consider the "saturation
potentials" of Sec. IV to be significant for a theory of
6nite nuclei.

Another application should be mentioned. By dedni-
tion, the "valence-interaction" diagrams of the de-
generate formalism all have external lines. The discus-
sion of Fig. 7 therefore applies directly, showing that it
is worthwhile to dress all the Astermu/ lines of these
diagrams by means of the complete propagators.

VII. MASS-OPERATOR VARIATIONAL
PMNCIPI. E

Ke have already mentioned in Sec. IV that Ub can
be thought of as the increase in the energy of the "other"
clusters due to the filling of state b by the "skeleton"
process. The structure of the U insertions allows a
similar interpretation. This represents the loss of
interaction energy from the "other" clusters involving
particle m, due to the vacancy of state m caused by the
"skeleton" process. Since Ub&0 and U &0, it is clear
that they both tend to increase the magnitudes of all
the energy denominators, and thereby to reduce the
binding energy contributions from all of the skeletons.
This can be seen, for example, in Eq. (4.1). The
potentials, therefore, represent a kind of competition
between the various possible "modes" of correlation.
This competition establishes a special kind of equilib-
rium within the system.

The formal statement of this equilibrium condition is
that the renormalized expansion possesses a remarkable
stationary property. Equation (6.12) expresses the
interaction energy AE as an ordinary function of all the
U's and P's. Bloch's topological analysis ' shows that
this function must be stationary with respect to small
variations in any of the U's and. I"s. This can easily
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be checked directly. A simple inspection of the diagrams
shows that

and

b(AE) 85)
+(1—P„)=0,

sU„ sU.

5(AE) 5$ —U =0,
SP 5P

(7.1)

(7 2)

Uo=Mo(Uo),
~o A. Kiein, Phys. Rev. 121, 950 (1961).

(7.3)

with similar results for Ub and Pb. The U's and P's
are all determined by the mass operator, hence an
equivalent statement is that AE is stationary with
respect to small changes in the mass operator.

This stationary principle has an interesting history.
It first appears in a quantized many-body formalism in
the expansion of Lee and Yang" for quantum statistics.
It is related to a whole heirarchy of similar results
obtained earlier in classical statistical mechanics.
The latter all stem from the fact that the entropy is
maximized by the equilibrium-density distribution. The
connections are discussed in Ref. 22. Note added in proof.
At zero temperature, this can be related to the familiar
Raleigh-Ritz variational principle. This has useful con-
sequences for the theory of finite nuclei, although, as
argued below, it does not appear to be useful for an
infinite system. A report is in preparation.

It has been suggested that this stationary property
should make a calculation of the nuclear-matter binding
energy insensitive to the choice of the single-particle
energies. "This deserves to be investigated. The station-
ary theorem would seem to assume (i) that the function
$(U,P) has been determined correctly, and (ii) that all

except, one of the U's and P's have been assigned their
exact values. Now there are two sources of error in any
practical calculation: (a) the selection of certain skeleton
diagrams to define X) and M, and (b) the numerical
calculation techniques. The approximations will in-
validate both assumptions (i) and (ii), therefore the
practical consequences of this principle require further
examination.

One can gain some insight into the meaning of this
variational principle by applying the formalism to the
case of a single particle bound in a perturbed potential
well. First of all, one must make sure that the prescrip-
tion for identifying the self-energy insertions in an
arbitrary diagram is unambiguous. For a one-body
problem this requirement will only allow the propagator
renormalization to be applied to a single one of the
unperturbed states. (The diagonal elements of V, i.e.
V;,, can obviously be summed out for all states 4;.
The nondiagonal elements are the ones which can lead
to ambiguities. ) In principle, any state can be chosen
for this renormalization.

We shall choose the initial state CQ. The relevant
formulas are then

where
Q

Mo(U)= C'o V Q l
V +o, (7.4)

n=o Eo+ U—+p
and

BMQ = I(~.l~, ) I'
po-

(7 5)

These should be recognized as the formulas of Brillouin-
Wigner perturbation theory. The interaction energy
expression (6.12) becomes

hE= Pot Mo(Up) Up]—+Up. (7.6)

This is obviously stationary with respect to variations
in Pp and Up, provided that Eqs. (7.3) and (7.5) are
satisfied. Alternatively, one can regard the stationarity
requirement as simply another way of stating Eqs.
(7.3) and (7.5).

One can now see the purely formal nature of the
stationary result. The statement is equally valid for
any function Mp(U), regardless of whether this function
has been determined correctly for the physical system.
In a many-body system one finds, similarly, that the
variational principle is formally valid for any selection
of skeletons to represent X) and M, as long as the same
selection is used for both. In this sense the variational
principle is rather trivial, since it tells us nothing about
the accuracy of the final result for hE. It certainly must
not be interpreted as a license to use crude approxi-
mations, in the hope that self-consistency will somehow
suppress the error in the final AE.

Self-Consistency

Of course self-consistency is a good thing which one
should strive for in any practical calculation. Experience
has shown that if one makes a bad approximation some-
where in the calculation of the G-matrix elements, the
error in the computed E/N is reduced when the approxi-
mate scheme of equations is solved self-consistently.
This feature is quite understandable in terms of the
one-body analogy. Consider Eq. (7.3), and imagine that
one knows the exact solution Up corresponding to the
physically correct function MQ. If one now falsifies MQ

by adding a function 8M, the quantity M(Up) will
certainly overestimat'e the error 6U that would result
from a self-consistent solution of the new Eq. (7.3).
This is simply because BM(U)/BU is always negative.
The improvement arising from self-consistency is
essentially the same as the improvement resulting from
the use of Brillouin-Wigner perturbation theory instead
of Raleigh-Schrodinger perturbation theory. In the
many-body system, the renormalized expansion replaces
the initial problem by a coupled set of systems, each of
which is treated by Brillouin-Wigner methods.

Let us try to judge how important self-consistency
is in a practical nuclear matter calculation. The number
of coupled equations necessary for a practical calcula-
tion can be greatly reduced through the use of Gaussian
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integration techniques. "Carrying this idea to the limit,
we can simplify the problem to a single equation of the
form (7.3). Thus we shall think of calculating the
diagonal G-matrix element for an "average pair" in
the Fermi sea, and use this to calculate (U„). , etc.
We shall ignore Ub, Pb, and P, and also all the higher
order clusters. The set of equations then reduces to

U= pG—=M (U). (7.7)

The change in U due to a small error in the function M
1S

BM f' BM) '
BU+BM=5M' 1—

BU E c)UI
(7.8)

Of course we are really dealing with two-body inter-
actions; thus

Es/iY= -', M (U) .
Comparing this with (4.1), we see that

1 83f
K ~

28U

(7 9)

(7.10)

Putting all this together, we obtain

( BM
5(Es/Ã) =-',5Mi 1—

aU

=-',bM(1+2x) '. (7.11)

The factor (1+2x) ' represents the reduction of the
error due to self-consistency. For I(.=0.12 this factor is
0.8.We conclude that self-consistency gives a noticeable
improvement, reducing the error by something like

20%, but this is very far from being a cure-all for other-
wise bad approximations. The concepts of stationarity
and self-consistency do not spare one from the necessity
of doing a careful job at each step of a practical
calculation.

VIII. COMPARISON Wr TH OTHER
FORMAL. THEORIES

@loch's review article" lists four distinct renormalized
perturbation expansions for quantum statistical me-
chanics. These are (i) the Lee-Yang expansion, " (ii)
that of Luttinger and Ward, " (iii) the ' true occupation
number" formulation of 8alian, Bloch, and De
Dorninicis, " ' and (iv) "quasiparticle" forniulation of

4e K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1028
(1958).

ee J.M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
I.or- an'- alternative development leading to essentially the same
expansion, see A. Klein, Refs. 47, 48, and Phys. .Rev. 121, 957
(1961).This expansion has been related to the Landau theory by
P. Nozieres and J. M. Luttinger, Phys. Rev. 127, 1423 (1962);
127, 1431 (1962).

»'R. kalian, C. Bloch, and C. De Dominicis, . wucl. Phys. 25,
529 (1961);27, 297 (1961).
g "C.Sloch, R. Balian, and C. De Dominicis, Physica Suppl.
26, 62 (1960);26, 94 (1960); also Lecieres oe Field Theory and /he

3dony Body Problem, -edited by E.R. Cainaniello (Academic Press
Inc., New York, 1962).

Balian and De Dominicis. ""All four of these have
expressions analogous to (6.12), in terms of renormalized
propagators, and all of them possess mass-operator vari-
ational principles. For all of these, as well as for the
present expansion, one can say that the self-energy prob-
lem has been solved to all orders of perturbation theory.

We mention this to emphasize that "the" self-energy
problem is not uniquely defined by mathematical con-
siderations alone. The many-body problem differs from
field theory in this regard, and this has frequently been
a source of confusion. The choices among the various
possible partial summations must be based on physical
considerations. The reasons for our particular choices
were discussed in Sec. V.

In a certain sense, the present expansion stands mid-
way between the "true occupation number" formu1a-
tion and the "quasiparticle" formulation. Our down-
going lines are weighted by the true occupation numbers
for states inside the Fermi sea, whereas they have zero
weight for the states outside. Similar statements apply
to the upgoing lines.

The true-occupation-number formulation is the one
most closely related to the original cluster expansion of
classical statistical mechanics. It reduces to the latter
in the high-temperature limit, but it diverges very
badly at low temperatures. On the other hand, the quasi-
particle formulation is designed to give a convenient
description of the low-temperature behavior. It leads
to thermodynamic expressions of just the same form as
in the Landau theory. The Fermi surface is treated very
nicely, but it is not clear whether this can give an ade-
quate description of the short-range few-body
correlations.

The similarity to the expansion of Lee and Yang and
of Mohling was mentioned in Sec. III.True occupation
numbers also appear in these expansions, but the states
inside and outside of their multiple collision operators
or reaction matrices are not given the same treatment.
It appears that their renormalized propagator tech-
niques have not been exploited as fully as possible.

The Luttinger-Ward expansion is the one most closely
analogous to renormalized Geld theory. Like the quasi-
particle formulation, it also focuses attention on the
neighborhood of the Fermi surface, and it also provides
a formal justiGcation for the Landau theory.

Comyarison with the Green's-Function Theory
of Nuclear Matter

It is also interesting to compare the present formula-
tion with Puff's theory of nuclear matter. ' This is

+ R. Balian and C. De Dominicis, Nucl. Phys. 16, 502 (1960);
Compt. Rend. 250, 3285 (1960); 250, 4111 (1960); C. De Domi-
nicis, thesis, Paris, 1961 (unpublished).

~ R. D. PufF, Ann. Phys. (N. Y.) 13, 317 (1961);D. S. Falk
and L. Wilets, Phys. Rev. 124, 1887 (1961); D. S. Koltun and
L. Wilets, ibid 129, 880 (1963.); J. C. Reynolds and R. D. Puff,
ibid. 130, 1877 (1963); J. C. Reynolds, ibid. 130, 1891 (1963);
A. S. Reiner, ibid. 133, 81105 (1964); C. B.Duke, ibid 136,859.
(1964); R. D. Puff, A. S. Reiner, and L. Wilets, ibid 149, 7'I8.
(1966).
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based on the Martin-Schwinger heirarchy of Green's
function equations of motion. " In common with the
Lee-Yang expansion, the attempt is made to derive all
of the necessary formulas without ever resorting -to an
expansion in powers of the bare interaction v.

The most signiGcant difference between this theory
and ours is the fact that the Green's-function theory
expresses the total energy as the sum of the true kinetic
energy plus the orle potential energy,

Ke recall that a hard-core potential leads to an ex-
tremely long "tail" in the momentum distribution,

Ps~
I ( sl&) I' ~ (8.3)

This means that a really careful calculation of (8.2)
would. be very difBcult. Another point to notice is that
the quantities P Lor (1—P )j and P& enter linearly in
(8.2), as compared to a quadratic dependence in our
final expression (6.12). This means that the P's need
be calculated to considerably higher accuracy in Puff's
approach then in ours, for the same accuracy of the
final result.

As is well known, the true potential energy is related
to the interaction energy AE, also called the "model"
potential energy, by an integration over the coupling
constant. "The true potential energy may be expressed
in the form s r, = s TrMg. Because of the close relation
of Puff's methods to Geld theory, it would probably be
more appropriate to compare his expressions with the
~~Tr3IIg term in the Luttinger-Ward expansion, or in the
expansion of Klein, 4' "than with our "true" expression
(6 8).

In practice, very little is yet known about the higher
order approximations. PuR's original approximation
neglects the exclusion principle in the intermediate
states of his reaction matrix, although Falk and
Wilets'4 have identified some correction terms which
correspond to an exclusion effect. A rather discouraging
feature of his approximation is that it neglects all of
the terms arising from the "tail" of the momentum
distribution. For example, the gs in (8.2) is neglected.
This may not have as serious an efI'ect as appears at
Grst ' sight, since the corresponding potential-energy
terms are also neglected. The most disturbing conse-
quence is that the number of particles is not conserved,
1.e.)

g P„ & N. (8A)

Pu6 has compensated for this by introducing an artiG-
cially large Fermi momentum.

In higher order approximations one would eventually
be forced to deal with the full complexity of the spectral

ss P. C. Martin and J. Schwinger Phys. Rev. 115, 1342 (1959).

The true kinetic energy is given by

(e, l T.,le, )=g T„P +g T,Ps. (8.2)

weight functions. One would then have to compute a
coetitsuols function As(&o) for each of the single-particle
orbitals k. These functions contain a great deal of
information, but much of this is irrelevant for the
properties of the ground state. Thus the method appears
rather ineS.cient.

Quite apart from the uncertainties associated with the
present approximations of this approach, we feel that
the use of the "true" energy expression (8.1) is a great
disadvantage as compared to the "model" quantity
AB. The advantages of the "model" description are:
(1) The degenerate version of this model formalisms-'s

corresponds quite directly to the usual shell-model
concepts. (2) The model kinetic energy (or unperturbed
shell-model energy (Ho)) is trivial to calculate, in
contrast to the true kinetic energy. (3) The true kinetic
and potential energies have considerably larger mag-
nitudes than the corresponding model quantities, thus
the true quantities must be calculated. to relatively
higher accuracy in order to achieve the same accuracy
for the final P/X. (4) Finally, the model energy ex-
pression (6.12) is much less sensitive to errors in the
computed values of the P's. Further comparisons be-
tween the "true" and "model" descriptions may be
found in Prange and. Klein" and in Ref. 13.

If one considers the nonperturbative aspect of Puff's
theory to be important, it might be worthwhile to
attempt a similar nonperturbative theory within the
model description. This could probably be done by
developing the theory of Kummel. "

IX. SUMMARY AND CONCLUSIONS

The object of this paper has been to Gnd a systematic
and physically reasonable scheme for rearranging the
higher order terms in the Brueckner-Bethe-Goldstone
theory of nuclear matter. There were two motivations
for this study: (a) to explore and develop the conse-
quences of Bethe's three-body cluster idea, and (b) to
obtain a satisfactory theory of Gnite nuclei. The Grst
of these focuses attention on the off-energy-shell problem
and the role of the healing distance. The second problem
emphasizes the need for a mass operator which is well
deGned, to all orders of perturbation theory, in a
physically meaningful way. Taken together, these con-
siderations lead to a unique choice of partial sum-
mations. The latter can be applied consistently through-
out the entire series, and one thereby obtains a new
form of renormalized many-body perturbation theory.
Its distinctive feature, as compared with other re-
normalized perturbation theories, is that it optimizes the
treatment of the short-range correlations between
particles which are deep within the Fermi sea. It is well
established that the bulk properties of nuclear systems
are determined. almost entirely by these correlations.

~~ R. Prange and A. Kiein, Phys. Rev. 112, 1008 (1958).
57 H. Kiimmel, in I.ectlres on the F~eAS Theory used the Meey-

Body Problora, edited by E. R. Caianiello (Academic Press Inc.,
New York, 1962).
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When more than two particles are excited from deep
within the Fermi sea, the energy denominators tend to
be very large. This off-energy-shell effect greatly en-
hances the repulsive hard-core contribution to the
6-matrix elements. On the other hand, there are many
instances where the topology of a diagram permits a
generalized time-ordering factorization, so that certain
parts of the diagram may be evaluated "on the energy
shell" with respect to the remainder of the diagram. The
difference in the behavior of interactions on and off the
energy shell is so striking that we have adopted this as
the primary criterion for rearranging the linked-cluster
series. This effect is intimately related to the hard core,
and hence to the short-range correlations.

The erst partial summation consists of grouping
together all Goldstone diagrams which have the same
structure in terms of irreducible compact parts (ICP's).
Most simply, an ICP is a part of a diagram which can
be "factorized" to place it entirely on the energy shell
with respect to the remainder of the diagram. In this
way all off-energy-shell effects are concealed within the
interiors of the various ICP's. For two or three particles,
the ICP's are just the usual G-matrix and Bethe's three-
body cluster, respectively. More generally, they closely
resemble the multiple-collision operators of I ee and
Yang.

Self-consistent single-particle potentials are intro-
duced by means of a second partial surrunation. The
previous summation forces us to adopt a particular
choice of self-energy insertions. These are just the
insertions which can be placed entirely on the energy
shell. Their sum is said to define an on-energy-shell
mass operator M'".

A curious and very fortunate feature of this mass
operator is that it leads to occupied-state potentials
which are all strongly attractive, as in previous form-
ulations of nuclear matter theory, but the intermediate-
state potentials are all positive. This automatically
places a lower bound of quite large magnitude ()100
MeV) on all of the energy denominators. In the language
of the reference-spectrum method, " this ensures that
the y's are all quite large, and hence that the two-body
correlations must heal quite rapidly. This also helps to
make the off-energy-shell effects quite striking. The
net eQ'ect is to guarantee that the spatial correlations
within aed be@veen the many-body ICP's are all of
quite short range, so that one is indeed dealing with
"compact clusters. " The initial assumption of strong
off-energy-shell effects is therefore internally consistent.
This strengthens our confidence that this is the most
satisfactory way to handle the correlations between
particles deep in the Fermi sea. The most important
consequence is that the entire compact-cluster series
can be ordered in terms of a small parameter f(., which

turns out to be of order 10%.
It is noteworthy that this A: is essentially the same as

the small parameter of the Jastrow cluster expansion.

Day" has recently demonstrated a close connection
between the three-body Bethe-Faddeev wave function
and the corresponding Jastrow wave function which
was used by Moszkowski. " It would be interesting to
pursue this comparison further. It appears quite likely
that the Jastrow expansion is simply a semiclassical
approximation to the present one. The relation is ob-
scured somewhat by the fact that the Jastrow method
is based on the "true" description, which involves the
true expectation values of the kinetic and potential
energies, whereas the present method is based on the
"model" description, E=Eo+DE. We have argued that
the model description provides the most convenient
framework for a really detailed theory of nuclear
systems.

The rapid decrease in the magnitudes of the first few
terms of our expansion is physically reasonable, because
the binding energy is dominated by the short-range
correlations. But the true wavefunction also contains
long-range correlations (BCS correlations for example),
and these are artificially suppressed by the very large
energy denominators. The existence of BCS correlations
is probably enough to make the expansion diverge
asymptotically (and there are also other reasons for
suspecting an asymptotic divergence), but this in itself
is not a serious drawback. This expansion should be
satisfactory for binding-energy calculations, at least for
infinite nuclear matter, because the BCS and other
long-range correlations contribute so little here.

On the other hand, one would like to have a more
general theory in which the long-range effects could be
studied in detail. Suitable formulations can be con-
structed by applying the present partial summations
to the degenerate linked-cluster expansion. ~"The basic
idea is to split the set of unperturbed E-body eigenstates
(Slater determinants) into two parts. The low-lying
states are handled by the usual configuration-mixing
approach in which one diagonalizes a secular matrix.
The higher configurations are brought in through the
linked-cluster expansion for the effective interaction of
the secular problem.

It is obvious that this type of approach is needed for a
real nucleus with only a few valence particles beyond
closed shells. "" It should also work when there are
many valence particles. (This has been suggested
before, ""but at the time there was no adequate
degenerate perturbation theory. ) In this case one cannot
hope to solve the secular equation exactly. But approxi-
mate solutions may be obtained by using the techniques
of the BCS and random-phase theories, or even by a

ss B.D. Day, Phys. Rev. 151, 826 (1966)."K.A. Brueckner, R. J.Eden, and N. C. Francis, Phys. Rev.
99, 76 (1955).

'e H. A. Bethe, Phys. Rev. 103, 1353 (1956)."J.F. Dawson, L Taimi, and J. D. Walecka, Ann. Phys.
(N. V.) 18, 339 (1962)."K.A. Brneckner, in Proceedsrtgs of the Irtterrtatsolal Cortferertce
on Nuclear Structure, Eingston, Canada, 1940 (The Vniversity of
Toronto Press, Toronto, Canada, 1960), p. 86.

~ I. S. Sell, in Lectures on the Many-Body Problem, edited by
C. Fronsdai (W. A. Benjamin and Company, New York, 1962).
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second application of linked-cluster perturbation
methods, depending on which long-range effects are
being considered.

This approach makes explicit use of the logical con-
tinuity between conventional shell-model techniques
and the treatment of the Fermi surface in infinite sys-
tems. A rather similar viewpoint has been taken by
Migdal, who is applying the techniques of the Fermi
liquid theory to shell-model calculations. "We are sug-
gesting instead that a many-body formalism which was
originally developed for the shell model be extended to
infinite systems. By this means it may eventually be
possible to calculate all of the semiphenomenological
parameters of Landau and Migdal from first principles.

It is interesting that true single-particle occupation
probabilities occur in a simple way throughout the
present expansion. This happens because they are
directly related to the on-energy-shell mass operator.
One obtains the rather paradoxical result that these
true occupation numbers are important for a finite
system but not for an infinite system. They are not
important in the infinite case because, in the final
energy expression, almost all of their effect is compen-
sated by "overcounting corrections. " Their residual
effect is so small (or order s MeV) that it is much more
convenient to regard this as a perturbation.

The renormalized probabilities are important in the
finite case because they lead to a significant irnprove-
ment in the total wave function. They do this mainly
by improving the one-body orbitals. They introduce
repulsive terms into the shell-model potential, and
these terms increase more rapidly with the density
than do the corresponding attractive terms. These
terms clearly tend to bring about saturation, and
we have therefore called them "saturation potentials. "'

We have not yet referred to the generalized Brillouin
condition, ""which states that the total amplitude for
a single-particle excitation should vanish. It is worth-
while to have the shell-model potential satisfy this con-
dition since this will obviously improve the convergence
of the theory. Fortunately, it is very easy to incorporate
this into the theory. A much more diflicult problem is to
ensure that this shell-model potential is Hermitian. This
will be discussed in a later paper. One should note that
this theory of the shell-model potential, based on opti-
mizing the convergence of the wave-function expansion,
does not make any reference to variational arguments
or to the physically observable removal energies. The
view that the one-body potential should be regarded as
a "free parameter, " to be used to optimize the rate of
convergence, has long been advocated by Bethe. '0

Our single-particle energies are rot the removal
energies. This is consistent with most previous discus-

+A. B. Migdal, in Proceedings of the International School
of Physics "Enrico Fermi, " Course 36, Varenna, 1965 (to be
published).

'5 R. K. Nesbet, Phys. Rev. 109, 1632 (1958).
s' P. O. Lowdin, J. Math. Phys. 3, 1171 (1962).

sions of "rearrangement" eR'ects."One important con-
sequence is that the velocity dependence of our shell-
model potential should be quite different from that
deduced from the experimental removal energies.
There are indictions that the experimental eR'ective
mass is close to the real mass, or perhaps even larger
than the real mass. ""This is understandable from an
examination of the rearrangement terms corresponding
to the present theory. ' These terms will be discussed
more fully elsewhere, in connection with the degenerate
formalism.

There is a good reason why the physical removal
energies should not be used in a theory of nuclear
binding energies. Except for the states just at the Fermi
surface, the removal energies are all complex. (Even
complex energies are inadequate to describe the propa-
gation of particles or holes far from the Fermi surface. )
We feel that complex numbers should be avoided in a
theory of the bound many-body ground state. Some
authors have proposed using just the real parts of the
removal energies, "but this is a rather ad hoc prescrip-
tion. It has also been suggested that one should keep
track of the imaginary parts of the removal energies at
all stages in a theory of the ground state. This would
make practical calculations more complicated. Besides,
it is far from clear whether the resulting ground-state
energy would be real.

The present intermediate-state potentials turn out
to be extremely small, of order +1 MeV. For practical
nuclear matter calculations they may simply be ignored.
This is a great simplification compared to previous
treatments of these potentials, "but of course there is a
price to pay. One must now do a separate calculation of
the three-body cluster energy. This approach has been
advocated for some time by Brown, "both with regard
to the convergence problem and as a very convenient
simplification for G-matrix calculations in the shell
model. In a later paper we shall argue that this simple
and useful result may require modification in the
nuclear surface region, due to a subtle nonlocal eGect.
Stated most simply, this comes from the requirement
that the intermediate orbitals must all be orthogonal
to the occupied orbitals.

For practical nuclear matter calculations, the inter-
mediate-state potentials and occupation probabilities
are both entirely negligible. The renormalization of the

"K. A. Brueckner, Phys. Rev. 97, 1353 (1955);D. J. Thouless,
Phys. Rev. 112, 906 (1959); P. Mittelstaedt, Nucl. Phys. 1?,
499 (1960); K. A. Brueckner and D. T. Goldman, Phys. Rev.
117, 207 (1960); K. A. Brueckner, J. L. Gammel, and J. T.
Kubis, sbr'd 118, 1438 (19.60).

6 G. E. Brown, J. H. Gunn, and P. Gould, Nucl. Phys. 46,
598 (1963).

s' B.L. Cohen, Phys. Rev. 130, 227 (1963).
's D. J. Thouless, Phys. Rev. 114, 1383 (1959).
7' See Refs. 15, 17, 49, and also D. W. L. Sprung, Ann. Phys.

(N. Y.) 31, 342 (1965);S. A. Coon and J. Dabrowski, Phys. Rev.
140, B287 (1965)."T.T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966);
G. E. Brown, Uni6ed Theory of Nuclear Models, 2nd edition
(to be published).
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occupied-state probabilities is rot small, but its eGect
on the binding energy is so small that it is best regarded
as a perturbation. In anticipation of the finite case we
discussed the first four terms (U~, Ua, Ums, and Uss)
in the expansion for the occupied-state potentials. The
last three of these terms are all fairly small, and there
is probably considerable cancellation between them. It
should be quite sufhcient to treat these terms as per-
turbations, with due allowance for overcounting. The
self-consistency part of a nuclear matter calculation
then need only involve U&. This is simpler than in most
previous formulations.
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APPENDIX: MAGNITUDES OF THE
COMPACT CLUSTERS

We wish to demonstrate that the K of (42) is indeed
the small parameter of the expansion. This requires some
interpretation, because the result is not a simple Taylor
series in ~. The best one can say is that the general
order of magnitude of each term can be characterized
by a definite power of rc. This is quite analogous to the

k L rn n

rather complicated way the corresponding small param-
eters occur in the Jastrow expansion and in the classical
virial expansion for imperfect gases. We shall begin
with a rather detailed discussion of the simplest class of
diagrams, those consisting of only a single ICP. This is
to illustrate some of the other considerations which
determine the magnitudes, in addition to the number of
~'s. The identification of "factors" of z is then discussed
for the general case.

Diagrams With One Irreducible Compact Part

Consider the Goldstone diagram in Fig. 9(a). This
is the simplest contribution to the m=4 compact duster.
By comparing this with the closed part on the right-
hand side of Fig. 4(c), one can easily see that the order
of magnitude of this diagram is

~m 2p(G )—
Here (G ) denotes a matrix element

I
the middle inter-

action in Fig. 9(a)j whose energy denominators involve
excitations of all e particles. Note that this diagram is
of order O'" '. The eGect of including all the other
Goldstone diagrams of the same order (and their
exchanges) which belong to this same compact cluster
is mainly to alter the statistical weights for the partial
waves of the various G matrices in Fig. 9(a). This was
shown in detail by Rajaraman" for the case n=3. The
inclusion of all the higher order Goldstone diagrams of
this compact cluster then acts mainly to reduce the
strength of the hard-core contribution to (G„).

In a naive extension of Bethe's analysis to e particles,
it can readily be seen that this core contribution will

f
&e) N(e —1)

be reduced by a factor of
I I=, the number of
(2) 2

distinct pairs which can be formed out of I particles. "
This may not be completely correct, because we have
not analyzed the spurious terms which must be explicitly
subtracted out of the n-body Bethe-Faddeev wave
function. But these spurious terms must also have
similar core-reduction factors, so the present argument
should su6ice for order-of-magnitude purposes.

According to the reference-spectrum method, "

(a) k L m n

k L m n
(b)

(A2)

k L rn n

{c)

ex
n (n-1)

There is not much error from replacing (pl by (f„I
in the last step. These quantities are identical inside
the hard core, while the large value of y„' ensures that
i „heals quite rapidly beyond the core. This falsifies
the attractive contribution to (G„), but we shall treat
that more carefully below. For the moment, we shall
replace e, the n-particle excitation energy, by n

Frc. 9. Analysis of a typical diagram containing only a
single irreducible compact part. 7' I am indebted to Dr. C. %.Wong for this observation.
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p(Gtl)oore ~ Xmeg~,
n (n —1)

so that 6nally

(A6)

(A7)

The statistical weights can be guessed as follows.
We are dealing with correlations of quite short range,
so there should be very little contribution unless the
n(n —1)/2 different pairs can all interact in relative
S states. Because of antisymmetry, this can only happen
when the particles all begin in different spin-isospin
states. The weights are therefore m2 ——4, m3 ——4X~, and
m4=4X-,'X4. The contributions for e&4 should be
very small, quite apart from the ~" ' factor, because
some of the pairs must begin in relative P states. In
applying these statistical weights, we must also re-
member that ~, as defined in (4.2), already includes a
factor of m2 ——4.

Putting this all together, we obtain

2
E„/N = —w. (-', )"—'e,(4—

n —1i
The results are

(A8)

and

E2/N= —2~ei ———72 MeV,

E3/N = —21~2ei ———8.6 MeV,

E4/N = —(20/27) I~'@i = —0.38 MeV.

Note that these results are all attractive. The hard-
core repulsion has been strongly suppressed relative to
the outer attraction.

These estimates are all somewhat too large. The m= 2
case requires an extra factor of —,', as in Hartree-Fock
theory, because of the special symmetry of the E2/N
diagram. For the other cases one should note that the
appropriate ~„, for correlations whose energy denom-

times a typical single-particle excitation,

ei= (k'/2M)$(~/2c)' —0.6k''$+(U(b)). —(U(ni)).„
=L(2.6)'—0.6]Ti;+70 MeV= 300 MeV. (A3)

For n= 2, the hard-core repulsive contribution is about
half as strong as the attractive outer contribution (see
Table III of BBP); thus

(G )--=—l (G )- -=—(G ) (A4)

Now the magnitude of p(G~) is 2(E2/N) =—73 MeV.
We shall assume that the attractive outer contribution
is roughly independent of m, therefore

p(G„),~i„=p(G2),„i„=—146 MeV
=—4aeg. (A5)

The core repulsion will be scaled down by a factor of
&n

~, as described above;
&2i

inators involve n-particle excitations, is considerably
smaller due to the rapid healing. The asymptotic value
for large e is determined by the hard-core volume,

4m.

~„„=~pX—c'=0.05,
3

(A9)

for c=0.45 F. Another point to consider is that at
least ~i of (G2),„t„arises from the tensor force in triplet-
even states. This will be strongly suppressed for e& 2,
both because of the off-energy-shell effect and be-
cause of the more complicated geometry. In this con-
nection we recall that about 3 of our estimate for ~ was
attributed to the subsidiary 'Di wave. (This is the
analogue of the deuteron D wave. ) From these con-
siderations it should be reasonable, for n)2, to (a)
multiply the outer contribution (A5) by a factor 4,
and (b) decrease the n —2 factors of i~ which derive from
(A1) from 0.12 to 0.08.The results are then Em/N= —36
MeV, E3/N= —3.8 MeV, and E4/N= —0.12 MeV.

One may object that a more careful study of the
diagrams (see, for example, Eq. (7.14) of BBPj shows
that the appropriate e„ for (A2) is not n times (A3) but
is instead

e2 —+ 2(b, U), =+140 MeV. (A11)

On the other hand, we have effectively attributed most
of the core repulsion to the core interior term of the
reference-spectrum method, whereas for small e the
bulk of this repulsion actually comes from the core
boundary term. It turns out that there is a strong com-
pensation between these two neglects. The naive dis-
cussion of the core repulsion actually gives reasonably
good estimates.

We have carried this discussion far enough to show
how one can obtain reasonable magnitude estimates
without going through a full analysis. But we have so
far only considered diagrams composed of a single
irreducible compact part.

General Argument

For a general diagram there is no point, in attempting
so much detail. We are interested simply in identifying
the factors of ~. For this purpose, the main steps of
the argument are summarized in the sequence (a), (b),
(c) of Fig. 9.The general case brings in one new feature,
however. Some of the hole-line summations may be
restricted by momentum conservation.

The 6rst step in the analysis of a general compact-
cluster diagram is to select a single one of the lowest
order Goldstone diagrams which it contains. (Any of the
lowest order diagrams will suQice; the exact choice is

e„~n (6U). + (n —1)(a T),

=nX 70 MeV+ (n —1)X230 MeV (A10)

for e) 2, while for v=2,
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Fzo. 10. Analysis
of some typical
diagrams containing
more than one
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unimportant. ) The next step is to replace each down-
going line by a pair of upgoing external lines, as in
Fig. 9(b).'4

At this stage the diagram may contain several dis-
connected pieces. The number of these disconnected
pieces will always be one greater than the number of
hole-line summations which are restricted by momentum
conservation. This follows directly from the topological
features which lead to the momentum restrictions.
We should now take note of the fact that we are actually
interested in E/X, the energy per particle. In the present
context the E ' factor is equivalent to suppressing
another one of the hole-line summations. The number of
disconnected pieces is therefore the same as the total
number of hole-line summations which are suppressed.

~4 This is essentially the diagram convention of Lee and Yang,
Refs. 21, 22. Its use in the present context gras suggested by R.
Rajaraman, Ref. 20.

The diagram should now be examined to see if there
are any continuous lines which encounter only a single
G-matrix interaction during their journey from the
bottom to the top of the diagram. If so, each of these
"isolated" G-matrix elements should be "split open, "
as in (A2) and Fig. 9(c), to give an excitation energy
multiplied by a factor of Q ~ f)

I et us begin with the simplest possible diagram,
corresponding to E2jlV. The flrst (or left-hand) external
line may be ignored, since this sum over occupied states
is cancelled by the S ' factor. Following the second
(or right-hand) line from the bottom to the top, we
encounter factors of p, ~ l ), an excitation energy em, and
(f ~

. These combine to give ~ e2.
Now consider a general connected part of an external-

line diagram. Suppose that this part contains h external
lines. The erst of these corresponds to a factor of unity.
Each succeeding line will add a factor of p(f~i),
pQ ~i), or p(|'~p). For our purposes these are all equal
to ~, so this connected part contributes a factor of
a" '. After analyzing all of the connected parts in this
way, we obtain the desired over-all factor of ~

' ',
where h' is the number of hole lines whose summations
are not restricted by momentum conservation.

There will always be enough ~t) or (f ~

factors be-
cause, by construction, each line must get excited into
an intermediate state and then eventually get de-
excited again. There will be no superfluous f' factors,
because we have deliberately chosen one of the simplest
or lowest order diagrams corresponding to the compact
cluster. From the general rule that a diagram with
m G's must have e—1 energy denominators, one can
see that the above procedure will always lead to a
single left-over factor of e, as required on dimensional
grounds. The inclusion of all the other Goldstone
diagrams will then simply add statistical weighting
factors and core-reduction factors, all of which may be
ignored here. Some further examples are shown in
Fig. 10 to help fix these ideas. The straight horizontal
lines illustrate where isolated G's have been split
open.


