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The cross sections for Raman scattering by electrons and holes in a semiconductor subjected to a mag-
netic field are calculated. A number of processes in which the Landau level number changes by An=2, as
well as a spin-flip process with Az =0, are considered. Except for the Az =2 process in the conduction band,
the matrix elements are independent of the strength of the magnetic field. Scattering cross sections are
estimated for InSb (incident photon energy 0.12 eV) and InP (incident photon energy 1.17 eV). The magni-
tude of these cross sections suggests that it may be possible to use Raman scattering to measure effective

masses.

I. INTRODUCTION

HE scattering of light by mobile carriers in a
crystal has recently been considered by Wolff.!
Of particular interest to us here is a Raman process in
the presence of a magnetic field: An electron, initially
in the Landau level #, scatters a photon and makes a
transition to the level #+2 the frequency of the photon
being shifted by twice the cyclotron frequency. Wolff
confined his considerations to a nondegenerate band,
and he made use of a simple two-band model to estimate
the cross section for this process.

In this paper we extend his calculation in two ways:
(1) the actual band structure and wave functions of
indium-antimonide-type crystals are used to calculate
the cross section for carriers in the conduction band, and
(2) other Raman processes are considered, specifically
(a) hole scattering in the degenerate valence band, and
(b) spin reversal transitions in the condition and valence
bands.

As was expected, for the process calculated by Wolff
our answer is very similar to his. However for the other
processes we find a different dependence of the matrix
element on the magnetic field, i.e.: For the transition
among valence-band states the lowest order matrix
element is independent of field-strength and photon
energy; for spin-reversal transitions in the conduction
band, itis independent of field-strength and proportional
to the photon energy. In InSb all types of matrix ele-
ments are comparable at fields of a few kG and at still
higher fields the An=2 process in the conduction band
is favored. However in larger band gap materials such
as InP, the An=1 and An=2 transitions in the valence
band have the larger cross sections. With a laser source
it is expected that these Raman processes will be ob-
served and that they may give information on the band
structure.

II. CALCULATION OF THE MATRIX ELEMENTS

We use a simplified model for the conduction and
valence bands in the neighborhood of £=0, i.e., we
neglect the interaction with other bands and also the
free mass terms. This is known to be an excellent

1P. A. Wolff, Phys. Rev. Letters 16, 225 (1966).
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approximation in many cases, and it makes it possible
to obtain the wavefunctions in the presence of a mag-
netic field? and hence to calculate the matrix elements.
The neglected bands may change the values of numer-
ical coefficients in the matrix elements, but not the form
of their dependence on the energies of interest (i.e.,
photon, cyclotron, and band gap energies.)

The expansion coefficients for the wave functions are
shown on Table 1. Here S, X, ¥, Z are, respectively, the
conduction and valence band states in the absence of
spin-orbit coupling at the center of the zone;
P={(S|p,|X) is the momentum matrix element, A
the spin-orbit splitting, the magnetic field is in the
z direction, s=eH/#%c, and &, is the »’th harmonic
oscillator function of the variable k,/4/s. The \,,®, for
a=c, I, or s, are the energies of the one-electron eigen-
states (with the magnetic field) of the conduction band,
the light-hole band, or the split-off band, respectively.
They are obtained from Eq. (5) in Ref. 2, and it will be
convenient to have their expression to order %%, which
is given by (taking A=m=1):

1 o
Ano @ = B p— kst 1) H——s
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where m, and m,’ are the orbital and spin masses,

respectively, and o==1 corresponds to 1 and | spin.
For the conduction band, a=c¢:
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For the light hole band, a=1:
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2 R. Bowers and Y. Yafet, Phys. Rev. 115, 1165 (1959); Y.
Yafet, sbid. 115, 1172 (1959). As explained in this paper, as long
as the energy bands of interest can be approximated by spherical
bands, their magnetic levels can be obtained exactly.
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TasBLE I. Wave functions in a magnetic field: The ®, are functions of %, (% representation). Atomic units Z=m=1 are used, and the
other symbols are defined in the text. |hh,ns) denote the two (o=1 and |) heavy hole states; |a,n0) denotes either one of a conduction,
light hole, or split-off band state. The wave functions in these last three bands have a formal similarity and are differentiated only by
the values of the energy A,.‘®. The normalization of the states gives a further common factor which is not included in the table. The
values of # are: #>0 for |a,no); #>—1 for |hh,n|); #>+1 for |hhynt).
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For the split-off band, a=s,: sion of a photon (g1,w1) with polarizations €, and ¢ is
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The heavy holes have infinite mass in this approxi-
mation.

Of the two terms in p-A and A2 of the electron-photon
interaction, the A% term does not contribute to Raman
scattering in the dipole approximation® and the matrix
element is due to p-A taken in second order. Written
fully, this term is

1
WG X R bt et pe g,
a (mw,

where a, and apnt are the destruction and creation
operators for photons of polarization eq and frequency
wq. The constant G is given by

€2 \1/2 /2 hic?\ 1/2
() )
mc? eV

where m is the free electron mass and e the dielectric
constant and V the volume of the sample. The matrix
element for the absorption of a photon (go,wo) and emis-

3 The dipole approximation will be valid as long as ¢r«<1, ¢
being the photon wave vector in the solid and 7 the cyclotron
radius. For the lowest level, #=0, this requires H>>400/%¢ where
E is the photon energy in eV and e is the dielectric constant.

where the dimensionless quantity 4 s is

1 ((81 'P)fr(so'p)ro+(£o'l))fr(€1 'P)ro)' W

Apo=—2

m r E0+hw0—Er Eo— hwf—E,
Here o, 7, and f refer to the initial, intermediate and
final states of the electron, and E,, E, and E; are the
corresponding energies. By energy conservation
Eo+hwo=Es+hw:. The differential scattering cross
section is given by

do e \wy
()
dQ 70 7%02 Wy

The dielectric constant has cancelled out and the
effect of the band structure is contained entirely in the
quantity A4 o which is to be calculated with the eigen-
states of Table I. Because the energy values \,,(*) are
complicated functions of ns and k.% an exact calculation
with these states would involve considerable computa-
tional work. We shall be content with an approximate
Ayo and, hence, we expand N\,,{® and the coefficients
in Table I in powers of s and k.2 To obtain 4 s, to order
H (or s) we include in the expansion of these coefficients
terms of order s*2 The calculations are straight-
forward but tedious and only the results are given below.
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To abbreviate the writing, the eigenstates of the con-
duction band, the light hole band, and the heavy hole
band have been denoted by | c,ne), |1h,ne), and |hh;ne),
respectively.

Conduction Band
(a) Orbital transitions

The matrix element for the |c,no) to |c,n+20) tran-
sition is the same for 1 and | spin and is given by

fiw, f2Eg+2A\?
A =2 (o D 21— (—_‘i——)
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Z’:G’2 3 EG 1 EG
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where @o=1%(wo+w1). The circular polarization of the
incident photon is the same as for cyclotron resonance
(i.e., counterclockwise around the field direction) while
the out-going photon has the opposite sense of
polarization.

In Eq. (2) we have neglected terms of order w./wo
and #*%.?/m.Eq. The first two terms in the curly bracket
are contributed by the upper valence band and the last
term by the split-off band. In the limit wo— 0 and both
for A=0 and A= » Eq. (2) reduces to the expression
of the two-band model of Ref. 1. The second term (which
varies as (Eg*—hae)™?) is specific to a degenerate
valence band and it gives a further enhancement of the
cross-section for values of %@ very close to Eg.

In calculating Ao it is found that the light hole
intermediate state contributes in order P2/mEg~m/m..
The heavy hole intermediate state contributes in the
same order but the two cancel each other exactly in
lowest order and the net result is of order (m/m.)
(fwe/Eg). This raises the question whether the cancel-
lation is an artificial feature of the simple model used
here. The answer is that for carriers in a nondegenerate
band the cancellation will always occur, and one way to
see this is as follows: If 4y were really of order m/m,

= ] > Fic. 1. Possible
ko geometry for ob-
. serving spin-reversal
ky transitions.
o
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and hence independent of the magnetic field, then by
the principle of spectroscopic stability it should be
unnecessary to use the exact states of the valence band
in calculating it, since the splittings in the valence
band are of order #w,. If we take valence states which
are a single product of a cell-periodic function and a
harmonic oscillator function, it becomes obvious by
inspection that there are no Raman matrix elements
of order m/m.. In Figs. 2 and 3 we have plotted the
dimensionless quantity /%y (which is A without the
polarization factors) for #=0 and k.=0 as a function of
magnetic field, for InSb and InP, respectively. For the
former, the photon energy of a CO, laser (0.12 eV) was
taken. InP was chosen as a second example because its
band gap of 1.34 eV is only slightly larger than the 1.17
eV photon of a neodymium laser, thus providing a large
enhancement factor (Eg?—7fiwo?)™.

70
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F16. 2. Matrix elements for Raman scattering in InSb.

At a given field, %y is about 20 times smaller in
InP than in InSb. This is because ko~ (m/m;) (hwo/Eg)
~ (PY/Eg) is inversely proportional to the cube of
Eg, which would result in a ratio of 200, but this ratio
is reduced to 20 by the enhancement factor being much
larger in InP than in InSb.

(b) Spin Reversal Transitions

The simple product states #s/2,m;®. of the last para-
graph make it easy to see that the matrix element for
spin reversal remains finite for a vanishing magnetic
field. Thus if the incident photon is polarized along the
z direction, the outgoing photon will be circularly
polarized and for the |c,nt) to |c,n]) transition, the
intermediate state #3/s,1/2®P, will contribute to the first
term of (1) while #s3,2,_1/9®, will contribute to the second
term. If the g factor is negative as in InSb, then
Mt © >Nt © and the outgoing photon will be polarized
counterclockwise; the sense of polarization will be
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opposite if the g factor is positive, as is probably the
case in InP. (Actually the g factor of InP is expected to
be of the order of 0.8, which would give a very small
Raman shift and make resolution difficult.) A possible
geometry for observing this Raman effect is shown in
Fig. 1.

The complete matrix element is obtained by including
the split-off band, and the result to lowest order in H
for the |c,nt) to |c,nl) transition is
4 2V2 P“’h&)or Eg? Eg ]
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The dependence of 4 s on 7o is the same as for the
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F16. 3. Matrix elements for Raman scattering in InP.

Raman scattering of phonons? in spin-lattice relaxation.
Notice that even if A is small (as in InP) the second
term of the first bracket is small relative to the first
if Ao is very close to Eg.

The magnitude of 4y, is plotted in Figs. 2 and 3,
and it is seen that unlike the 4 jo of the Az =2 transition,
it is comparable for InSb and InP. The reason for the
difference is that for an 7w, comparable to Eg, Ay in
(3) is inversely proportional to only the first power of Eg.

There is also another allowed transition involving a
spin flip, i.e., |¢,n1) to |¢,n+2]). The magnitude of
hyo for this transition is however only of order (#w./Eg)
(P*/mEg); the polarization factors are e, (e1x+iery)
and (eox—%Zeoy) €1.. The Raman shift of 24w+ 2 (m/m.")SH
would be the largest in the conduction band.

4 See, e.g., R. Orbach, Proc. Phys. Soc. (London) 77, 821 (1961).
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TaBLE II. Transitions in the valence band. Values of the factor
Ny of Eq. (4) for the matrix element.

Initial Final
state state n
2 3n (n+2) 12
hhmnl lhin+2] n>—1 —{ }
3| (4n+3) (4n+11)
hh,0) 7 n=0
\/
3n(n+2) 172
hhnt Ihn+27 n>1 2{ }
(4n+1) (4n+9)
{ (n+1) (n+2) }
Iyl hn+2] n>0 2
(4n+3) (4n+11)
{ (n+1) (n+2) }
Il 427 n>0 2
(4n+1) (@n+9)

Valence Band
(a) An=2

The near cancellation between contributions from
the light holes and the heavy holes, which gave
A so~ hw, for the conduction band, does not come into
play for transitions in the valence band, and A4y be-
comes of order P?/mEg¢. This result can be easily checked
from the wave functions of Table I, as any valence band
state (at k,=0) has components in fwo of the basis
states: my=3% and —3%, or my=—% and +%. A An=2
transition proceeds via an intermediate state in the
conduction band, and the matrix element is

~ (usy2,172| P4 |4S) (85 | py | w3 /2,-372) -

To lowest order in H and at k,=0, the matrix ele-
ments for various transitions involving light and heavy

holes are given by
e;x-—iely
). @

p2 Eg ( €oxtieoy
A 0= N_fu )(
mEg Egi— (ha)’\ V2 V2

where the numerical factors Ny, are listed in Table I1I.
The heavy hole to light hole transitions are best suited
to experimental work (since in very large fields there
may be no light holes at low temperatures) and they
also have the largest Raman shifts. The calculation was
extended to the next order (i.e., %w,/Eg) for these
transitions, and the results are plotted on Fig. 2 for
InSb. (The corrections are negligible in InP.) It is
perhaps surprising that although at 30 kG the ratio
hwe/Eg is only 0.1 the correction to 4 s is as large as it
is, e.g., for the |hh,11) to |1h,31) transition. The ap-
parent reason is that the terms first order in H have
large numerical coefficients of the order of 2 to 10. For
quantitative estimates of the valence band A yo at these
high fields one should make an “exact” (in H) calcula-
tion using the states of Table I.
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From Figs. 2 and 3 we see that the matrix elements
for Raman scattering in the valence band are com-
parable (unlike in the conduction band) for InSb and
InP, and this is because A,y in the valence band is
inversely proportional to only the first power of Eq.

(0) Spin Reversal Transitions

Somewhat arbitrarily, we denote by spin-reversal
transitions in the valence band, those processes which
involve one photon polarized parallel to H and one
polarized transverse to H. This terminology agrees
with that in the conduction band. Because of the
opposite curvatures of the conduction and valence
bands the transitions between holes have polarizations
opposite to those of the transitions with the same An
in the conduction band. The matrix elements are of
order P?/mEq and can readily be obtained if needed.

III. CONCLUSION

The cross sections calculated above are sufficiently
large to permit the observation of the Raman transi-
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tions with a laser source. Thus for the |hh,0]) to
|1h,11) transition in InP, a differential cross-section of
(do/d2)~2X1072 cm? is given on Fig. 3. This can be
compared with an observed® total cross-section of
o~5X10"% cm? for F centers in alkali halides. An
advantage of Raman spectroscopy is the large value of
w.r which can be reached with a high magnetic field.
For example the mobility® at 77°K of p-type InP with
106 impurities per cc corresponds to w,7~7 for the light
holes at 100 kG. Thus for large (and of course, small)
band gap materials the Raman transitions in the
valence band as well as the spin-reversal transitions
can be of use in band structure measurements.
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Erratum

Nuclear Quadrupole Resonance by Nuclear Induction: Theory and Experiment;
with an Extension of the Theory to Absorption Methods, GEOrRGE W. SmiTH [Phys.
Rev. 149, 346 (1966)]. C. Dean [Phys. Rev. 96, 1053 (1954)7] first predicted the
applicability of the Bloch crossed-coil apparatus to NQR experiments.



