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state wouM determine absolute values for the oscillator
strengths.

Another quantity of interest is the ratio of the life-
times of the two states in lead with the (6p7s)-electron
coniguration. Combining the results of this paper with

that obtained by Saloman and Happer, ' a value of
1.15(4) for the ratio T('P~')/T('P~') is obtained.

The author wishes to thank Professor R. Novick
and the staff of the Columbia Radiation Laboratory for
their interest and, unfailing assistance.
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By means of a two-stream approximation, an analytical solution is obtained to the equation of transfer
governing the steady-state concentration of mono-energetic electrons within a slab of gas bounded by two
in6nite planes, one of which emits a constant current density normal to its surface. The theory places no
restriction on the gas pressure and includes the effects of inelastic collisions and partial reflection of scattered
electrons at one or both boundaries. The results are applied to electron-beam experiments at intermediate and
high pressures where the mean free path of electrons is comparable to or less than the length of the collision
chamber. Analytical expressions are obtained for the electron current transmitted through the gas and for
the normalized ion currents to be expected in the case of total ion collection and in the case of sampling
through a slit. The effect of elastic and inelastic collisions may be represented by an "equivalent length
factor" which modi6es the equations normally applicable under low-pressure conditions. The results of the
present theory are compared with previous theories, with particular reference to their use in interpreting
experiments of the Maier-Leibnitz type, designed to measure absolute values of inelastic-collision cross
sections.

I. INTRODUCTION

'HIS paper deals with the motion of electrons in
gases in the pressure range in which the electron

mean free path is comparable with or less than the
length of the chamber. One motivation for this work
is the recent extension of electron-beam experiments to
higher pressures in this' and other laboratories. ' The
need for electron-beam experiments at gas pressures
higher than those conventionally used (above 10 '
Torr) arises from the desire to obtain higher rates of
reaction for the study of (1) ion-molecule reactions
involving ions produced in a known excited state by
essentially monoenergetic electrons and (2) three-body
collision processes involving an electron and two neutral
atoms or molecules, e.g., electron attachment to 02
at low-electron energies. It will be shown that the opera-
tion of an electron beam at high pressures causes a
change in the apparent pressure dependence of ion
currents from that found at low pressures.

An additional motivation for this paper is to pro-
vide what we believe to be a more accurate analysis of
the Maier-Leibnitz type experiment for the determina-

*This research was supported in part by the Advanced Research
Projects Agency through the U. S. Ofhce of Naval Research.
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~ R. K. Curran, J. Chem. Phys. 38, 2974 (1963).
~ J. S. Dahler, J.L. Franklin, M. S. B.Munson, and F. H. Field,
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FIG. 1. The plane parallel geometry considered

in the present problem.

4 W. Harries and G. Hertz, Z. Physik 46, 177 (1927).' B. T. McClure, Phys. Rev. 130, 1295 (1963).
R. J. Fleming, Proc. Phys. Soc. (London) 83, 890 (1964).

tion of inelastic-scattering cross sections for atoms and
molecules. Our analysis is also conceptually simpler
than the original analysis of Harries and Hertz4 or the
more recent type of analysis used by McClure' and by
Fleming. '

In the experiments which we wish to analyze, the
electrons are injected into the collision chamber through
a relatively small entrance aperture and in a direction
normal to the surface containing the aperture. This
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geometry is indicated in Fig. 1. The experimentally
measured quantities are the gas pressure, the electron
current collected at the x= I boundary, and the rate
at which excited species or ions are produced in the
whole or part of the volume. The rate of production of
such species per unit volume will, in general, be pro-
portional to the density of electrons in the collision
chamber. It is the purpose of this work to obtain
analytic expressions giving the dependence on pressure
of the electron density at any point and of the trans-
mitted electron current. In so doing we shall take into
account the sects of inelastic collisions by assuming
that they cause the electron to be lost, in the sense that
it no longer has sufhcient energy to cause production
of the measured species. In this context, the term in-
elastic implies excitation or ionization of the target,
or attachment of the electron.

For the purpose of this paper we define three regions
of pressure. At low pressures, the mean free path for
electrons is much greater than the length of the col-
lision chamber. In this region the electrons within the
collision chamber consist predominantly of unscattered
beam electrons. Their number is independent of pres-
sure, and is related in a simple way to the injected cur-
rent, which, since there is negligible attenuation, may
be measured at the collector.

At high pressures the electron mean free path is much
smaller than the length of the collision chamber, and
the electrons within the collision chamber are predomi-
nantly scattered electrons. The electron beam in this
pressure region is strongly attenuated in traversing the
collision chamber, providing a source of electrons which
gives rise to the spatial distribution of scattered. elec-
trons. These scattered electrons are lost by diffusion
to the walls and by inelastic collisions.

At intermediate pressures the electron mean free
path is comparable to the length of the collision cham-
ber; thus, the number of beam electrons and scattered
electrons in the collision chamber are of comparable
magnitude.

In some experiments a magnetic field of a few hundred
gauss directed parallel to the injected electrons causes
spiralling of the scattered electrons and serves to limit
their transverse motion to the random walk or diffusion
of the electron guiding centers across the magnetic
field. In other experiments no magnetic field is used, and
the electron motion at right angles to the direction of
injection is limited only by collisions. For the purposes
of analysis, we will assume that the surface at x=0
presents a homogeneous boundary to the scattered
electrons within the chamber, as though the entrance
hole were endowed with the same properties as the rest
of the surface. We will also assume that the surface
normal to the direction of injection which terminates
the collision chamber and serves as an electron collector
is large enough to intercept essentially all of the scat-
tered electrons. The collector area required will, in
general, be much smaller when a magnetic field parallel

to the direction of injection is used. The collector elec-
trode may, however, be designed to accept only a re-
stricted class of incident electrons. For example, in an
experiment of the Maier-Leibnitz type, only electrons
which have not suffered inelastic collisions are accepted
by the collector.

Ke also assume that any sampling arrangement
located between the source and collector planes, e.g. ,
an ion exit slit in the side wall, is sufficiently large in
the y or s direction (see Fig. 1) to collect the products of
electron collisions independent of the location of the
electrons in the y and 2 directions. Kith these assump-
tions the problem reduces to one involving only the x
dimension, and the ratio of any two measured signals
can be calculated by considering an infinite parallel
plane source and collector, the ratio of interest being ob-
tained from the theory by the ratio of the appropriate
quantities calculated per unit area of the infinite geome-
try considered.

This type of one-dimensional multiple scattering
problem has been treated by a large number of inves-
tigators in connection with radiative transfer or elec-
tron transfer in solids or gases. The results obtained
prior to 1950 are summarized by Chandrasekhar~ and
form the basis of our discussion. Unfortunately, many
investigators have considered rather specific problems,
have used numerical solutions to obtain the desired
result, and have not compared their results with the
predictions of the theoretical approximations which
lead to analytical formulas. Studies relevant to our
problem are those of Bartels, ' Bartels and Noack, ' of
Bartels and Nordstrom' of Goertz, " of McKelvey,
Longini, and Brody, "of Shockley, "of McClure, ' and
of Fleming. 6 The work. of Bartels, of Bartels and Noack,
and of Bartels and Nordstrom uses basic equations
similar to ours but resorts to numerical solutions of the
integral equation. Their results are compared with ours
in the text. The problem treated by McKe1vey, Longini,
and Brody "and discussed by Shockley" is applied to
semiconductor problems and is nearly identical to
that of the idealized model which we will consider.
Unfortunately, their treatment leads to difhculties in
relating the parameters of the solution, i.e., diffusion
and absorption coefficients, to the conventional scat-
tering and absorption cross sections. No such diQiculty
is encountered in our treatment. The analyses of
McClure' and of Fleming are made complicated by the
omission of the absorption terms from the basic equa-
tions for the electron motion thereby requiring them to
solve for the time-dependent and statistical aspects of

~ S. Chandrasekhar, RaChatire Transfer (Clarendon Press,
Oxford, England, 1950).

8 H. Bartels, Z. Physik 55, 507 (1929).' H. Bartels and H. Noack, Z. Physik 64, 465 (1930).
"H. Bartels and C. H. Nordstrom, Z. Physik 68, 42 (1931).
"A. Qoertz, Z. Physik 155) 263 (1959)."J.P. McKelvey, R. L. I.ongini, and T. P. Brody, Phys.

Rev. 128, 51 (1961).
"W. Shockley, Phys. Rev. 125, 1570 (1962).
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the electron motion when actually the problem is
time-independent.

The general theory for our idealized model is given
in Sec. II. The solutions for the electron density and
electrode currents obtained in Sec. II are applied to
various experimental arrangements in Sec. III. The
results of the present theory are applied to the problem
of interpreting experiments of the Maier-Leibnitz type
in Sec. IV. In the Appendix we derive an expression for
the mean number of collisions suffered by electrons col-
lected at the x=L boundary, for the purpose of com-
parison with previous estimates.

(2 1)

We can write a similar equation for the total density of
electrons

vv, (x) =N, (x)+Ns(x) . (2.2)

The problem of determining J,(x) and N, (x) is formally
identical to that of determining the photon Aux and
density in a plane parallel medium which absorbs,
emits, and scatters radiation. ~

In the present problem we shall assume that the
elastic scattering is isotropic, in which case the appro-
priate equation of transfer, analogous to Eq. (129) on
p. 22 of Ref. 7, is

II. THEORY

It is convenient at this point to set out the defini-
tions of the various quantities involved in the cal-
culations. These are given in Table I.

The total current density at any plane x consists of
the current of scattered electrons J., and the current
density of the primary beam J& and we can write

Quantity

~o
Jo(x)

J,(x)

J,(x)
L

N
Qe

Qs

R'

so
s~(x)
~,(x)
n](x)
+o=noL

X,=J'e, (x)dx

a=NQ L
0 =NQg
m =0/a
8=sec '~

gr.

go ~gL

h = 1/(1+os)

TAazF. I. List of symbols.

Electron current density injected at x=o.
Electron current density of unscattered elec-

trons at x.
Net current density of scattered electrons in

the +x direction.
Total current density in +x direction.
Distance between infinite plane parallel bound-

aries (e.g., length of collision chamber).
Density of gas particles.
Cross section for elastic scattering of electrons

at the energy of the injected beam.
Cross section for ionization by electrons at the

energy of the injected beam.
Total inelastic cross section for electrons at the

energy of the injected beam.
Reflection coefficient for scattered electrons at

x=0 boundary.
ReQection coefficient for scattered electrons at

x=L boundary.
Boundary condition parameters —see Eqs.

(2.22) and (2.23).
Density of electrons under vacuum conditions.
Density of unscattered beam electrons.
Density of scattered electrons.
Total density of electrons.
Total number of electrons per unit area of

emitter under vacuum conditions.

Total number of electrons per unit area of
emitter.

Velocity of electrons.
Inelastic-collision number.
Elastic-collision number.
Ratio of elastic to inelastic cross section.
Angle to x axis at which the two streams are
assumed to move.

Effective-diffusion coefficient.
Equivalent-length factor for normalization to

injected current (total ion collection).
Equivalent-length factor for normalization to

transmitted current (total ion collection).
Equivalent-length factors for sampling of ions

through slit.
Probability that a collision is inelastic.

dI(8,x) o+n
cos8 = — I(8,x)

dx L

o d(o S(x)
+—I(8',x)—+, (2.3)

4x 4m

elastic scattering of the attenuated injected electron
beam and S(x) is therefore given by

where I(8,x) is the current, due to scattered electrons,
crossing unit area of the plane x, within unit solid angle,
at a direction 8 to the positive x axis.

With the above definition of I(8,x), we may write

S(x)=—es(x) .
L

A. Two-Stream Approximation

(2 6)

and

J,(x) = I(8,x) cos8,dvv (2.4)

vi, (x) =— I(8,x)dv). (2.5)

The function S(x)dx gives the rate at which the elec-
trons are being fed to the scattered distribution between
x and x+dx. In our case these electrons arise from

An analytical solution of the integrodiGerential Kq.
(2.3) is not, in general, available. An approximate
technique, which in principle permits the solution of
Eq. (2.3) to any desired accuracy, is to replace the
angular distribution of scattered electrons into 2e
representative streams comprised of n pairs. Each pair
consists of one stream with intensity I+,(i ~1 to vv)

moving at angle 8, to the +x direction, the other with

intensity I;moving at 0; to the —x direction. Scatter-
ing from I+, results in the electron remaining in I+,
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or joining any other stream. "By this means Eq. (2.3)
is replaced by e pairs of coupled linear equations, which
may be solved. This approach was first used by Schuster"
and Schwarzschild' who divided the distribution into
two streams.

Wick' and Chandrasekhar have generalized this
approach to any finite number of streams, and have
discussed the optimum procedure for choosing the 0;
and the weighting factor appropriate to each pair of
streams. In the present two-stream approximation we
shall postpone choosing the angle 0, and obtain an
initial solution to the problem which contains o (=sec8)
as a parameter.

Using Eq. (2.10) this becomes

vL d'e, o.v
=—e,—S.

q2(o+n) dx2
(2 13)

Similarly, from Eqs. (2.9), (2.12), and the derivative
of (2.10), we obtain

Substituting Eq. (2.11) into the derivative of Eq.
(2.12), we obtain

1 rI,'(I++I ) o+n) n S—(I++I-)——.
e dx' L ) L 2n.

2n- 2s. 1 L (I~+I )I,=—(Ii—I )=——— d
6 (0+n) tx

B. Transfer Equations

In the two-stream approximation Eq. (2.3) is re-
placed by7 Lv dn,

(2.14)
6 (o'+n)1 dI+ 1 0. 0- S

+n Ip+— I +——
a dx L 2 2L 4z

(2.7)

and
1 dI+ 1 tT S= ——-+n I-+—I++-
ed@ L 2 2L 4m

We note that Eqs. (2.13) and (2.14) are identical in form
to the diffusion equations for the same problem, pro-

(2.8) vided we define a diffusion coefficient

D= Lo/a'(o+n) . (2.15)

I,= (2'/e) (I+ I ), —

e,= (2~/o)(I~+I ).
(2.9)

(2.10)

Adding and subtracting Eqs. (2.7) and (2.8) give

1 d(I+ I ) n 5—
=—(I++I-)+—

4$ L 27K

(2.11)

Physically, Eq. (2.7) expresses the rate of change with
distance of the forward component of the scattered
intensity in terms of the depletion of the forward com-
ponent of intensity (terms involving I~), augmentation
from scattering out of the backward component of in-
tensity (aI /2L), and the component of the unscattered
current being scattered between x and x+dx into the
appropriate solid angle. Equation (2.8) expresses the
rate of change of the backward component of intensity
in the same manner. Thus, we see that Eqs. (2.7) and
(2.8) can be written from first principles.

The scattered Qux J, and scattered density e, are
obtained by substituting the approximation for I(0)
into Eqs. (2.4) and (2.5). Thus,

Thus, with suitable choice of e we may expect the
solution of Eq. (2.13) to accurately predict the contribu-
tion of scattered electrons to the total electron density
at high pressures where that contribution is predomi-
nant. At low pressure we must expect the diffusion
equation to be inappropriate, and the solution of it to
predict the density of scattered electrons inaccurately.
However, at low pressures their contribution to the
total electron density is negligibly small, the predomi-
nant contribution being from unscattered beam electrons,
which is specified exactly at all pressures. Thus, we

may expect to obtain a solution for the total density of
electrons which is exact in the limits of high and low
pressures. At intermediate pressures (o=1) we must
expect some error, whose magnitude we shall estimate
by comparison with the work of Bartels and Noack.

In conventional di6usion theory, D=Xo/3, where X

is the mean free path of the diffusing species. In the
presence of both elastic and inelastic collisions ) is
given by L/(o+n), in which case we may generalize
the diffusion coeKcient to take into account inelastic
collisions by writing

1d(I~+I )

4$

(o+n)
(I+—I-).

L
(2.12)

D =Lv/3(o+n),

with which Eq. (2.15) is to be compared.

(2.16)

'4 The physical model described here corresponds mathe-
matically to the evaluation of the integral in Eq. (2.3) using a
polynomial expansion in cos8 for I(8,x). For further discussion see
Chap. 2 of Ref. 7.

"A. Schuster, Astrophys. J. 21, 1 (1905).
'6K. Schwarzschild, Sitzber. Deutsch. Akad. Wiss. Berlin, Kl.

Math. , Phys. Tech. 17, 1183 (1914).
'~ G. C. Wick, Z. Physik 120, 702 (1943).

C. Boundary Conditions for Scattered Electrons

The form of the boundary conditions may be de-
rived in the. following way, using the two-stream
approximation
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At x=0 we have

I+(0)=RI (0). (2.17)

specularly reRected" at the x=L boundary, with
refIection coefFicient R~', and with subsequent reflection
at the x=0 boundary with reAection coefFicient R&,
we sum the inhnite series involved and obtain

Using Eq. (2.10) this gives

n, (0)= (2s/u)I (0)(1+R).

From Eqs. (2.10), (2.12), and (2.17), we obtain

Jp
(2 18) ne(x) =

pP R R 'e P(rr+—a)]

XPg (~+a) ~-/I +R ~e (~+a) (—2—~/L) j (2 24)

dn, 2o- (o+n)=—o I (0)(1—R).
dx, p e L

(2.19)

and

Jo(1—Re')e &'+ &

J~(L)=
1—R&R&'e-'(~+~&

(2.25)

Hence, using Eqs. (2.18) and (2.19) we obtain

1 dn. (1—R) (o+Q.)

n, dx, =p (1+R) L

From (2.24) we may obtain np by setting (o+n) =0.
If the beam is completely absorbed at the x= L

boundary we set R&' ——0 and obtain

Similarly, at x=L, we obtain

1 dn, (1—R') (o+n)

n, dx .=z (1+R')

where

(2 21) and

n//(x)= noe&~ +»N'/,

no= Jo/'v,

J//(L)= Joe /+~'.

(2.26)

(2.27)

(2.28)

As will be discussed later (Sec. HIF), alternative If the.beam is diffusely reflected at x=L, then this
boundary conditions may be derived. They are, how- eBect may be treated as an additional planar source
ever, all of the general form term in the transfer equation.

1 de, —

(2.22) E. Solution for Electron Density

and
1 ds.

/
p (2.23)

which state that the extrapolated density of scattered
electrons goes to zero a distance X/p beyond the physical
boundary, where X=L/(o.+n) is the electron mean
free path. The quantities p and p' are expected to
depend on R and R', respectively, in the way prescribed
by Eqs. (2.20) and (2.21). At this stage we shall regard
them as variable parameters, and as such they will
appear in the solution of Eq. (2.13).

To proceed further with the solution of Eq. (2.13)
it is necessary to write S(x) explicitly. For the purpose
of this derivation, we shall assume that Rg' is zero, "
in which case we may apply Eqs. (2.26), (2.27), and
(2.28) which have the advantage of simplicity. The
results at high pressure are in any case expected to be
independent of Rz' as may be seen by allowing (o+n)
to become large in the expressions for n~(x) given in D
above.

With the assumption then that Re' ——0, S(x) is ob-
tained by substituting Eq. (2.26) into Eq. (2.6). Using
also Eq. (2.15), we obtain from Eq. (2.13):

D. Boundary Conditions for Unscattered Electron Beam

d /r4 CN 0
J z

—(~+~)*II,
dx'

(2.29)

The role of the unscattered electron beam in the
present problem is twofold, in that it provides the
source function S(x) to be used in solving Eq. (2.13)
and at the same time contributes directly to the electron
density, n, (x) and to the current collected at the bound-
ary J,(I.). The functions S(x), n&(x), and JI/(L) de-
pend on the choice of boundary conditions, which
depends in turn on the experimental arrangement to which
the theory is to be applied. If, for example, the beam is

&8 We may expect this case to be appropriate to ion sources of
the Heil type in which electrons are made to oscillate back and
forth through the gas. For details see G. P. Sarnard, Modern
Muss Spectrometry (The Institute of Physics and the Physical
Society, London, 1953).

"In practice, the assumption is reasonable for most electron-
beam experiments in which the unscattered portion of the beam
passes through a small hole in the x=L boundary to be subse-
quently collected on a positively biased electrode. In experiments
of the Maier-Leibnitz type, R~' is expected to be small provided
unscattered electrons reach the collector with energies in excess
of 10 eV, which is usually the case.



The solution of (2.29), subject to (2.22), is

rl.JO
N, (x)=N, (0) cosh((«Lv/LD)'/'x)+p(o+n)~

~
sinh((nv/LD)'/'x) +

(~L& LnvL —D(a+n)'7

pD~ /

X (o.+u)~
I

smh((«»v/LD)'/'x) —cosh((nv/LD)'/'x)+e &'+ &* ~
kmL)

(2.30)

By differentiation of (2.30) and substitution into (2.23), e(0) may be obtained explicitly. Introducing the parame-
ters q and m, de6ned in Table I, we have the complete solution for n, (x)

J» «'m(1+m)'"
n.(x)=-

(m+1 —«')

(p+1)I.cosh'(1 —x/I) yp'(Iym) / sinh~(1 —*/I)7+(p' —1)L. cosh'(x/L)+p(1+m) /2sinhq(x/L)7. -&.+-&

X
L«'+ pp'(1+m) 7 smhq+ «(p+ p') (1+m) '"cosh'

] 1/2

v {a+a)z/—I (2 31)
m

Using Eq. (2.2), we may obtain the spatial dependence of the total electron density

J» «'m(1+m)'"
e,(x)=-

(m+1 —«')

(p+1)L» cosh'(1 —x/L)+ p'(1+m) '/' sinhq(1 —x/L)7+ (p' —1)L» cos hg( x/L)+ p(1+m) '/' sinhg(x/L) )e &~ &

X
$«'+ pp'(1+m) 7 sinhq+ «(p+ p') (1+m) '"cosh'

(«' —1)(1+m)'"
(a+a)s/L (2 32-)

If inelastic colhsions are neglected (n=0), we obtain

J» (p+1)$1+p'o (1 x/L)7+ (p' ——1)$1+pa (x/L)7e ' J»
eg x 0=—e' »-vs/r +»—6 s/l

PP &+P+P

In this expression the last term represents the contribu-
tion from the unscattered beam. We note that the shape
of the density pro6le of scattered electrons, the Grst
term of (2.33), is independent of «, while its magnitude is
directly proportional to ~'.

For large 0, Eq. (2.33) becomes

J» (p+1)l:1+p'~(1—*/L)7
n, (x) —«' . (2.34)

//

a=0 pp 0

F. Current Co11ected at the Boundary x= I
In general, the current collected at the boundary

x=I. will consist of three components, whose relative
contributions will depend strongly on the elastic and
inelastic collision numbers, 0 and e. At low pressures
the major contribution will be from the unscattered
beam, given by J»expL —(a+a)7. As o is increased
this contribution will decrease, while that due to the
di6usion Of scattered electrons to the boundary will
increase.

The third component is due to the diffusion of elec-
trons which have su8ered inelastic collisions. 'o In the
present theory no account is kept of these electrons,
the e6ect of inelastic collisions having been treated as
an absorption term in the basic transfer equation. This
procedure is desirable from the point of view of pre-
dicting the number of electrons which are capable of
causing ionization near threshold. It also gives directly
the transmitted electron current in an experiment of
the Maier-Leibnitz type, in which the inelastically
scattered electrons are purposely prevented from reach-
ing the collector by the presence of a suitable retarding
voltage. In many electron-beam experiments, however,
this provision does not exist, and certain diKculties
arise in relating the measured transmitted electron
current to that predicted by the theory in its present
form. (See Sec. III).

~'The electrons produced by ionizing collisions constitute a
fourth component whose contribution is assumed here to be always
negligible.
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In principle the contribution of inelastically scattered
electrons to the transmitted current may be calculated
by solving a transfer equation for each velocity group
involved, the source functions being given by (n;/1. )
Xvis&(x)dx where n; refers to the inelastic process which
gives rise to the group having velocity u;, and is, (x)dx
is given by Eq. (2.32). The solution of these equations
is difficult because of the complicated source function
involved, and has not been attempted.

An alternative approximate approach to calculating
the total transmitted current is to assume that the
contribution from inelastically scattered electrons is
unaffected by their changed velocity, in which case the
total transmitted current may be derived by taking
0.=0.

In what follows it is therefore to be understood that

the transmitted electron current predicted for the case
0./0 is expected to apply only to measurements in
which inelastically scattered electrons are prevented
from reaching the collector by a suitable potential
barrier. In the absence of such a barrier the transmitted
current derived on the assumption that 0.=0 is expected
to represent more closely the measured current, even
when in fact 0./0.

Using Eqs. (2.1), (2.14), and (2.15), we write for the
transmitted current,

dn, (x)J (x)=J e f'+ 'I D—
dx

The second term on the right-hand side may be ob-
tained from Eq. (2.31). Evaluating the resulting ex-
pression at @=1., we obtain

(p+1)p'(1+m)'i' —(p' —1)Le sinhq+p(1+m)'~' cosh']e i'+ i e' —1

Le'+pp'(1+m)]sinhq+e(p+p')(1+m)'i'cosh' me
e
—(fr+~) (2.35)

In the limit of low pressures this behaves as

~t(1.) ~o{1 ct Lp/(p+ p )]~) . (2.36)

With the assumption that inela, stic collisions may be
neglected (o.=0), we obtain"

~i(1-) I
-=o= ~o

p'(p+1) —p(p' —1)e '
(2.37)

p+p'+ pp'~

We note that this quantity is independent of e. At
high pressures

(p+1 1
A(L) l.=o-Jol

k p
(2.38)

and we note that the dependence on p', the boundary
conditions at x=I, has been removed.

si Equation (2.37) actually applies for any value of x, as is ex-
pected in the case of no absorption. In the case of p=0, complete
reQection at x=0, and any value of 0, one obtains the expected
result 1,(x)=Jo. The fact that Eq. (2.37) is independent of e

suggests that it may be an exact result. Its independence of the
order of the 2n stream approximation used has, however, not been
demonstrated.

G. Choice of z., and of y and y'

The work of previous authors is often formulated
in terms of two streams directed forward and backward
along the chosen axis, but in which the scattering coef-
6cient is multiplied by a, factor e to take approximate
account of the angular distribution of the carrier
velocity. This formulation is equivalent to the two-
stream model adopted here, in which the strea, ms are
assumed to move at some chosen angle 8=sec 'e.
Thus, the various treatments may be compared in
terms of the value of e used.

Schuster" erst used the two-stream approximation
to obtain an approximate solution to the problem of
radiation transport through a scattering and absorbing
layer, and used &=1.The same problem, but excluding
absorption, was considered in greater detail by Schwarz-
schild' who adopted Schuster's approach but chose
&=2 to take account of the mean obliquity of the rays.
The formally identical problem of electron transport
through a scattering but nonabsorbing gas has been
treated in the same way by Allis. "McKelvey, Longini,
and Brody" assume an isotropic distribution of elec-
tron velocities to derive e= ~ for treating elastic scatter-
ing, and &=2 for treating absorption effects. Their
derivation has been discussed by Shockley. "

According to Chandrasekhar" the best choice of e

in the two-stream approximation is v3. This choice
becomes mandatory if we require that the effective
diffusion coefficient, defined by Eq. (2.15), correspond
to the conventional diffusion coeKcient generalized to
take into account inelastic collisions, Eq. (2.16). We
shall therefore use

a=V3. (2.39)

Thus, with the appropriate choice of e Eq. (2.13) be-
comes identical with the diffusion equation for the sa,me
problem, emphasizing the equivalence of the two-
stream approximation and diffusion theory. '4 This
shows that the di6iculties encountered by McKelvey,
Longini, and Brody in relating these theories are not
fundamental, but arise from their choice of e.

The dependence of p and p' on the reflection coef-
ficients at the boundaries has already been derived and
is given in Eqs. (2.20) and (2.21), which contain e as a
coefIicient. With the choice of e made previously

22 W. P. Allis (private communication)."S. Chandrasekhar, see Ref. 7, Chap. 2.
24 For further discussion of this point, see Refs. 13 and 25.
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FIG. 2. Transmitted current as a function of the elastic collision
number 0. for the case of complete absorption at the boundaries
and negligible inelastic losses (a=0). The circles are the results
of Fleming (Ref. 26). The full curve is obtained from Eq. (2.37)
using p=p'=1.41. The broken curve is the result of Bartels and
Noack, and is indistinguishable from the full curve below 0.=2.
Equation (2.37) gives a curve indistinguishable from that of
Bartels and Noack if p =p'=2 is used.

EEq. (2.39)j, we obtain

(1—R) (1—R')p=V3; p'= V3
(1+R) (1+R')

(2.40)

It is important to bear in mind that the value of e

was chosen to ensure agreement between the present
theory and conventional di6usion theory, and does not
necessarily provide the best prescription for relating
p and p' to R and R'. We could, for example, obtain the
relationship

3 (1—R) 3 (1—R')

2 (1+R) 2 (1+R')
(2.41)

TABLE II. Ratio of transmitted electron current to injected
current, J,(L)/J0 for case a=0.

by requiring that as R, or R', approaches one (com-
plete reflection) the current to the boundary given by
conventional diffusion theory equals the random current,
ec (1—R)/4.

According to Davison'5 the exact solution of the case
of a completely absorbing plane boundary of a semi-

in6nite medium gives p= 1.41 provided 0.«0. From this
we infer that in the problem of interest here the choice of

(1—R) (1—R')
p = 1.41 p

—141
(1+R) (1+R')

(2.42)

2

O

1 5

C:
CD
Cl

O
L

CD

UJ

CD
h4

E
Cl

will be exact for the case of 0.=0 in the limit of large a,
i.e., when the two boundaries e6'ectively see a semi-
infinite medium.

Substitution of Eq. (2.42) into (2.37) is therefore
expected to provide an analytic expression which is
exact in the limit of large 0. The dependence of Kq.
(2.37) on p and p' is in fact rather weak, particularly at
low values of 0-, as shown in Table II, where the value of
J&(1)/Jo has been calculated from Eq. (2.37) for the
cases p= p'=1.41; 1.5; %3; and 2. Also shown are the
recent results of Fleming" obtained using Monte Carlo
techniques for which an accuracy of &2% is claimed
and the results of Bartels and Noack, ' which were ob-
tained by solving the integral formulation of the prob-
lem by numerical methods, and which should be exact."
All results refer to the case of complete absorption at
both boundaries (R=R'=0). The agreement between
the present results, using p= p'=1.41, and the Monte
Carlo calculations is seen to be well within the limits
of error of the latter. Comparison of the various results
is also made in Fig. 2. The broken curve is the result of
Bartels and Noack, and is indistinguishable from the

Authors

Boundary
parameters Elastic collision number, 0.

p= p' 4 5 6.67 10

Bartels and Noack
(Ref. 9)

Fleming (Ref. 26)
CPS, Eq. (2.37) 1.41

1.50

2

0.31 0.27
0.314 0.266
0.311 0.263
0.305 0.256
0.298 0.249

0.21 0.15
0.211 0.150
0.208 0.147
0.202 0.141
0.195 0.136

0.30 0.25 0.18 0.135 0. 5 c I I ~ I ~ ~ ~ ~

0 0. 5
Normalized Distance, x/L

1.0

Fia. 3. Spatial dependence of normalized electron density for
a= 1, u=0. The dashed curve is from Bartels and Noack (Ref. 9).
The other curves are plots of Eq. (2.33), using the values of e,
p, and p' indicated.

'5B. Davison, neutron Transport Theory (Clarendon Press,
Oxford, England, 1957), Chap. 6.

"R. J. Fleming, Proc. Phys. Soc. (London) 87, 153 (1966).
"The degree of accuracy to which the numerical calculations

were carried is not given in Ref. 9.
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full curve below 0 =2. Equation (2.37) essentially re-
produces Bartels and Noack's result if p=p'=2 is
used. We conclude that Eqs. (2.37) and (2.42) serve to
determine JI(1)/Jo exactly for the case of no inelastic
collisions at high pressures, and with an accuracy of
probably better than &2% over the whole range.

The spatial dependence of the electron density,
normalized to its value in vacuum, is shown in Fig. 3
for 0 = 1 and in Fig. 4 for o.=8, given by Eq. (2.33), and
using various values of t. and of p, p'. In both these
figures inelastic collisions are neglected. Also shown are
the results of Bartels and Noack. ' We note that, for
can=1, better agreement is obtained with Bartels and
Noack's result when e is chosen to be 2 instead of v3.
This choice of c, however, leads to very large errors at
higher 0, as is to be expected, since only c=&3 can give
agreement with diffusion theory, which will be es-
sentially correct at large 0. This can be seen from Fig. 4,
where, for ~=8 we find good agreement with the results
of Bartels and Noack for a=VS. The possibility of using
a coeKcient e which is a function of 0 to cover more
accurately the whole pressure range has been considered.
The function e=(V3o'+2)/(o~+1) has been found to
provide values of e, which when used in the present
theory together with the boundary conditions specihed
by Davison LEq. (2.42)) give very good agreement
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FIG. 5. Spatial dependence of normalized electron density with
1/m as parameter. The solid curves are the results of the present
theory, using p=p'=%. The dashed curves are from Bartels and
Noack.
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Fro. 4. Spatial dependence of normalized electron density for
o =8, a=o. The dashed curve is from Bartels and Noack (Ref. 9).
The other curves are plots of Eq. (2.33), using the values of
e, p, p' indicated.

with the data of Bartels and Noack over the whole
pressure range. The generating function for e was chosen
to give e = 2 for 0 =0 and a =&3 for large 0.

If inelastic collisions are possible the spatial distribu-
tion of electrons which have not suffered such collisions
is given by Eq. (2.32) and is plotted in Fig. 5 for the
cases 0=1, 3, 5, and 8, and using &=&3, p=p'=@3.
Comparison is made between the present data and
those of Bartels and Noack for 1/m=0, and in the case
of o.=3 also for 1/III= 0.25.

The effect on the spatial distribution of rejecting
half the scattered electrons incident on one or other of
the boundaries is demonstrated in Fig. 6 where Kq.
(2.33) has been plotted using a= v3, and various values
of R and R' from which p and p' have been calculated
using Eq. (2.40). It is clear that the spatial distribution
is much more sensitive to R than to R'. In fact, at very
high pressures the distribution becomes independent of
E', as shown by Eq. (2.34).

The numerical results presented in the remaining
sections of this paper will be evaluated using e=v3
throughout, together eith the boundary conditions
specified by Eq. (2.42). By virtue of this choice the ex-
pressions so obtained are expected to be accurate at
high pressures. Reference to Fig. 3 shows that at
intermediate pressures the contribution of scattered
electrons is underestimated, as will be the case at low
pressures. Ke expect the error in estimating the total
density of electrons to be greatest in the region of fr= 1,
since at low pressures the contribution from scattered
electrons is in any case small. At 0 =1, the discrepancy
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FIG. 6. Spatial dependence of normalized electron density show-
ing the effect of reflecting half of the incident electrons at one or
other boundary. In all cases I/ni=0. Values of p and p' were ob-
tained from Eq. (2.40).

between the present data, using e=v3 and the chosen
boundary conditions, and that of Bartels and Noack
may be seen in Fig. 3 to be nowhere greater than 11%.

III. PRESSURE DEPENDENCE OF ION CURRENTS

We have already pointed out that at intermediate
and high pressures (as defined in Sec. I) the pressure
dependence of measured ion currents or other signals
resulting from electron collisions depart from the pres-
sure dependence observed at low pressure. In this sec-
tion we develop the equations necessary for interpreting
the pressure dependence of ion currents resulting from
the behavior of electrons in the collision chamber. Other
possible causes of departures from the normally ex-
pected pressure dependence, such as charge transfer
during subsequent mass analysis, will not be considered.

It is convenient to divide electron beam experiments
into those in which all the products formed in the
collision chamber are being measured, ("total collec-
tion") and into those in which only a sample of the
products are collected (e.g. , mass spectrometer ion
sources, photoexcitation chambers). In either of these
two cases, an additional complexity arises when we
consider that the electron-beam current to which the
measured ion current is normalized may itself be re-
lated to the electron density in a pressure-dependent
manner. There are generally two choices available: we
can normalize (i) against the injected current, Jo or
(ii) against the current collected on the electron col-
lector, J,(L). In general, we can say that we normalize
against some measured electron current, JM. When we
normalize against injected current, or against collec-

0 I ~ ~

.01
~ ~ . I

.1 10 100
Elastic Collision Number, a

FIG. '?. The equivalent length factors go and go', for total ion
collection and for ion sampling through a centrally located slit,
respectively, with normalization to the injected electron current.
The values ot 1/ei are indicated. In all cases e =v3 and p =p' = 1.41.

tor current, Jsr assumes the values Jo and Ji(L),
respectively.

A. Total Ion Collection

The measured total ion current is proportional to the
total electron density integrated over the length of the
collision chamber X&. For the case of direct electron
impact ionization we can write for the ion current J„
normalized to the measured electron current JM,

&» Jo
EQ;L=glVQ;L,

JM +0 JM
(3 1)

(i) Normalization to Injected Current

By integration of Eq. (2.32) we obtain the expression
for the equivalent length factor g0.

where we have de6ned the equivalent length factor
g = (Ãi/Xo) Jo/Jsr. In the case that we normalize
against the injected electron current, JM= Jo and the
equivalent length factor becomes go= X~/Xo. For
normalization at the electron collector Jsr J,(L) and-—
we have gr, = (Xi/Xo) Jo/Ji(L) ~

We can consider the factor g as the parameter which
multiplies the path length of the electrons at inter-
mediate and high pressures so that gL, is the equivalent
length of the collision chamber under these conditions.
Thus, we can describe the e8ect of gas scattering on the
electron beam in terms of the departure from unity of
the equivalent length factor g.

Eg
go=—=

No o (m+1 —c')

(p+ 1)Le sinhq —p'(11m) 'to(cosh' —1)j+(p' —1)Le sinhq+ p'(1+m) 't'(cosh' —1)je &'+

(e'+pp'(1+m) jsinhq+ e(p+ p') (1+m)'" cosh'

(e'—1)
L1—e &+'j . (3.2)
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Equation (3.2) is shown by the full curves in Fig. 7 in
which go is plotted as a function of o for various values
of m. It can be seen that go equals unity at low pressure
and increases to values greater than unity, owing to
elastic scattering. At higher pressures inelastic scatter-
ing causes electrons to lose energy so that these elec-
trons cannot participate in ion production near the
threshold of ionization (or another process being meas-
ured, such as excitation) and gp reaches a maximum and
thereafter decreases monotonically with pressure.

At very high pressures for m not too large, 'P Eq. (3.2)
approximates to

100

10—
U

e7I

Cll

4)
EO

ZF'
1

o= P3

3m(1+p)+2(p+[3(1+m)]"') m
gp~

L3+p(3(1+m)) "'j(m+2C:(1+m)/3j"') o
(3.3)

——(1—e-) .
30

At very high pressures we can write

This expression is also plotted in Fig. 7. In the case of
m=10 the agreement is seen to be reasonably good for
o &6; for m= 100 it is good for o &20.

For the case of no inelastic collisions (n=0, m —+~)
Eq. (3.2) reduces to

3 (p+1)(2+p'o)+(p' —1)(2+po)e '
2 P+P +PP &

.1 s & s s I

.01 , 1

I ~ e i f il ~ ~ ~ I

1 10 100
Elastic Collision Number a

Fn. 8. The equivalent-length factors gl, and gL,
' for total ion

collection and for ion sampling through a centrally located slit,
respectively, with normalization to the transmitted electron
current. The values of 1/m are indicated and the high- and low-
pressure asymptotes for the case 1/m =0 are shown intercepting at
cr=-,'. In all cases &=A and p=p'=1.41.

pected since we have removed both sinks for scattered
electrons.

(ii) Normalisutiom to the Trortsmitted Cgrreet

We shall assume that in the type of experiment
under d,iscussion provision does not exist for preventing
inelastically scattered electrons from reaching the elec-
tron collector. In. this case (see Sec. IIF), the meas-
ured transmitted current is given approximately by
J,(L) l. p, even when in fact o./0 Thus, .the quantity
required is

3 (p+1)(2+p'o)

P+P +PP &
(3.5)

Je
gr. =goX

A(L) l.=p
(3 6)

provided that both p and .p' are greater than zero.
Equation (3.5) tends to the constant value" 3(p+1)/2p
as o- approaches infinity. In the case of complete absorp-
tion at both boundaries we use p=p'=1.41, in which
case the limiting value is go=2.56, as shown in Fig. 7.
For complete reRection on both boundaries, we set
p= p'=0 and obtain gpl =p~pe at all o., which is ex-

where gp is given in genera, l by Eq. (3.2), and

~~(L)l-=p/~p

is given by Eq. (2.37). The dependence of gz, on o is
shown for various values of m in Fig. 8. In the case of
o.= 0 we have, without the assumption regarding
J,(L), the relation.

3 (p+1)(2+p'o)+(p' —1)(2+po)e '—(4/3o)(p+p'+pp'o)(1 —e ')
gI l a=p

2 p'(p+1) —p(p' —1)e ' (3.7)

which may be obtained from Eqs. (3.4) and (2.37). At
very high pressures this behaves as"

2p 3
gal-=p-p — +—,.

P+1 P
(3.8)

"This restriction is necessary in order that 0))1 gives q))1,
allowing the approximation to be made.

'9 In the special case of complete reflection at @=0, this con-
stant limit no longer applies. Instead one obtains go~3a/2."In the case of complete absorption at both boundaries
(p=p'=1.41), Eq. (3.8) is accurate at intermediate and high
pressures. For example, at a=1, the discrepancy between Eqs.
(3.7) and (3.8) is only 11'P&.

Thus, if one linearly extrapolates the high- and low-
pressure behaviors to intermediate pressures, in a plot
such as Fig. 8 they will cross" at o.= 3.

In Fig. 9 direct comparison is made between the pre-
dictions of the present theory and experimental data
obtained in a total ionization tube'"' in which the
total production rate of 0 from 02 was measured as
a function of pressure. The electron energy was 5 eV,

"Had we used linear scales in Fig. 8 the crossing point would
have been at o= 32/1 —3p/p+2p/(p+1lg."G. J. Schulz, Phys. Rev. 128, 178 (1962).
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close to the threshold for the two-body process e+0&~
0+0, where the cross section for all inelastic proc-
esses" is suKciently small that we may assume +=0
and use Eq. (3.7).

In Fig. 9 the points show the measured ratios of the
0 current to the transmitted. electron current as a
function of the measured gas pressure. At low pressures
they exhibit linear, and at high pressures a quadratic
pressure dependence. According to the present theory
(see Fig. 8) the extrapolated linear and quadratic
segments intersect at o-= ~» providing a relation between
o. and the measured pressure, and allowing us to cal-
culate Q„since o =NQ, L. The density of 0& molecules

E is given by the measured pressure, and L is the known

length of the collision chamber. The result, Q.=6.4
&(10 '6 cm' is in excellent agreement with that of
Sruche. '4

The ratio of negative-ion current to transmitted
electron current is predicted in the present theory by
the quantity NQ gI. agzQ /Q„=where Q is the dis-

sociative attachment cross section. In the linear low-

pressure region gr, = 1, and Q /Q, is determined directly,
with the result Q /Q, =2.2&(10 '. Using the value of

Q, determined independently above, we obtain Q =1.4
&(10 "cm' for 5-eV electrons. The calculated value of
o.gz,Q /Q, is shown as a function of o by the full curve,
giving excellent agreement with experiment over the
whole pressure range. Especially satisfying is the agree-
ment between theory and experiment in the transition

range, between o.=0.1 and o-= 4.
It should be noted that the extra power of p in the

pressure dependence of the 0 current at high pressure
is the result of the chosen normalization to the trans-
mitted electron current. This may be seen by comparing
the curves for go and gl, in Figs. 7 and 8 for the case
1/m= 0.

7

eo J~
(3.9)

where N, (s) is the electron density opposite the sampling
slit (at x=s) and Jsr again assumes the value Jo and
J~(L)

~
=o when normalization is performed with respect

to the injected or collector current, respectively.

(i) Normaliscstiors to Iej ected Cgrrerlt

For a centrally located slit (s=L/2) we obtain from
Eq. (2.32)

B. Samyling of Ions

Let us now consider the type of experiment in which
a sample of the ions is extracted through a slit in the
pide wall of the collision chamber. For maximum col-
lection efBciency, a slit having its longer dimension
parallel to the electron beam is often used. However,
when the source is to be operated at intermediate and
high pressures, there are advantages in the use of a slit
with its longer dimension transverse to the electron
beam. With such a slit the collection eKciency is much
less likely to be affected by the transverse diffusion of
scattered electrons, which may place some of the elec-
trons contributing to ion formation outside the region
sampled by a longitudinal slit. Moreover, with a
transverse slit, the profile of the ion beam extracted
will remain symmetrical with the maximum density at
its center so that focusing requirements in the mass
spectrometer are less severe. This would not be the case
if one used a longitudinal slit. We shall therefore con-
sider only the case of a transverse slit, and assume that
its length is sufhcient that the eGects of transverse
diffusion of electrons may be neglected, and that it is
su%.ciently narrow that the electron density does not
change significantly across the slit. As was done in the
case of total collection, we can define the equivalent
length factor

ng(s) 'om(1+m)'"
go =

no(s) (m+1 —o')

(p+1)[ocosh(q/2)+p'(1+m)'~' sinh(q/2)]+(p' —1)[ocosh(q/2)+p(1+m)"" sinh(q/2)]c ~ + '

X
[o'+pp'(1+m) sinhq]+ o(p+ p') (1+m) '~' coshq

E m

With the restrictions discussed previously in deriving Eqs. (3.3)—(3.5) from (3.2), we obtain the following cor-
responding approximations to (3.10).At high pressures

m[3(1+m))'I'
g()

1+p[(1+m)/3]"'
e
—q(2 (3.11)

33 G. J. Schulz and J. T. Dowell, Phys. Rev. 128, 174 (1962).
'4 E. Briiche, Ann. Physik 83, 1065 (1927).
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In the case of no elastic collisions we obtain

3 (p+1)(2+p'o) —(p' —1)(2+pe)e 4
gs'I.=s=- ~

—cr/2

2 P+P +PP & 3
(3.12)

At very high pressures gs'I e approaches the same limit as gsI s, given in Eq. (3.5), whose dependence on p and
p' has already been discussed.

(ii) Normalization to Transmitted Cgrrent

In case of normalization of the sample ion current to the transmitted electron beam, we once again assume that
the measured transmitted current is given by J,(L) I

—p for all n. Thus, we require

Jp
gL, =gp

J~(L) I -=o
(3.13)

where gs' is given in general by Eq. (3.10) and J&(L) I
=s/Js by (2.37). The dependence of gz,

' on o is shown for
various values of m in Fig. 8. Once again, in the case of n=o we have, without the assumption regarding J,(L,),
the relation

3 (p+1)(2+p'o)+(p' —1)(2+pa)e —(8/3)(p+p'+pp'o)e '~s

g~'I -=o=-
2 p'(p+ 1)—p(p' —1)e

(3.14)

obtained from Eqs. (3.12) and (2.37).
At very high pressures this behaves as

so+3/p . (3.15)

C. Precautions for High-Pressure Mass Spectrometry

We conclude from the preceding discussion that in
the case of no inelastic collisions, at suKciently high
pressures, the ion current observed using either type
of collection system, when normalized to the trans-
mitted electron current, will exhibit a power-law pres-
sure dependence whose power is greater by 1 than that
observed at low pressures. Reference to Eqs. (2.38),
(3.8), and (3.15) reveals however that the additional
dependence on pressure arises simply because of the
method of normalization. The ion current normalized
to the transmitted electron current, although containing
information regarding the pressure dependence of the
electron density within the source, reflects predomi-
nantly the pressure dependence of the transmitted elec-
tron current, which is not of direct interest.

On the other hand, the ion current normalized to the
injected electron current reflects directly the behavior
of the electron density within the source, the interpreta-
tion of experimental data then requiring the predic-
tion of only this one quantity. The latter procedure is
therefore to be preferred. Measurement of the injected
electron current does, however, present certain difficul-
ties, especially at high collision chamber pressures. "

It is hoped that the equations derived in this section
will be of value to the practice of mass spectrometry at
the high-source pressures often necessary for the study
of complex molecular ion formation, three-body attach-

"R.K. Asundi, G. J. Schulz, and P. l. Chantry (to be pub-
lished).

ment processes and two-body reactions having only
small cross sections. They should also be of value in
photoexcitation experiments in which relatively high
pressures are often employed, for example, in the study
of excitation transfer processes. '6 In mass-spectrometer
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FIG. 9. Comparison of the predictions of the present theory with
experimental results for 0 production from 02 by electrons of
5-eV energy. The measured pressure is related to the o scale by
requiring that the break point occur ato =-'„and gives a value of
Q,=6.4X10 "cm'. The full curve is a plot of gz~Q /Q„where
Q, the dissociative attachment cross section, is determined
by the low-pressure data, and gz is given by Kq. (3.7) using
p =p'= 2.42. The points are experimental.

"R.Wolf and W. Maurer, Z. Physiit 115, 410 (1940).
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Fxo. 10. Predicted ratio of sample ion current to total ion
current when both have the same true pressure dependence,
normahzed to the value at low pressures. The value of 1/ra is
indicated on each curve. In all cases &=A and p=p'=1.41.

work attempts have been made' to circumvent the
diKcult problems of und, erstanding the behavior of
the electron beam at high pressures by normalizing the
secondary ion sample to the primary ion sample. This
procedure is generally unsatisfactory for the following
reasons. Because the total inelastic cross section (and
therefore the equivalent length factor g) may well be a
strong function of electron energy, it is necessary to
measure the primary and secondary samples at the same
electron energy. In many cases, however, the secondary
process of interest lies below the threshold for primary
ion production. Moreover, assuming that a primary ion
sample is available at the electron energy of interest,
the primary and secondary ion samples are likley to be
reduced by significantly different amounts because of
charge transfer processes occurring in the analysis
section of the instrument. In these circumstances, the
only safe procedure is to obtain an understanding of the
observed pressure depend, ence of the individual ion
sample and thereby deduce the true pressure depend-
ence of the process of ion formation. The expressions for
the equivalent length factor g, derived in this section,
enable estimates to be made of the extent to which
scattering of the electron beam is affecting the apparent
pressure dependence of the ion formation process.

D. An Alternative Method of Normalization Ayylicable
to Mass-Syectrometer Ion Sources

In a mass spectrometer, it is often possible to nor-
malize the ion current measured through the central
slit to that collected on the repeller with appropriate
reversal of the extraction 6eld. If we consider first the
case when the process of formation of the mass-analyzed
sample ion has the same pressure dependence as the
process of formation of the majority ion, assumed pre-

dominant in the total current, " the ratio of the two
currents will be independent of pressure at low pressures.
If we further normalize the ratio to its value at low

pressures, we expect its dependence on pressure to be
given by the ratio gs /gs, shown in Fig. 10 for various
values of nz. It is seen that for m not too small go' never
departs from gs by more than 11%over a large pressure
range. Thus the sample ion current normalized to the
total ion current will be rather insensitive to the effects
of electron beam scattering. This fact becomes of value
in the situation where a minority ion is being sampled
under conditions where the true pressure dependence
of the majority ion responsible for the total ion current
is known. For examp]e, if the total ion current is known
to consist predominantly of parent ions, which have a
linear pressure dependence, and the sample ion current
normalized to the total is observed to have a quadratic
dependence on pressure, one may conclude that the
true pressure dependence of the sample ion is cubic.
The advantage of this method over that involving
normalization to a mass-analyzed sample of the parent
ion discussed in Sec. IIIC, is that the effects of charge
transfer in the analysis section of the mass spectrometer
are in general much less severe for secondary ions than
for parent ions. The effects of charge transfer within
the source will of course not falsify the total ion-current
measurement.

IV. INTERPRETATION OF EXPERIMENTS FOR
MEASUREMENTS OF ABSOLUTE VALUES

OF INELASTIC CROSS SECTIONS
(MAIER-LEIBNITZ TYPE)

In this section we use our theory for the interpreta-
tion of a class of experiments designed to measure the
absolute value of inelastic cross sections. The experi-
ments we wish to discuss, generally called Maier-
Leibnitz —type experiments, are conceptually very sim-

ple and represent one of the few ways of measuring the
absolute value of the inelastic cross section. " This
type of experiment has been used by Harries" and by
Haas" for measurement of the vibrational cross section
in N2, by Ramien4' for the vibrational and electronic
cross section in H& and by Maier-Leibnitz' and by
Fleming and Higginson4' for the electronic excitation
of helium and other rare gases. We will also compare the
results of our theory with the theories used by these
authors.

The experiment of Maier-Leibnitz is designed to
measure the inelastic cross section by observing the

"In most cases this will be the parent ion formed by the direct
two-body process e+X~ X++2e.

"For a review see H, S. W. Massey and E. H. S. Burhop,
8/ectronic and Ionic Impact Phenomena (Clarendon Press, Oxford,
England, 1952)."W. Harries, Z. Physik 42, 26 (1927)."R.Haas, Z. Physik 148, 177 (1957).

' H. Ramien, Z. Physik 70, 353 (1931).
4' R. J. Fleming and G. S. Higginson, Proc. Phys. Soc. (I.ondon)

84, 531 (1964).
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reduction in the electron current transmitted through
a collision chamber as the electron energy is varied
around the threshold of an inelastic process. Electrons
which have suffered inelastic collisions are prevented
from reaching the collector by a retarding voltage be-
tween the co))ision chamber and the collector. The ex-
perimerit provides data in the form of the ratio of the
transmitted electron current to that which would have
been collected had the inelastic collisions been absent. 4'

Unfortunately, interpretation of the data has suffered

from the absence of a rigorous theoretical treatment of
the problem.

A. Interpretation Using Present Theory

The present theory gives directly the desired currents
whose ratio is measured experimentally. %e introduce
the parameter k=1/(1+m), which is the probability
of a collision being inelastic. By making this substitu-
tion in Eq. (2.35) we obtain a general expression for the
current transmitted in the presence of inelastic collisions

(1—h) p'(p+1)(3/h)'~' —(p' —1)[3sinhq+ p(3/h)'~' cosh']e ~'&' "'
Jg(L,h) =

(1—3h) (3+pp'/h) sinhq+ (p+p') (3/h) '~' cosh'
e
—o /(1—A) (4 1)

B. Interyretation Used by Maier-Leibnitz

Maier-Leibnitz made use of earlier theoretical work
by Harries and Hertz4 which provided an estimate of
the average number of collisions, c, made by electrons
which reach the collector. For the case of plane-parallel
geometry, Harries and Hertz predict c =ir'/2 Knowing.
c, Maier-Leibnitz made the assumption that the ratio
of the current collected to the current that would have
been collected were 6=0 is given by

J,(I.,h) = exp( —h') .
Jg(L,O)

(4.2)

Apart from the experimental difFiculties44 which may
give rise to systematic errors in the data, the cross
sections obtained by Maier-Leibnitz in this way are
affected by errors of interpretation arising from the
following sources: (a) The Harries and Hertz theory,
used to estimate c, is valid only for values of cT much
larger than those generally used for the experiment,
and under conditions when electrons are completely
absorbed on reaching the boundaries. Theoretical
work' ' subsequent to that of Harries and Hertz has

4' Two methods are generally used to estimate the current which
would have been collected at the collector if no inelastic collisions
were present, i.e., J~(L,O). Maier-Leibnitz extrapolates the current
collected below the inelastic threshold (in helium) to energies
above the inelastic threshold. Haas and Ramien use a buffer gas
(He) which does not have inelastic processes in the energy range
they study, to determine J&(L,O) and then add a small partial
pressure of the gas to be studied (N2 or Hg) to obtain J~(L,h). The
latter procedure is particularly useful for a determination of
vibrational cross sections.

44 For example, the currents measured at the collector may con-
tain contributions from electrons ejected from the surface by
impinging metastable atoms. This e8ect has been considered in
some detail by Fleming and Higginson (Ref. 42).

where in terms of h, q= /ha/(1 —h)](3/Q)'~~. The cur
rent transmitted in the absence of inelastic collisions,
J,(L,O), is given directly by Eq. (2.37), providing an
analytic expression for the experimentally determined
ratio J,(L,k)/J~(L, O). The solid curves of Fig. 11 show
plots of this ratio as a function of h for various values of
a, in the case of complete absorption at the boundaries.

provided more accurate values of c. (b) Even with the
correct value of c, Eq. (4.2) is an approximation which
is expected to be correct only in the limit of small hc,
where it behaves in the same way as the formally exact
expression (see Appendix). The degree of smallness re-
quired of hc has been considered by McClure, ' who
derives a more general expression for the case of
spherical geometry, but it is applicable only at high
pressures.
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Fro. 11. Ratio of transmitted current to its value with zero
inelastic collision probability. The full curves are the predictions
of the present theory, the broken lines are the predictions of
the Harries and Hertz theory, as used by Maier-Leibnitz. All
curves refer to the case of complete absorption at both boundaries.

C. Comparison of Present Interpretation with
that Used by Maier-Leibnitz

For the case of complete absorption at both bound-
aries, the current ratio J,(L,h)/J, (L,O) predicted by
the present theory and by the use of the Harries and
Hertz theory are shown in Fig. 11 as a function of h
for various values of o-. %e note that, in general, the
initial slope of the curves given by the present theory is
greater than that predicted using the Harries and Hertz
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FIG. 12. Ratio of the value of h, obtained from Jg(h, r)/Jg(L, O)

by application of the Harries and Hertz formula, to the value
obtained from present theory. The full curves refer to the case of
complete absorption at both boundaries (p =p'= 1.41), the dashed
curves to partial reflection at the collector (p=1.41, p'=0.775)
and the dotted curves to partial reflection at both boundaries
(p=1.15, p'=0. 775).

theory, and secondly, that the dependence on h is only
approximately exponential, the slope decreasing with
increasing h. From this we conclude that the values
of c predicted by the Harries and Hertz theory are in
general too small, and that the assumption of an ex-

ponential dependence on hc is unjustified.
The interpretation of an experiment of the Maier-

Leibnitz type requires that one deduce the value of h

from a knowledge of o and of J,(L,It)/Jt(L, O). If in so
doing use is made of the Harries and Hertz theory one

will obtain values which are usually too large. 4' The
ratio of this value to the value of h calculated using
the results of the present theory is shown in Fig. 12 for
various values of 0-, and for various boundary conditions.

For the purpose of comparing the results of various
theories we have so far restricted ourselves to the situa-
tion in which electrons are completely absorbed at
both boundaries. In practice, the reta, rding potential
applied between the collision chamber and the collector
in order to reject inelastically scattered electrons also
reQects some of the elastically scattered electrons. In
the interpretation used by Maier-Leibnitz no account
is taken of this effect. The retarding potential used by
Maier-Leibnitz was in general 3 the primary electron

energy. For a perfectly transparent grid and randomly
oriented trajectories of arriving scattered electrons, this
corresponds to R'= 0.58.

45 The fact that such errors may arise was discussed by Maier-
I eibnitz with reference to the work of Bartels and Nordstrom (Ref.
10).The data presented in Figs. 11 and 12 do not apply directly to
Maier-I eibnitz s experiment, since he used cylindrical geometry,
but are indicative of the errors involved. The extension of the
present theory to cylindrical geometry simply involves the solu-
tion of the diffusion equation including absorption in cylindrical
coordinates subject to boundary conditions similar to those
discussed in Sec. IIG. This will be the subject of a separate
publication.

In practice the grid will collect some fraction of those
electrons which would have been reQected46 by a per-
fectly transparent grid, thereby decreasing R'. If for
example, this fraction is one-half, the effective value
of R' is decreased from 0.58 to 0.29. The ratio of
J&(L,&)/J~(L, O) has been computed for various values
of ~ for the case R=0, R'=0.29. The effect of increas-
ing E' is in general to decrease the ratio J&(L,It)/J&(L, O),
giving rise to further departure from the Harries and
Hertz theory. This effect is shown in Fig. 12. Fleming
and Higginson4' have observed experimentally that
such a decrease occurs in the current ratio when the
collector retarding voltage is increased, and regarded
the observation as evidence that metastable atoms were
causing electron ejection from the collector. They
conclude that the departure of the experimental data
from the predictions of the Harries and Hertz theory is
minimized by using the smallest possible retarding
voltage. While one could argue from the present theory
that their experimental observations arise at least in
part from their having varied the boundary conditions,
one reaches the same conclusion as to the best operating
conditions for application of the Harries and Hertz
theory.

In Fig. 12 we show also the effect of reflecting 10/~
of the electrons backscattered to the @=0 boundary.
It gives rise to a further decrease in the current ratio,
and consequently to a further departure from the
Harries and Hertz theory.

D. Accuracy of Present Resu1ts

It has already been pointed out that, while the general
problem considered in this paper has been formulated
in terms of a two-stream approximation, with the choice
of e=&3, we have in effect obtained diffusion solutions
for the electron density and current involved. The
prediction of J,(L,h)/J, (L,O) is one aspect of these
solutions. Its superiority to the interpretation used. by
Maier-Leibnitz, which employed diffusion theory in
estimating c, derives from the following features:

(a) The effects of inelastic collisions are included in

the initial transfer equation, which gives directly the
desired transmitted currents without the need to in-
troduce the average number of collisions c. Conse-

quently, there is no limitation on the magnitude of hc.

(b) The fact that the electrons are injected normal
to the boundary has been properly taken into account.

(c) The boundary conditions are expected to provide
more accurate results at intermediate pressures than
given by the Harries and Hertz treatment, which

4'The grid will also collect some fraction of those electrons
which, with a perfect grid, would have reached the collector. Be-
cause we are interested here in the ratio of two currents the value
of this fraction, provided it is constant, is unimportant.

4'R. J. Fleming and G. S. Higginson, in Proceedings of the
Sixth Irtterrtatiortat Cowferertce of Iortieation Phettometta cw Gases
(S.E.R.M.A., Paris, 1964), Vol. II, p. 183.
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assumed that the density of scattered electrons goes to
zero at the physical boundaries.

(d) The boundary conditions have the added advan-
tage that they allow the inclusion of reflection sects in
a direct manner.

The absolute accuracy of the ratio J&(L,h)/J&(L, O)

predicted by the present theory cannot be readily
estimated. It is shown in the Appendix that for h

suKciently small, the current ratio is related in a simple
manner to c, and that c predicted by the present theory
is in excellent agreement with other reliable estimates.
We may therefore conclude that, in the limit of small
Is, the present estimates of J&(L,h)/J&(L, O) are probably
accurate to better than +5% provided o))2. Since the
method by which inelastic collisions are taken into
account in the theory is in itself rigorous, it is to be ex-
pected that this estimate of the absolute accuracy
applies without restricting h to small values.

V. CONCLUSIONS

The two-stream approximation to the distribution of
elastically scattered electrons in a plane parallel medium
which scatters both elastically and inelastically has
been applied to the problem in which an electron
beam of well-de6ned energy is injected normal to one
of the boundaries. This approach has been shown to be
entirely compatible with diffusion theory provided that
a suitable choice is made for the angle to the axis at
which the two streams are assumed to move. The con-
tributions of unscattered beam electrons and of elasti-
cally scattered electrons to the density and current are
evaluated separately, and added to give analytic ex-
pressions for these quantities which are exact in the
limits of both high and low pressure. At intermediate
pressure the total electron density is underestimated by
probably less than 11%%uo.

The results have been applied to the problem of
interpreting electron-beam experiments conducted at
pressures at which multiple electron collisions become
important. In order to facilitate the use of the theory,
an "equivalent length factor" has been introduced into
the equation normally used to relate the ion production
rate to the collision chamber length, the target number
density, co)lision cross section, and measured electron
current. The dependence of this "equivalent length
factor" on pressure and on the ratio of elastic to total
inelastic collision cross sections has been derived for
the cases of normalization to the injected electron
current and for normalization to the transmitted elec-
tron current. This equivalent length factor, which
should be useful for the interpretation of electron-beam
experiments at intermediate and high pressure is given
in closed form and typical cases are plotted in Figs. 7
and 8. Where possible, normalization to the injected
current is to be preferred in most electron-beam
experiments.

A new method of interpreting experiments of the
Maier-Leibnitz type has been presented which includes
inelastic processes a priori and gives directly the ratio
of currents for comparison with experiment. This
approach eliminates the restriction to small inelastic
cross sections implicit in the usual a posteriori approach
using the mean number of collisions. The present theory
is valid in an extended range of gas density.

APPENDIX: DERIVATION OF c

As demonstrated in Sec. IV, a knowledge of the mean
number of collisions c made by electrons reaching the
collector is not a necessary step in interpreting the ex-
perimental data. Moreover, a knowledge of c alone is
inadequate for the interpretation of J,(L,h)/J, (L,O)

unless h is extremely small. We shall calculate it here
merely for the purpose of comparison with the results
obtained by Bartels and Nordstrom, "and by Fleming, '
in order to judge the accuracy of the present results.
The geometry treated by these authors is the same as
here, and comparison is justified in the case of complete
absorption at both boundaries. The work of Bartels
and Nordstrom is based on an exact" numerical solu-

tion of the integral form of the transfer equation.
Fleming has estimated c by Monte Carlo techniques in
which "the accuracy aimed at was &2%."

The value of c is obtained from the present theory
through the relationship"

Ji(L,h) = P A, (1—h)'
Jg(L,O) e=o

(A1)

where, if J,(L,h) arises from conditions specified by ~
and fs, J&(L,O) is the current that would have been col-

"See, however, I'ig. 2 and footnotes 27 and 52.
4' Equation (A1) is derived in the following way. If electrons

can make only elastic collisions, the elastic-collision number being
Oz, let the probability that a collected electron made c collisions
before being collected be A, . We specify that, while they can
still only be elastic, collisions can in some other respect be clas-
si6ed into two types, X and Y. Let the probability that a collision
be of type X be h; that it be of type Y is therefore (1—h). If an
electron makes c collisions before being collected, the probability
that they be all of type Y is (1—h)'. Thus the probability that an
electron makes c collisions, all of type Y, is A, (1—h)'. The over-all
probability that an electron makes an unspeci6ed number of col-
lisions, but all of type Y, is therefore

g A (1 h)c
c-0

If we now specify that collisions of type X in effect cause the
electron to disappear, which will be the case in our practical
problem, this will not affect the probability of an electron not
esuking collisions of type X, since we have not changed the relative
probabilities of a collision being of type X or Y nor the total col-
lision number oz on which A, depends. We are indebted to J. A.
Marshall for a critical examination of the validity of Eq. (A1).
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I,(I.,h)
=Q A.(1—ch) =1—ch.

Ig(I.,O)
(A2)

lected if all collisions had been elastic, i.e., with 0
taking on the value or ——o/(1 —h). A. is the probability
that a collected electron made c collisions before being
collected, under the conditions giving rise to I,(I.,O).
In the binomial expansion of (A1) the first two terms
are

Authors

Harries and Hertz
Bartels and Nordstrom
Fleming
Equation (6.4) using

p =p' =1.41

TAar, x III. Values of C.

Ref. 1
Elastic collision number, 0

2 3 4 5 667 10

4 0.5 2 4.5 8 12.5 22.2 50
10 1.18 3.40 6.78 10.8 16.4 31.5 61.0
26 11.9 17.6 30.1a 63.6

1.06 3.34 6.83 11.5 17.3 29.2 61.8

In order to obtain an expression for c from the present
theory we therefore make a corresponding expansion
of Eq. (4.1) and write the first two terms in the form"

(A3)

where I,(I.,O) is given by Eq. (2.37) with o =or, and
f(rrr) is identified as c, the mean number of collisions
suffered by transmitted electrons in the case of only
elastic collisions, the elastic collision number being Oy.

In the above we have made use of 0.& simply to obtain
the function "f" For g. eneral use we write as if f(o),
it being understood ths, t the identity c= f(o) applies
to the case of no inelastic collisions. Thus we obtain:

~L~+s(P+P')~+sPP & j
P+P +PP &

(2(p+p')+~L3(p' —1)(1+s~p)+2pp'j) c —2. (A4)
'(P+1)—P(P' —1) s

If there is complete reflection of scattered electrons at
the collector we expect @=0, which may be shown to be
the case by putting P'=0 in Eq. (A4). In the limit of
very low pressures we obtain from Eq. (A4)

If we put p=p', as in the case of complete absorption

'o This definition of J&(1.,0) is slightly diferent from that given
in Sec. IV, where it was defined to correspond to the experimental
situation.

"In order to obtain the required form we first make the sub-
stitution Oz ——o/(1 —h} in Eq. (4.1), and in making the expansion
regard ap as a constant.

a Revised value supplied by R. J. Fleming (private communication),

at both boundaries, we obtain @=~0- as expected. If
there is complete reaction at x=o we obtain c=o
in this limit, which is also to be expected.

In the limit of very high pressures we obtain from
Eq. (A4)

(A6)(P,P'&o),

(P'& o,P= o). (A7)

"According to these authors (Ref. 10) e=oCe(~)A/Ji(J),
where Cg(0) is given as a function of 0. in graphical form. The
ratio Jt(1)/Jo is given also in graphical form, and has been com-
pared in Table II with the predictions of the present theory. In
making the present comparison the values oi Ce(0) and J~/Jo
were read from small published figures. It is estimated that the
error involved in so doing is not more than ~5'Po.

The fact that the high-pressure limit does not depend
on the refiection codItcients at the boundaries (pro-
vided. neither is identically zero) arises from the fact
that, at very high pressure, an electron rejected by
either boundary has a very high probability of being
returned to the same boundary, and a very small
probabihty of reaching the other boundary.

One may show that the constant term (—2) appearing
in Eq. (A4) arises from the fact that the electrons are
injected normal to the boundaries. When ~=4 the
second term contributes 0.2 to c, and may therefore be
neglected for 0.&~4. The values of e computed from
(A3) are compared with the results of Fleming, ' and
of Bartels and Nordstrom" in Table III. The present
data agree with those of Fleming to better than 4 jo.
For values of 0- less than 4 comparison may be made
only with the results of Bartels and Nordstrorn. For
0&~2 the agreement is seen to be good. For 0.=].„ in
the region of which the present theory is expected to
provide its least accuracy, the discrepancy is sti/l

only 1ooro.


