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Galvanornagnetic Properties of a Nonellipsoidal, Nonparabolic
Band Model. I. Hall Coefficient
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The factor r, defined in the weak-field Hall-coetiicient formula Ro=r/Ne, is computed for the case of de-
degenerate statistics using Morrel Cohen s nonellipsoidal, nonparabolic band model. An isotropic scattering
time is assumed, but otherwise no approximations are made, despite the complexity of the energy-momentum
relationship. Numerical results are presented and discussed for a wide range of values of the two parameters
characterizing Cohen's model. The calculations are applied to degenerate p-type SnTe, for which the unusual
value r =0.6 has been found experimentally. Agreement is obtained using parameter values which corre-
spond to a prolate dumbbell-shaped constant-energy surface. Such a shape had already been inferred from
the Shubnikov-de Haas oscillations observed in SnTe.

I. INTRODUCTION

A BAND model has been derived by M. H. Cohen
for bismuth' in which the constant energy

surfaces are not ellipsoidal, and in which the energy-
momentum relationship is not parabolic, except along
a single momentum axis. The present work presents a
derivation of the Hall factor r for the Cohen model, i.e.,
the factor defined by the formula

Ep=r/¹,
which relates the weak-field Hall coefFicient Eo to the
carrier concentration 1V and carrier charge e. A scalar
isotropic scattering time is assumed.

The main reason for carrying out the computation
was to compare the results with experimental data on
SnTe. The basis for applying Cohen's model to SnTe
was the general similarity of crystal and band structure
between the group V elements As, Sb, and Bi and
IV—VI compounds such as PbS, PbSe, PbTe, and
SnTe.' The Shubnikov-de Haas oscillations recently
observed in the magnetoresistance of' SnTe have
provided a more specific reason for considering the
Cohen model.

Aside from possible applications, it also seemed
worthwhile to investigate the transport properties of
the Cohen model for their own sake. This stemmed

from the fact, unusual for so complicated a model,
that the integration of the conventional expressions
for the transport coeKcients may be carried out exactly
over a constant energy surface. This analytical property
had been discovered earlier for the conductivity
integrals, ' and it seemed likely that it would occur
also in the Hall and magnetoconductivity terms.

The more usual situation encountered in non-

r M. H. Cohen, Phys. Rev. 121, 387 {196tl.
2 B.B.Houston, R. S. Allgaier, J. Babiskin, and P. G. Sieben-

mann, Bull. Am. Phys. Soc. 9, 60 {1964).
'M. H. Cohen, L. M. I'alicov, and S. Golin, IBM J. Res.

Develop. 8, 215 (1.964).
4 J. R. Burke, R. S. Allgaier, B.B. Houston, J. Babiskin, and

P. G. Siebenmann, Phys. Rev. Letters 14, 360 (1965).
' J. R. Dixon and H. R. Ried1., Phys. Rev. 138, A873 (1965);

J. R. Burke, Jr, , Ph.D. thesis, Catholic University, 1965 (un-
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ellipsoidal models is that some kind of an approximation
to the exact energy-momentum relationship must be
used in order to obtain tractable expressions for the
transport coefBcients. 6 It then becomes rather dificult
to establish that any interesting features emerging
from such a computation are an intrinsic property of
the exact form of the energy surface rather than a
characteristic of the particular approximation used.

It should be emphasized that the exact computation
becomes possible after the existence of a scalar isotropic
scattering time is assumed. Thus, the computation and
discussion to follow do not refer to the transport
properties of the Cohen surface in the most general
sense, but rather to the properties of the isotropic-
scattering-time model of the Cohen surface.

2. THE COHEN SURFACE

The IV—VI compounds PbS, PbSe, PbTe, and SnTe
all have the NaCl structure, ' and hence the truncated
octahedral Brillouin zone appropriate for the face-
centered-cubic crystal lattice. Near their extrema, the
conduction and valence bands of the three lead salts
are known to consist of four prolate surfaces of revolu-
tion, approximately ellipsoidal, with symmetry axes
lying along the (111) directions of momentum, and
centered on the points where the (111) directions
intersect the zone faces. ' The Shubnikov —de Haas data
on p-type SnTe' suggest that the top of its valence
band also consists of prolate, (111)-oriented constant
energy surfaces.

The Brillouin zone for Bi resembles that described
above, except that it is slightly compressed along one
of the (111) directions. This direction then becomes
the trigonal axis, while the other three (111) axes
correspond closely to the "tilt" directions along which
the elongated conduction-band ellipsoids of Bi lie.

Cohen actually derived three types of constant
' Several examples are discussed in A. C. Beer, Galvanomagnetic

L'sects in Semicondnctors iAcademic Press Inc. , New York,
1963), Chap. 7.

~ K. F. CuR, M. R. Ellett, C. D. Kuglin, and L. R. Williams, in
Physics of Semiconductors, Proceedings of the Seventh International
Conference, Paris, 1964 (Dunod Cie, Paris, 1964), p. 677.
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energy surfaces for Bi. The above-mentioned band
structure for SnTe corresponds to Cohen's case (a),
which arises when the band edge is located at zone
points having rotation plus reQection symmetry. The
energy-momentum relation which Cohen obtained in
this case is, using his notation,

pi' ps' 1 ps') ( ps' )+ =— B—
II B+Bu+, I (2)

2mi 2ms Bg 2msi k 2m, 'i

In terms of rhombohedral Bi, axis 1 is parallel to a
binary axis, axes 2 and 3 lie in a reAection plane, axis 3
making a small angle (the tilt angle) with the trigonal
axis, and axis 2 being the direction along which the
substantial elongation of the Bi conduction-band
surface occurs.

In cubic SnTe, axis 2 becomes a [111jdirection, and
axes 1 and 3 lie along [110j-and [112]-type directions.
Axis 2 now has acquired threefold rotational symmetry,
and this, combined with the limitations imposed by the
form of Eq. (2), requires that m&=ms. Hence, the
Cohen surface becomes a surface of revolution about
axis 2. Making the substitutions mr=ms ——m„pie+ps'
=pP, ms=mi, ms' ——mi', ps ——pt, and rearranging Eq.
(2) leads to

=O.oS'

and thus can appear only when p, &1. With increasing
the two noncentral maximum values of g move

outward along the positive and negative branches of
the y axis. The value of y at which x, occurs is related
to the extreme values of y (at which x=0) by

y'(x .„) p —1 1

y'(x= 0) 2p 2@e
(6)

Thus, y'(x, )/y'(x=0) is always less than -', for finite
p, and. e. The maximum and minimum cross sections
normal to the y axis, A» and A~;„, are related by

pIQ. 1. Examples of the Cohen-model constant energy surfaces:
p, = 10; ~ ——0.05, 0.4, and 1.0. The intersection of each surface with
one quadrant of the x-y plane is shown. The y axis has been
lengthened in order to suggest the case of prolate surfaces.

g =
2m„1+ (B/Bg)+ (pp/2mi'Bg) 2mi

(3)

Deviations from the parabolic, ellipsoidal model now

occur for nomsero values of the parameters e and p.
Figure j. provides an example of how the cross section

of the surface in the x-y plane evolves as the energy
increases. Of particular pertinence here is the dumbbell

shape, since the SnTe Shubnikov —de Haas data re-

vealed that two extremal cross sections, present when

the magnetic field was along a given [111$direction,
both increased as the 6eld was turned away from this
direction.

As Cohen pointed out, a central minimum in the
cross section (and hence in x) will develop when

e) 1/(p —1),

Fquation (3) differs from an ellipsoid. al, parabolic
model because of the presence of the energy-gap and
"other-band" mass parameters h, and m~', except on
the pi axis (i.e., when pi=0); then it becomes simply
B=pp/2mi. A finite value of B,produces a nonparabolic
model, regardless of the value of m~'. A finite value of
m&' leads to a nonellipsoidal constant energy surface,
but only if b, is also finite.

The computation will be presented in terms of the
dimensionless variables e= B/B„p=mi/mi', x'= pp/
m&B„and y'= pp/miB, . These substitutions transform
Eq. (3) into

x 1
+—.

2 1+e+uy'/2

[e(~-1)-11'

4pe(1+ e)
(7)

This ratio approaches the limit (ii+])'/4~ as e~ ae

and the limit is always greater than p/4. It should be
mentioned that Eqs. (6) and (7) have meaning only
when Eq. (5) is valid, and also that Eq. (7) holds for
the areas in momentum space, A = m.pp, as well as when
A =s.x'. Similarly, Eq. (6) is also valid when the ratio
is expressed in terms of the transverse momentum p&.

I'= ~V ~~+~'~Ã, Hs+ ~,;sEPI,H &+

The author is indebted to Claudia C. Epans for pointing out
an error in Eq. (7) as originally derived.

3. OUTLINE OF COMPUTATION

A. Basic Formulas, Simylifications, and Assumytions

It should be emphasized at this point that the con-
tents of Secs. (A), (&), and (C) which follow refer to a
single energy surface, or valley. Only in Sec. (D) will
the results be combined into expressions for a cubically
symmetric arrangement of surfaces, i.e., for a multi-
vaHey model.

Comparing an iterative solution of the Boltzmann
equation with the formal expression for the current
density in terms of the first power of electric 6eld
intensity and ascending powers of the magnetic field
intensity



R. S. ALL GA I E R

leads to the equations'

Osj=
hs

Bfp BB BB

B8 Bp;Bp;
3

7

&ijk=
h3

Bfp Bh BB B BS)

eppes

r ldp
B8 Bp; Bp„Bp, Bp,i

(9a)

(9b)

diagonal in the same coordinate system, and if m;; is
replaced by an m, ,/r, , of equal value.

When the assumption 7=7(h) is made, all terms
involving derivatives of v cancel. Thus, the v's appearing
at various points in the integrals of Eqs. (9) may be
combined in each case into a single factor, not subject
to differentiation.

Oijkl=

~ ~ ~

( BS)xl. —
l

dp',
k B,)

—2e4 Bfp Bh BB B——6)]t4 7'&krs
jgp Bg Bpr Bp~Bp~- Bpr Bpa

(9c)

B. Relation between Fermi level and Carrier
Concentration

The form of the conductivity and Hall tensor com-
ponents is greatly simplified by using the relation
between carrier concentration and Fermi level. The
carrier concentration is given by

In the above equations, 0,;, 0-;;k, and ~;,k~ are the
components of the conductivity (in zero magnetic
fipld), Hall, and magnetoconductivity tensors, respec-
tively; summation from I to 3 is implied by indices
which appear more than once in the same term /namely,
j, k, and l in Eq. (8) and r, s, t, and u in Eqs. (9b) and
(9c)J; and e is the carrier charge (positive or negative as
required), h Planck's constant, r the scattering time,
fp the unperturbed Fermi-Dirac distribution, and the
~,~, are permutation tensors, having zero components

except fol e128= ep21 —e812=+1 and p218 = e821= elpp = 1 ~

If the p~ (or y) axis, in terms of which Eqs. (3) and
(4) for the Cohen surface were written, is identified
with one of the coordinate axes of Eqs. (8) and (9), then
the Cohen surface has twofold rotational symmetry
about each of its coordinate axes. From this symmetry
property alone it follows that the only possible nonzero
components among the second- and third-rank terms
of Eq. (8) are the o... o..., o;,I, (i, j, k all different)
From Onsager's principle it follows that 0-,;;=0 and
cr,;k= —ej;k. If the symmetry axis of the Cohen surface
is taken as axis 3 in Eqs. (8) and (9), then axes 1 and 2

are indistinguishable. Consequently, 0-» ——0-» and
o.3&2

———0321. Thus, aH the nonzero tensor components
of second and third rank may be obtained from the
computation of just four of them, for example, from the
set

0 II 0 33 0 ]$3) and 0 3],2 ~

It will be assumed that the scattering time is a scalar
function of energy alone. This is a severe restriction,
but one which is commonly invoked. Herring and Vogt
have shown" that results obtained under the assumption
of an isotropic scattering time may also be obtained
from a scattering time which is the same function of

energy, multiplied by a tensor v;;, if v;, and m;; are

' Reference 6, Chap. 3, particularly pp. 37-38.
~p C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

ad%(S)/dS] f,dS;

&(8) is the number of states up to energy h, and hence
d&(@)/db is the density of states. The alternative
form, obtained through integration by parts, is

Jt(S) (Bfp/B h) d 8, (12)

and more closely resembles Eqs. (9). The quantity
X(h) is proportional to the volume contained within
the constant energy surface, and this volume turns out
to be a very simple function of B. The final result is

B
A P" dh,

C. Single-Valley Conductivity an
Tensor Components

The computation of the conductivity and Hall tensor
components is straightforward but lengthy. Some of the
intermediate steps are outlined and discussed in
Appendix A. The results for the four independent

A „=1+e(1+is/5) .

The only difference between Eq. (13) and the corre-
sponding expression for the ellipsoidal, parabolic model
having the same m~ and m~ is the presence of the factor
A„. The simplicity of this result occurs because the
"correction factor, " which enters once for each non-
parabolic axis, has the form of a square root of a
polynomial, and the Cohen model is nonparabolic in
]pro directions.
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TAs&E I.Representative values of the Hall factor r for degenerate statistics, for X=5 and 25, and for various values of p, and Q.

0
0.3
1
3

10
30

100

0.868 0.868 0.868 0.868 0.868
0.904 0.9Q2 0.899 Q.888 0.828
0.968 0.962 0.953 0.905 0.654
1.033 1.025 1.000 0.847 0.384
0.901 0.890 0.838 0.569 0.155
0.538 0.529 0.481 0.275 0.057
0.213 0.209 0.186 0.096 0.018

30 100

0.868 0.868
0.580 0.180
0.259 0.069
0.106 0.030
0.036 0.011
0.012 0.004
0.004 0.001

If=25
p, =

0 0.4 1 3 10

0.779 0.779 0.779 0.779 0.779
0.791 0.790 0.789 0.789 0.810
0.821 0.816 0.812 0.811 0.812
0.887 0.879 0.870 0.847 0.715
1.009 0.999 0.977 0.860 0.469
1.023 1.010 0.960 0.703 0.231
0.695 0.682 0.625 0.371 0.083

30 100

0.779 0.779
0.852 0.728
0.696 0.357
0.405 0.152
0.162 0.052
0.060 0.018
0.019 0.006

where E'=XE. Equation (24) is the same function
that occurs in the ellipsoidal, parabolic model, except
that the variable is E', which equals E for &=0, but
decreases monotonically with increasing &.

When @=0, the constant energy surfaces in the
Cohen model become ellipsoids whose anisotropy
changes with changing e. It is interesting to note that
the simplest result, Eq. (24), occurs not for p=0 but
for p=1, despite the fact that in the latter case the
constant energy surfaces are cot ellipsoidal.

With the aid of an IBM-7090 computer, numerical
values of I-, A» A~~, A33, A~ps, A3i2, X, Y, and Z
were calculated for about 300 combinations of the
parameters p and e having values in the range 0 to 100.
In each case, the Hall factor was computed for five
values of mass ratio E: 5, 10, 25, 50, and 100. Some
selected results are presented in Table I, and copies of
the complete results, as well as the FORTRAN IV
program, may be obtained from the author.

It is to be emphasized that all the results refer to the
case of completely degenerate statistics. The integration
over energy has not been carried out.

A»3, and A3&~ all become unity, and the HaH factor,
Eq. (19), takes on the familiar form"

(r')3E(E+2)

(r)2 (2K+ 1)~
(20)

where

r&B'"(8fo/8 B)d h

Pl'(8 fo/8 h) d h

A less simple model might be imagined in which the
various A's were not unity, but were all equal to the
same function of energy, A(h). Then Eqs. (20) and

(21) cou]d still be written down, but Eq. (21) would
contain A(h) in numerator and denominator. The
new complication which appears in the Cohen model
is that the integrals in Eq. (19) contain A's which are
diferent functions of energy, and they cannot be
factored out and separated from a function which

depends only on mass anisotropy.
The Hall factor for the Cohen model does simp]ify

considerably in the limiting case of highly degenerate
statistics, when Bfo/&8 becomes a delta function at
g&, the Fermi level. It should be noted that the rnagni-

tude of r is then determined only by mass arlisotropy,

since carriers of diferent energies are not considered,
and since it has been assumed that v is isotropic. In
this case, Eq. (19) reduces to

4. DISCUSSIO~

It is convenient to discuss the behavior of the Hall
anisotropy factor r in terms of three cases: p= 1, (1,
and &1. In previous sections it was pointed out that
relatively simple results occur when @=1, and that
only when p, &1 can the Cohen surface evolve into a
dumbbell shape at finite values of e.

Figures 2(a) and 2(b) present a series of curves of r
as a function of e, for various values of p, and for two
mass anisotropy values, K= 10 and 100.The logarithmic
scale at the bottom of each figure is the effective
anisotropy parameter E'(=XE), and hence it refers
only to the curves for which p = 1.The relation between
K' and e, Eq. (23), was used to determine the e scale
at the top of each figure. This scale applies to all the
curves.

3XE(VE+2)

(2ZE+1)'
(22)

~h~r~ X—A A», /A»', V=A»&/A3$2 and Z=A11/233.
The simplest case (for nonzero &) occurs when @=1.
Then

1+(6/5) e

1+ (12/5) e+ (12/7) e'
(23)

and Fq. (22) becomes

3K'(K'+2)

(2E'+1)'

A. Case @=1
It was established in Sec. 3 that for p= 1, r(K') has

the same form as r(E) in the ellipsoidal, parabolic
(24) model. From the well-known properties of that func-

tion'4 it follows that for K) 1, r(e) starts out at e=0
"Reference 6, Chap. 8. "See the figure on p. 216 of Ref. 6.
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with a value between 0.75 and 1.00 increases gradually
as ~ increases, reaches a maximum of 1.00 when
E'=XX=1,and then decreases rather iapidly towards
zero with further increase in e. In the parallel case of
the ellipsoidal, parabolic model, the increase corre-
sponds to a surface which is becoming less prolate, the
maximum to a spherical surface, and the decrease to
an increasingly more oblate surface.

B. Case @&1

When p, (1, the distortion of the constant energy
surface from an ellipsoidal form is relatively slight.
The effect on r (e) is also modest, leading to curves lying
somewhat above the @=1 curve. The highest curve
appears to be the one for p= 0 (ellipsoidal surfaces with
energy-dependent elongation). Thus, in contrast to
the ellipsoidal, parabolic model, the anisotropy factor
may exceed unity over a certain range of e values. This
new feature is not particularly important, however,
since the maximum r(e) values are only about 1.03
(K=10) and 1.05 (E=100).

1.0

0.6

0.4.

0
0.01

1.2

1.0

0.8

0.6

F n ssrciq pal"am e'te& 6
1008060 %0 30 2015 10 8 6 tI 2 I 08 0
[I I I I I I I[ [ [ I I I

O.i I.Q IO

pgfecgive ar igotroF g
K' (for pe I cu~ve on[ad)

(a)

Ene r9q parapet'e. r e
f008060 t1030 20 15 10 8 6 '+ 2
II I I [ I I II[ I I I

Q=O

C. Case p&1

For p)1, the behavior of r(e) is sensitive to the
choice of mass anisotropy E'. Figure 2(a) illustrates
the behavior for a prolate surface of moderate elon-
gation, X=10.Except for the possibility of some very
slight crossing of curves near &=0, increasing the value
of p always lowers the r(e) curve. An important feature
of the Iu) 1 case in Fig. 2(a) is that a modest value of
p (e.g. , 3 or 4) leads to a curve which does not approach
unity for any e, while a substantial portion of it lies
in the range 0.5—0.8.

In a rough sense, it may be said that all of the r(e)
curves reRect the behavior of a surface which, as e

increases, becomes less prolate, and ultimately oblate.
The higher the value of p, , the more rapidly the surface
undergoes this transformation. That is why the curve
for p, =20, X=10 drops so rapidly to small values. In
this case the surface quickly acquires a form resembling
two strongly oblate surfaces connected by a relatively
thin neck.

The curves of Fig. 2(b) correspond to a more strongly
elongated surface, X=100. The behavior of the erst
few curves, say those for p, =0, 1, and 2, is quite similar
to that of the corresponding curves for X=10, Fig.
2(a), except that the curves and the e scale are shifted
to the right because of the larger K value. But at
higher p values, the curves rise again and become
sharply peaked. Their maxima approach and then
exceed unity by a significant amount. The explanation
for this behavior seems to be that, as e increases,
surfaces with a high p, arsd high X go through an
intermediate phase in which they resemble two spheres
connected by a narrow neck —hence, r(e) should be
close to unity. With further increase in e, the spheres

0.2

0
P,OI 0.1 I.O 10 100Effective anisotropq K (%or ~~1 ctsrv~ ot lq)

(b)

Fro. 2. (a) Hall anisotropy factor r as a function of the energy
parameter e, for X= j.0, and for various values of II,. Dashed curve
refers to a case (discussed in Sec. 4) in which the parameter p
decreases with increasing e (b) Sam. e as Fig. (a), except X=100.

5. APPLICATION TO SnTe

In p-type SnTe at 77'K, it has been found' that
r =0.6&10% for carrier concentrations between 5X 10"
and 1.2X10" cm '. Degenerate statistics are appro-
priate for this temperature and range of carrier con-
centrations. The Shubnikov —de Haas data for4 SnTe
suggest a multivalley model for the valence band
consisting of prolate, (111)-oriented surfaces.

It is well known that transport theory for prolate,
ellipsoidal models (with degenerate statistics) predicts
that r will lie in the range between 0.75 and 1. The
question is, can distortions of the type introduced by
using Cohen's energy-momentum relation change this
result significantly? The answer, in general terms, is
yes. The r(e) curves with moderate ia values, corre-
sponding approximately to the kind of dumbbell shapes
that can be deduced from the Shubnikov —de Haas data,
have values between 0.5 and 0.7 over a substantial
range of e; they take on values between 0.7 and 0.9

become oblate and, as in the case of the high p curves
for X= 10, r drops rapidly to small values.
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over a more restricted range of ~; they rarely exceed
0.9. To be more specific, the best estimate for the ratio
A,„/A;„ thus far obtained from the Shubnikov-
de Haas data is 1.2. The value r=0.6 on the curves for
K=10, p=2 and 3 )Fig. 2(a)j, corresponds to A,„/
A;„=1.1 and 1.3, respectively, using Eq. (7).

It is more difficult to interpret the experimental fact
that r is nearly constant over a wide range of carrier
concentrations. ' Almost all of the curves in Figs. 2(a)
a,nd 2(b) suggest that if r =0.6 at a particular value of

e, it should decrease rapidly as e (and hence the carrier
concentration) increases. This discrepancy becomes less

serious if the literal application of the Cohen model to
SnTe is abandoned —that is, if the dumbbell shape
provided by the model is utilized, but the manner in
which the shape evolves as e changes is not used.

The Cohen model implies that all of the constant
energy surfaces which constitute one valley are centered
about a single point in momentum space. %ith in-

creasing carrier concentration, the surfaces deform from
ellipsoids into dumbbells, and the ratio A, /A
increases. It is possible, however, that for SnTe the
maximum energy in the valence band occurs along the
(111) axes, a short distance inside the zone face."At
],ow enough carrier concentrations the energy surfaces
would become pairs of closely spaced ellipsoids. At
higher carrier concentrations, these pairs would join
to form a dumbbell. Under such conditions, the ratio
A, /A;„would decrease with increasing e. In Fig. 2

this would correspond to an r(e) which cuts across the
curves of constant p, in the manner shown by the
dashed line. This line could be horizontal, or even

acquire a negative slope, if p decreased rapidly enough
with increasing e. In any event, such considerations
demonstrate how a relatively constant value of r, much
less than unity, could occur within the framework of a
model utilizing dumbbell-shaped energy surfaces.

Again it should be emphasized that in this discussion

the experiinental data have been compared with the
transport properties of the Cohen model with a scalar
isotropic scattering time assumed.

6. SUMMARY AND CONCLUSIONS

It has been found that the Hall anisotropy factor
in p-type SnTe at high carrier concentrations' is about
0.6. Shubnikov —de Haas measurements on SnTe sug-

gest that the valence band may consist of prolate,
(111)-oriented, dumbbell-shaped surfaces. The present
calculation demonstrates that it is quite easy to obtain
the value r=0.6 using Cohen's model, ' but not as easy
to understand its constancy over a wide range of carrier
concentrations.

The weak-fieM Hall factor r in cubic crystals does
not di6er much from unity if the contributing carriers
lie near the edge of a single band, and if the statistics
are degenerate. An example is the prolate ellipsoidal,

~' L. M. Falicov and S. Golin, Phys. Rev. 137, A871 (1965).

parabolic, multivalley model, for which values of r (0.8
are not likely to be encountered. The present compu-
tation, utilizing the Cohen model with an isotropic
scattering time, may be considered relatively successful
in that it can explain the unusual value r=0.6 within
the framework of a single-band model.

The weak-field magnetoresistance in" SnTe exhibits
an even more striking departure from that symmetry
usually associated with a (111)multivalley model. The
analytical expressions for the three weak-field magneto-
resistance coefficients in the Cohen model have been
worked out' and are being programmed. A sequel to
the present paper will attempt to determine whether
or not the present model is capable of explaining the
observed magnetoresistance symmetry as well as the
Hall data.

dp'= dSdp, =dSd8/
~
grad8~ . (A1)

Then the element of area is expressed in terms of
cylindrical coordinates, with p& as the symmetry axis
(see Fig. 3):
dS= p«gdp~/cos8= p~dgdp~/D88/Bp, )/ ~

grad8~ g. (A2)

Thus,
dp'= d8p, dyd pg/(a8/op, ) . (A3)

The commonly used alternative, to express dS in terms
of an area element in the plane normal to p~, is un-
desirable in this case because it leads to complicated
limits of integration when the dumbbell bulge appears.

Because r= r(8) only, and because of the reflection
symmetry of the Cohen surface in the plane p&

——0, the
integrals may be put in the form

2p, 3, or 4 Bfp
&1,2, or 3 d'g

88

X2
y~(max)

L~jp«p~/(~8/~pi) (A4)

The integrands $d] contain various derivatives of 8
with respect to p&, p&, and pp. When changed to cylin-
drical coordinates, they become functions of p~, p&, and

g, and derivatives of 8 with respect to p~ and p& appear,
but not with respect to P, because of the cylindrical
symmetry. The expressions for the four independent

"R. S. Allgaier and B.B.Houston, Bull. Am. Phys. Soc. 7, 331
(1962); R. S. Allgaier, C. C. Evans, and B.B. Houston, ibid. 9,
646 (1964)."C. C. Evans, M. A. thesis, Wesleyan University, 1965
(unpublished).

APPENDIX A: COMPUTATION DETAILS

The first step in the computation of the tensor com-
ponents, Eqs. (9a) and (9b), is to replace the volume
element in momentum space by the product of an
element of area (on a constant energy surface) and an
element of length normal to it:
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The results are

Lts = $3 3Lt—s]//w,

I.i' f(——5/3) w 5+—5L ts]/ w'

Lts=
I

(7/5)ws {'7/3)w+7 7Lto]/ws

L'= L(»2)L'+(1/2)/(1+ )],
Ls'=

I (3/2)Li' —(3/2)/(1+w)]/w,
Ls'=

I
5—(15/2)Lt'+ (5/2)/(1+w)]/w'

Lss ——
I (7/3) w —14+(35/2)Lt'

—(7/2)/(1+w)]/w',

Les=
I (3/8)Lio+ (3/8)/(1+w)

—(3/4)/(1+w)']/w,
Ls'=

I (15/8)Li' —(25/8)/(1+w)
+ (5/4)/(1+w)']/w',

L3' ——[7—(105/8)Li + (63/8)/ (1+w)
—(7/4)/(1+w)']/w', (&9)

and

Ls'= L3w —27+ (315/8)Li' —(117/8)/ (1+w)

+ (9/4)/(1+w)']/w'.
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R Center in KCl: Electron-Spin-Resonance Studies of the
Ground State*
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A calculation of the g tensor is carried out for the 'E. ground state of the E. center in KCl. The method
employs linear combinations of atomic orbitals as wave functions, made up of F-center 1s states ortho-
gonalized to the occupied states of the crystal, and takes into account the dynamical Jahn-Teller eRect and
the "many-center" nature of the problem. The positive sign of the g shift BgI I

is correctly predicted, and the
magnitude is in reasonable agreement with experiment. From studies of the stress dependence of bgII, a
value is obtained for the strength of the Jahn-Teller coupling, which is found to be k =3.0~0.5 in the
notation of Longuet-Higgins, Opik, Pryce, and Sack. The eRects of random internal strains are found to
play an important role, broadening the signal beyond observability at zero applied stress. Estimates of the
R-center spin-lattice relaxation rate fall considerably short of the experimental value, for which an upper
limit is obtained from saturation plots. Experiments to determine the eRect of the presence of the R center
on the spin-lattice relaxation rate of the F center indicate that the R center forms a significant channel for
J -center relaxation at large R concentrations, and may not be dismissed as a possible relaxation channel at
very low R concentrations.

I. INTRODUCTION

N an earlier publication, ' the observation of an elec-
t - tron-spin-resonance (ESR) signal identified with the
E center in KCl was reported. The results of the initial
experiments gave considerable support to the van
Doom model' of the R center: three F centers in an
equilateral triangular arrangement with a (111) sym-
metry axis (see Fig. 1). Subsequent work by Silsbee'
(hereinafter referred to as I), and Seidel, Schwoerer,
and Schmid' has further demonstrated the validity of
the model. The purpose of this paper is to describe ad-

*Work supported by the U. S. Atomic Energy Commission.
$ Present address: Clarendon Laboratory, University of Oxford,

Oxford, England.
f On leave 1965—66, Swiss Federal Institute, Ziiricb, Switzerland.
' D. C. Krupka and R. H. Silsbee, Phys. Rev. Letters 12, 193

(1964).' C. Z. van Doom, Philips Res. Rept. Suppl. 4, (1962).' R. H. Silsbee, Phys. Rev. 138, A180 (1965).
4 H. Seidel, M. Schwoerer, and D. Schmid, Z. Physik 182, 398

(1965).
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FIG. 1.The van Doom model of the R center. (a} Ionic configura-
tion. (b) Local axes for a I lllj R center.

ditional KSR experiments on this system, and to set up
a theory to explain the main features of the resonance.
This work complements the optical studies of I and
draws on the theoretical framework set up in that paper


