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The temperature dependence of three-phonon processes in solids is discussed in terms of the exponent m
in relations of the type r ~ T m where the value m is given by m = —Tr 'dr/dT. A method is given for
placing bounds on the value of m for three-phonon processes involving various energies of phonons at
any given temperature. Application to Si, Qe, GaAs, and InSb shows considerable similarity in the tem-
perature dependences of the three-phonon relaxation times of longitudinal and transverse phonons. This
similarity is most noticeable at the higher temperatures.

I. INTRODUCTION

HE relaxation of phonons via three-phonon proc-
esses has often been represented mathematically

by expressions of the type r '~g(co)T or r '~co"T .
At very high temperatures (T))0'D), it is currently
accepted' that r '~ T' for all types of phonons if only
three-phonon relaxation processes are considered. At
very low temperatures, Herring' has shown that ex-
pressions of the type r '~co~T are quite appropriate
for three-phonon relaxation processes and has deduced
the proper values of p and nt for various phonon
polarizations and crystal types. In the intermediate
temperature ranges, it is convenient to describe the
three-phonon relaxation times by expressions of the
type r '~g( c)of( T). Then it is possible to judge the
propriety of the particular function f(T) by replacing it
at any given temperature T by AzT . One may
ascertain the required value of m and judge the credi-
bility of that value. The function f(T) will be well

represented by the function A7 T over a short range of
temperature about the temperature T, if one chooses
fixed values of Ap and m in such a way as to match
both the algebraic values and temperature derivatives
of the two functions at the temperature in question.
When this is done, the value of m is given by

rrt=Tf 'df/dT,

and under these circumstances, we shall say that
f(T) cc T at the particular temperature.

Descriptions of the type just indicated are convenient
for relaxation times because of the possible comparisons
both with Herring expressions' and with the known
high-temperature dependence first suggested by Peierls. '
Such descriptions are also convenient because it is
possible to put bounds on the values of m if one
knows certain minimal information about the phonon
spectrum.

' R. Peierls, Ann. Physik 3, 1055 E,'1929).
~ C. Herring, Phys. Rev. 9S, 954 (1954).

II. DERIVATION OF THE BOUNDS FOR THE
THE TEMPERATURE EXPONENT IN

THE RELAXATION-TIME
PROPORTIONALITY

We wish to set limits of the type r ' ~ I', mi& ~&~2,
for three-phonon relaxations for various types of
polarizations of phonons at particular temperatures in
certain chosen solids of interest. These limits will be
based on the energy region occupied by the particular
polarization and on the energies of the other phonons
interacting in the three-phonon processes. In order to
derive these limitations on m, we must first point out
some properties of the values of exponents which be-
come apparent during the addition of functions.

Theorem I.At any given temperature T, if ft(T) cc T"'
and fs(T) ~ T"', then at the same temperature, the sum
function, f= fr+ fs, has the property that f(T) cc T,
where rt is given by I= (rt tft+rts fs) (fr+ fs) '.

Since the proof is readily obtained by direct applica-
tion of the definition of Eq. (1), we shall not present it.

The following corollary of Theorem I is the corner-
stone of the present article.

Corollary I. At any given temperature T, if ft(T)
and fs(T) are positive functions where ft(T) ~ T"' and

fs(T) ~ T ' where Nr(rts, and if a and b are positive
constants, then the sum function f=af,+bfs has the
property that f~ T", where rtt(N(ns

The validity of the preceding corollary is fairly ob-
vious if one notes that af(T) has the same temperature
exponent as f(T) and if one then regards the operation
in Theorem I as being that of computing a weighted
average.

Corollary I is useful at higher temperatures, where
isotope and boundary scattering may be ignored, be-
cause r ' is then additively composed of three-phonon
events whose temperature exponent can be calculated.
This is under the assumption that we may ignore higher
order phonon events.

Corollary II. If f&(T) and fs(T) are positive func-
tions, where f, ~ T"' and fs ~ T"', then the difference
function f= (ft—fs) has the property that f~ T",
where rt= (ntfr —rtsfs)(ft —fs) '.
80i
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Corollary II is obvious if one notices that f(T) and
f—(T) have the same temperature exponent in the

operation of Eq. (1). Corollary II then follows from
Theorem I.

In order to derive the temperature dependence of the
three-phonon relaxation times, we must first define the
relaxation times. We shall adhere fairly closely to the
thermal conductivity method of Callaway. ' 4 In this
method, two types of scattering events are recognized,
yieMing two types of relaxation time, r& and rz, where
quasimomentum is conserved by the first type of
relaxation event, but not by the second type of event,
sometimes called an R process. The two types of relax-
ation time are defined by implication in Eq. (2) of
Callaway's article on thermal conductivity. This equa-
tion is of the general form

E(X)—E Ep E—
(2)

(BE/Bt)„11 R typ,
——(Ep—E)/rR. (5)

We shall concern ourselves first with the X-process
relaxation. If we let

ni ——E(q, T)—El, (q, T),

—ttl, (q, T)rN—'(q, T) = )BE(q,T)/Bt j,.ll, N t„,. (6)

We shall ignore phonon-phonon processes involving four
or more phonons. We may find r~ ' for three-phonon
processes by comparing Eq. (5) with the quantum-
meChaniCal equatiOnS fOr [BE(q,T)/Bt)„11 3R N t»e. FOr
this purpose we shall need to refer to the distinction
between a three-phonon event of the form I'heat carrier

+Pp ~ Pp, and one of the splitting type, Phe„«,«,« —+

' J. Callaway, Phys. Rev. 1U, 1946 (1959).
4 Our notation diRers slightly from that of J. Callaway. For the

quantity which we call vz ', Callaway used v„'. e wish to
reserve r j for the inverse relaxation time due to nonmomentum-
conserving phonon-phonon scattering arising from anharmonicities
in the lattice potential term. Callaway had no separate symbol for
this.

In Eq. (2), given above, E=E(q,T) is the actual
phonon occupation number, Ep ——Ep (q, T) is the occupa-
tion number at equilibrium, with the temperature
gradient removed, (i.e., a Planck distribution), and
E(X)=E&(q,T) is the equilibrium toward which E
processes tend and is of the form

(hv —X q)
Ei(q, T)= exp~ (

—1
4 Z,T j

hereinafter called a ) distribution.
Equation (2) implies that (BE/cjoy)..11 is made up of

two parts,

(BE/Bt) oil N type and (BE/Bt),oil, R type,

where
(BE/cj/) 11 N t&p

= (E(X)—E)/rN

Pp+Pp. We shall call these processes events of class I
and class II. When this distinction is maintained, one
finds that the time rate of change of the phonon
population number due to E-type three-phonon events
is given, correct to the first power of the various e&, by
the following:

(
BE)

!
8$ ) coll, 3P, N type

q', q"; Class I events
Ap p p L ltd(Elt Eg )

—Ng'(Ei —El,")+eg"(El'+El,+1)]

Ap p p L Rg(Eg+Eg +1)
q', q"; Class II events

+~ '(E."—»)+N."(»'—»)j. (7)

It is understood that the sums above are to include only
those three-phonon events which conserve quasimo-
mentum. The non-negative factors Aq, q~, q ~ are nearly
independent of temperature over a wide temperature
range. In obtaining Eq. (7), use has been made of the
fact that X processes leave a ) distribution stationary,
and this has removed the zero-order terms in the
various Ni, Equati. on (7) is easily derived from Eq. (6.6)
of Klemens' article, ' provided one is careful to note
Klemens' notational convention mentioned on page 26
of the same paper.

In order to proceed properly from Eq. (7) above, we
need to know the relation between nq, nq', and n~", so
that n&' and n&" may be replaced by some multiple of
e~, following which we may calculate r~. This ratio of
tt&, '/tt&„etc. , would probably be temperature and fre-
quency —dependent, and we have no way of ascertaining
its proper value in each case. Therefore we must
settle for a "single-mode" relaxation time r~, setting n~'

and n&" equal to zero. Following this, we see from
Corollary I that the temperature dependence of r~ '
=——(1/ei)(BE/Bt)„11,3p, N type is bounded by the ex-
tremes of the temperature dependences of the various
allowed (El,'—Ei") and (Eq'+El,"+1), where tem-
perature dependence refers to the value of the exponent
in relations of the type obtained in Eq. (1).

For small thermal gradients, ) =0 and the various Sq
may be replaced by Xo in. the bracket expressions above.

The contributions to r~ ' may be divided into that
from boundary scattering, impurity scattering, and
phonon-phonon scattering. Following common usage,
we call the last named contributor to rg ', "umklapp
scattering, " and label its contribution with the symbol

Once again, we shall ignore phonon-phonon-
scattering events involving four or more phonons.
Under these circumstances, a derivation similar to the
one just detailed for rN ' is readily available for r '. It
may be found in Klemens' review article, page 39.5 In

P. G. K1emens, in Sotid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7, p. 1.
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the v„derivation, it is convenient to define S—Xo=—e.
It is found possible to obtain a relation between the e,
e', and e" by assuming a ) distribution, so that the
various e', and e" need not be arbitrarily set equal to
zero in the equations corresponding to the current
Eq. (7). Klemens, in his Eq. (6.38), gives the result

r~ '= Q A. ..,." (No'+Np"+1), (8)

Eo'—So" T I.

We shall use a notation where hp'E~ 'T '=xi and
hv"E~ 'T' =x2, while h,vK~ 'T '= x

By applying Corollary II and the definition in Eq. (1)
to the expression in Eq. (9), we obtain

where b is an inverse lattice vector, and where Klemens'
notation convention requires that (Np'+Np" +1) must
be replaced by (Np' —Np") for events of class I.Thus the
temperature exponents of r~ ' and 7-„' are both
bounded by the extremes of the temperature exponents
«(No' —No") and (Np'+Np" +1).We shall distinguish
between the two bracketed functions by using a nota-
tion involving mr and mrr, where (N p' Np") ~—T ' and
(Np'+Np"+1) cc T rz

We wish to find the extreme values of mi, where mi is
defined by

(9)

mi ——x[2/(e —1)+1)—1, (16)

where x has some value x~(x(x2. The extremes of mi
are given in the limit where xj,=x2=0 or x~ ——x2=xm, ~
in the case where we are putting limits on m for a
relaxation time expression which is to be used for an
entire polarization of acoustic phonons, including those
with v=O. When x&=x2=0, m& equals unity, and when

xg ——x2 ——x, , we find that

From this last equation, it is found that d'(Npl)/dNp'
varies as

[—(3Npg)
—'+(2Ng4) 'j

at large Eo, and is therefore negative. For very small

No, d'(Nol)/dNo' varies as (—Np ' —2Np), which is also
negative. A check of intermediate regions reveals that
the second derivative is negative everywhere' for posi-
tive Eo. Consequently, the extremes of the slope of
(Ngl) versus Np occur at the ends of the allowed
interval, and the extreme values of Eq. (10) are given by
the extreme values of Eq. (14), evaluated at the ex-
treme values of go, which occur at the extreme values
of X.

Combining Equations (10) and (14) by use of the
differential calculus mean-value theorem and resub-
stituting to get the result in terms of x, rather than in
terms of So, we obtain

mi = (No'l'-No"l")/(No' —No"), (10) (m,),„=x, [2(e™x—1)—'+1j—1. (17)
where l' and 1" are defined by

&o'~ &',
and

g 1~0' g&

(11a)

(11b)

In Eq. (10), mr is easily recognized as the slope of a
secant line between two points on the curve which is a
plot of Eol versus Xo. By the mean-value theorem of
diBerential calculus, the extreme values of the slope of
the secant line are bounded by the extremes of the slope
of the tangent to the curve. The extremes of the slope of
the tangent, d(Npl)/dNp, occur either at the ends of the
allowed region or at some place or places where
d'(Npl)/dNp' is equal to zero. The immediate problem
then is to express Eol as a function of Ão exclusively. By
direct application of Eq. (1) we find

l= xe*/(e 1)=xe*No. — (12)

Substituting (No+1)/Ng for e
'

and substituting
ln(1+Np ') for x, we find

Nol=No(No+1) ln(1+No-'). (13)
The first derivative of cVo/ with respect to Eo is

easily found directly and is given by

d/dNg(Ngl) = (2Np+1) ln(1+No ') —1, (14)

while the second derivative is given by

d2 Np+1 2Np+1
(Nol) =2 ln

dNg' Ng Ng(Ng+1)

In a III-V compound, to be sure of including the most
extreme temperature variation of the scattering, we
must evaluate Eq. (17) for x, equal to the x value of
optical phonons having k equal to zero.

Some interesting conclusions may be drawn from the
fact that the right side of Eq. (15) is always negative for
Np)0. It follows that dmi/dxi and dmr/dxp are both
positive in the range 0(x~&x2&x, . This follows
from Eq. (10) and the fact that (dNp)//dx(0. A graph
of Eo/ versus Eo appears in Fig. i. It is obvious from the
graph that the extreme slopes of the secant occur when
the secant line is shortened to a tangent at the ends of
the allowed interval in Xo.

It is conceivable that the extremes of m could be
desired for a relaxation-time expression where the ex-
pression is applied to phonons in a limited energy range,
not including v=0. In this case, we may not set x&= x2.
However, we still benefit from the fact that

(dmi/dxi)xa const&0 and (dmr/dxp)xt const& 0 ~

The extreme values of mi then come directly from Eq.
(10). We find that xi and xp must assume minimum
simultaneous allowed values in order to obtain (mi)
and maximum simultaneous allowed values in order to

' The third derivative of¹lwith respect to X0 is found to be
E0 2($0+1) .This quantity is obviously always greater than N0l
zero in the region 0 &E0(~. Therefore the second derivative of
with respect to $0 is monatonically increasing in the same region,
and since it is negative at both end points, it is negative through-
out the region.
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for the polarization of interest. The values of x~ and x2
are not restricted to the x values available to the heat
carrying phonons in the energy range under study,
since the values x~ and x~ are the x values for the
scattering phonon and resultant phonon.

For the phonon-splitting events (class II), the
analytic manipulation has been less satisfying. How-
ever, it has been found possible to obtain analytic
bounds on mzz.

We shall assume xs&xz, and note that xs+xz
(x„„„„,„,t,, for the solid. For notational purposes, we
call (xz+xo)/2=x/2=xp. We define a parameter r such
that xi ——xp(1 —r) and xs ——xp(1+r) where 0(r&1, and
note that 0(xo(0.5x,„„,„,&,, We are assuming that
we are working with a relaxation-time expression which
is applied to an entire acoustic polarization.

Our plan in finding the extremes of mzz is to fix xo and
vary r, (0(r&1), to find restricted extremes of ozozz

with fixed xo. After obtaining an analytic expression for
this restricted extreme of mzz with fixed xo, we shall
vary xp, (0(xo&0.5x. ..), to obtain the ultimate
extreme values of mzz ~

Ke have previously defined mzz as

(No'+Np" +1) 2'"zz,

FIG. 1. Np versus N0. This plot has the significance that the
slope of a secant line gives the value of m for the corresponding
class I annihilation event (annihilation by combination). That is,
the process Ph+Ph1 —+ Ph~ (Ph= phonon) provides a contribution
to r3I, j where the particular contribution has a temperature
exponent, nz, given by the slope of the secant line connecting the
points LNp(xo), Np(xo)t(xo)g and LNp(xz), Np(xz)l(xz)g in the graph
above.

obtain (ozsz), . For both these extremes, in this case,
(xs—xz) will be equal to Kn 'T 'Izv z„, where v; is the
lowest energy phonon of the energy region under study

where the meaning of such a statement is given by
Eq. (1).

Before attacking the computation of nzzz in Eq. (18)&

one should note that Corollary II may be generalized to
three or more functions. Applying this to Eq. (18), and
remembering 1 ~ T', we find that

m =(NoV+No"I")(No'+N "+1) '. (19)

In Eq. (19), l' and t" are as defined in Eqs. (11a) and
(11b) and have the values given in Eq. (12). If we
substitute these values for t' and l", and then substitute
(1+r)xo for xs and (1 r)xp fo—r xz, we obtain

mzz
xpf(1 z)coo(1—r) {cop(1+r) 1}2+(1+z)coo(1+r){8&p(z—r) 1}')

{e*o(z—") 1}{s*o(z+r) 1}{ssxp 1}
(20)

It would be convenient to find dzzzzz/dr formally and
locate all its zeros in the region 0(r(1. Symmetry
arguments yield an obvious zero for dmzz/dr at r =0, but
no proof has been found that this single zero exhausts
the supply.

It is possible to compute mzz for a net of values of xo
and r and observe the way in which mzz varies with r
for various fixed values of xo. This has been done for all
combinations of r=O, 0.1, 0.2, . 0.9, 1.0, and x0=0,
0.1, 0.2, ~ 0.9, 1.0, 2.0, 3.0, - .10.0. Selected points in
this net are given in Table I. The omitted points reveal
no additional features and were excluded for reasons of
space. Within the range O~r~ 1, 0~xo~ 10, it appears
that the extremes of mzz are obtained when r=O and
r = 1, for any fixed value of xp. Applying this to Eq. (20),

we find that the limited extremes of mzz for fixed xo are
given by

1&ozzzz& 2xoe" (e *'—1) (21)

Ke shall assume that this expression is valid for all
values of xo, even though it has been checked compu-
tationally only for xo(10. This matter can only be of
concern if a significant amount of heat is carried by
phonons having hv&20 KT, which is unlikely. As we
vary xo in the range available to acoustic phonons at the
given temperature, we find that the ultimate extremes
of mzz for the entire acoustic frequency range for v in
the solid are given by

1+mII +xmax ac

Xexp(0. &xmax ac)&exp(xmax ap) 13 (22)
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TABLE I. Results of computation of mzz, using Eq. (20) of the text. The values are tabulated in the manner of a computer output,
using power-of-ten notation. Thus 9.988 —1 is to be interpreted as 9.988)(10 '. The results give the temperature exponent of the
temperature dependence of a phonon-splitting event of the three-phonon type.

0 0.1 0.2 0.6 1.0 5.0 10.0

0
0.1
0.3
0.5
0.7
0.9
1.0

1.000 —0
1.000 —0
1.000 —0
1.000 —0
1,000 —0
1.000 —0
1.000 —0

9.983 —1
9.984 —1
9.984 —1
9.988 —1
9.992 —1
9.997 —1
1.000 —0

9.934 —1
9.934 —1
9.940 —1
9.950 —1
9.966 —1
8.987 —1
1.000 —0

9.424 —1
9.430 —1
9.476 —1
9.569 —1
9.707 —1
9.891 —1.

1.000 —0

8.509 —1
8.524 —1
8.645 —1
8.885 —1
9.244 —1
9.720 —1
1.000 —0

6.738 —2
7.267 —2
1.183 —1
2.273 —1
4.321 —1
7.710 —1
1.000 —0

9.080 —4
1.295 —3
6.418 —3
3.392 —2
1.572 —1
5.820 —1
1.000 —0

When Eq. (22) is applied to the transverse branch, it is
necessary to use &max t,ransverse ln place of xmax ac.

In the case where Eq. (22) is applied to a limited
energy range of a polarization, x,„„must be replaced
by ~max, energyrange In such an application, the upper
limit on mzz is still found to be unity.

For any given solid, if the three-phonon relaxation
time for either normal or umklapp events is given by
7.3I '~ T, then for an entire acoustic polarization,
including v =0, m is bounded by the maximum value of
Eq. (17) and the minimum value of Eq. (22), giving the
relation

xmax &&pc(2Lexp(xma«p&) —1) '+1}—1)m, (23)

'ZZZ) &max ac exp (0 &&max ac) LeXp(&max ac)

IG. APPLICATION TO GaAS, InSb, Si, AND Ge

The relations just developed may be used to establish
temperature dependent upper and lower bounds on nz

in relations of the type 7.3p '~ T in Ge, Si, GaAs, and
InSb. In doing this, we shall also establish a temperature
range for the validity for some relaxation time relations
originally derived by Herring. ' It should be noted that
Herring implied limits which agree reasonably well with
those which we shall develop.

Herring derived a relation for the temperature de-
pendence of the relaxation time v J.,3p for longitudinal
phonons relaxing via three-phonon events. He found
that wl, 3~ '~oPT' in III-U compounds at low temper-
atures. A similar relation for transverse phonons re-

laxing via three-phonon processes was found to be
rc„„,sz zmozT' (valid for III-V compounds at low

temperatures). In the present notation, this means zzz=3

for longitudinal phonons and m=4 for transverse

phonons, for three-phonon processes.
From Eq. (22), we see that three-phonon events of

class II cannot contribute to 73I ' in such a way as to
make ns larger than unity. The rela, tively high values of
m mentioned in the Herring expressions must be due to
events of class I (annihilation by combination). From
Eq. (17) and Theorem I, we see that these values of zzs

require the involvement of values of v" such that x~ is

greater than 3.85 for m=3, and require values of v"

such that x~ is greater than 4.9 in order to obtain m =4.
A careful reading of the Herring derivations reveals a

reliance on a lack of dispersion in the development of the
basic expression r(Xq, XT) m X ' which is the basis of his

exPression r z(qs) m qs T' . This latter relation is the
basis of the relations vr„sp '~co'T' and v«» qJ ~coT .
This would limit x2 to values such that v" is less than

&fax nondispersive For the relation &tran, 3Q ~ +T
p
we now

have the dual requirements

ff
&2 max+ 4 9

y
& max + ~max nondispersive ~

Similarly, for the relation 71„3~ '~co'T', we have the

dual requirements

/1
&2 max+ 3 85

p
& max +&max nondispersive ~

For Ge, ' however, severe dispersion appears in the

TA&LE II.Limits on the validity of various relations of the type r&~ ' tx T~. The limitations shown in the Grst two columns are due to
the interaction of heat-carrying phonons with other phonons inhabiting regions of the phonon spectrum exhibiting dispersion. The
limitations in the last three columns are due to a complete lack of three-phonon processes having the indicated temperature dependence.

Material

InSb
GaAs
Ge
Si

Assumptions
of euT4

relation
invalid
for T&
13'K
20'K
20'K
43'K

Assumptions
of cy~T3

relation
invalid
for T&

16.5'K
26'K
26'K
55'K

—1 tx Ttrs

where m (4
if T&

54K
85'K
90'K

249'K

~ ~-I ~ Tsts

where ns (3
if T&
69'K

108'K
115'K
190'K

rgp ~T
where m (2

if T&

103'K
159'K
167'K
282'K

'3. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747 (1958).
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Fxo. 2. Boundaries of the temperature exponent in the tempera-
ture dependence of three-phonon relaxation processes in Si.
Three-phonon events contributing either to urn%lapp relaxations
or to N-type single-mode relaxations all contribute temperature
dependences within the indicated bounds. Splitting events (class
II) contribute so as to weight m in the region between the lower
bound and the value m=1. Events causing annihilation via
combination (class I) contribute in such a manner as to weight m
in the region between the value m = 1 and the value shown by the
upper boundary curve.

FIG. 3.Boundaries of the temperature exponent in the tempera-
ture dependence of three-phonon relaxation processes in GaAs.
Three-phonon events contributing either to umklapp relaxations
or to N-type single-mode relaxations all contribute temperature
dependences within the indicated bounds. Splitting events (class
II) contribute so as to weight m in the region between the lower
bound and the value m =1.Events causing annihilation via corn-
bination (class I) contribute in such a manner as to weight m in
the region between the value m=1 and the value shown by the
upper boundary curve.

(1,0,0) direction at frequencies below 2X10" sec '.
From this we may deduce that the Herring derivation of
the coT relation for transverse phonons in Ge is only
soundly based when T&20'K. Similarly, for the
71„3p '~oPT' relation in Ge, we find the requirement,
T&26'K.

Since the phonon-dispersion curves of GaAs' re-
semble those of Ge, ' we find that similar calculations for
GaAs yield temperatures almost identical to the two just
given. The corresponding temperatures in Si and InSb
are given in Table II, where the Si values are based on
phonon-spectrum information derived from neutron
studies, while the InSb values are based on information
derived from optical studies. "

Although the specific temperatures just mentioned do
not appear in the original article by Herring, ' the text of
the article clearly points out that the expressions are
only intended for use at low temperatures. The text
contains comments which may be used to derive tem-
perature limits for the application of the 7-L, 3p '~ oPT3

law in Ge, when one combines Herring's comments with
the currently known features of the Ge-phonon spectra. 7

The limits thus derived are approximately the same as
those given above. Unfortunately, the lack of any other
reliable expression for the temperature dependence of
TL1,3+ ' and 7 t 3p ' has led to a widespread use of the
Herring relations at inappropriate temperatures.

A few limiting relations derived from Eq. (17) have
been tabulated for Ge, Si, GaAs, and InSb in Table II,
in addition to the limits for the validity of the Herring
relation.

For Si and GaAs, both upper and lower limits for m
have been calculated from Eqs. (17) and (22) for
~L„3p ' and v./pe„3p, using information on the phonon
spectra now available in the literature. ' ' These limits on
m for Si and GaAs are presented graphically in Figs. 2
and 3.

One might conceive of the possibility of using some-
thing similar to a Callaway' approach to thermal-
conductivity calculations in an effort to assign specific
fractions of the heat conduction to specific polarizations
of phonons at the various temperatures. ""This would
involve curve-fitting of thermal-conductivity data,
using reasonable but distinguishably different assumed
functional forms for the relaxation-time functional ex-
pressions for the separate polarizations. The fractional
assignment actually arrived at would depend upon the
temperature dependence chosen for the relaxation
times of the various modes, and would depend upon the
extent to which the chosen temperature dependences
allowed the calculated thermal conductivity for the
specific polarization to conform to the total conductivity
observed in the laboratory when the adjustable parame-
ters minimized the discrepancy between the observation
and the chosen analytical expression. From Figs. 2 and
3, and Table I, we may appreciate some of the diffi-
culties inherent in such an attempt.

If proper temperature dependences are chosen for the
three-phonon relaxation times at high temperatures, it
will be difficult to distinguish computationally between
the two polarizations, since their values of m must be
nearly identical.

8 J. L. T. Waugh and G. Dolling, Phys. Rev. 132, 2410 (1963).
9 B.N. Brockhouse, Phys. Rev. Letters 2, 256 (1959).I S. S. Mitra, Phys. Rev. 132, 986 (1963).

' M. G. Holland, Phys. Rev. 132, 2461. (1963).
"C. M. Bhandari and G. S. Verma, Phys. Rev. 140, A2101

(1965).
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r —1 r .—1+r B 1+r —1+r~ 1—(25)

In the equations above, 7, is the isotope scattering
relaxation time, 7.~ is the boundary scattering relaxation
time, 7-~ is that due to normal scattering, 7„ is the
three-phonon umklapp scattering relaxation time, and p
is a particular type of average value of the relaxation
time associated with all scattering processes which are
not momentum-conserving.

In most recent calculations"" using the Callaway
method, it has been assumed that P is zero in equations
similar to Eq. (24). Such an assumption is a practical
necessity from a compu, tational standpoint, and we
shall continue the analysis on this basis. It is obvious
that this assumption implies that n is identical to r, at
all temperatures. This equivalence implies that at high
temperatures where 7-; ' and 7~ ' are negligible, the
temperature dependence of 0. ' and v, ' is that of

&N ~

This last point would be true at high temperatures
even if P were not assumed to be zero. At high tempera-
tures, the principal contribution to P is from phonon-
phonon umklapp processes. Therefore, the temperature
dependence of P is the same as that of r . Since both r„
and v& vary as T ' at high temperatures, the quantity
(1+p/re) becomes temperature independent, and

At very low temperature, the Herring relations' may
be used, and the two polarizations are noticeably dis-
tinct regarding their three-phonon relaxation times.
However, at these temperatures the boundary and
isotope scattering are important, and the three-phonon
scattering does not strongly enter into the temperature
dependence of the total relaxation time for most
phonons of either polarization. Therefore, even at these
temperatures, the total conductivity will be composed
of two contributions (one from each polarization) which
differ only slightly in functional form. This diGerence
may be so slight as to be of limited use from a compu-
tational standpoint; i.e., it might require data of an
accuracy which is unobtainable.

If quite noticeably diferent relaxation-time func-
tional dependences are used for vi, 3p ' and rt 8 3g '
over most of the temperature range of the available
data, calculations of the type alluded to may be per-
formed, and quite noticeably differing conductivity
contributions will be assigned to the separate polariza-
tion, but the results will be in error. To understand these
errors, we must understand the Callaway' method of
calculating thermal conductivity.

In using Callaway's method, when one desires the
contribution of a phonon state to the total thermal
conductivity, the heat capacity of the phonon state, the
square of the group velocity, and a constant factor are
to be multiplied by a relaxation time designated as n.
The relation of 0. to the other relaxation times is given
by

rr= r.P+ (pire) j,
where ~, is given by

0. '~~. '. The errors incurred by assuming this to be
true might be expected to be much less serious than
those created by setting P equal to zero.

A Callaway-type analysis is usually restricted to
boundary and defect scattering and to three-phonon
events arising from anharmonicities. For reasonably
large crystals of pure unstrained materials, the relaxa-
tion time is then largely determined by the three-
phonon processes at temperatures noticeably greater
than those associated with the maximum in ~. Simul-
taneous and nearly identical errors in the temperature
exponent of ~& and v-„consequently appear directly as
similar errors in the temperature exponents of n and a at
the higher temperatures.

The exponent in the relation" 7 '~ T at the higher
temperatures appears in an obvious way in a plot of
log~ versus logT, since the heat capacity of each phonon
state is then temperature independent, and the temper-
ature dependence of ~ is derived solely from the tem-
perature dependence of 7., which is the negative of the
temperature dependence of v- '. That is, if a~ T, then
v ~ T~ and v '~ T . At high temperatures, such a
value of I' is consequently given by the slope of the
log~—versus —logT curve.

The most obvious consequence of the use of the
Herring relations at high temperatures is that the
incorrect temperature dependence of ~3~ causes ~ to
decrease rapidly with temperature, for the polarization
receiving the incorrect treatment. This leads to the
erroneous impression that such a polarization has a
conductivity whose relative importance declines rapidly
with increasing temperature, at the higher temperatures.

At high temperatures, the nearly identical values for
m for the longitudinal and transverse polarizations, as
indicated in the present work, would require nearly
identical slopes of ~(transv) and a(long) at high temper-
atures, on a plot of log~ versus logT. This means that
)log~(tran) —log~(long) j is independent of temperature,
and the ratio of these partial conductivities is inde-
pendent of temperature at high temperature.

In spite of the difhculties discussed, it is conceivable
that a very careful derivation of the actual three-phonon
relaxation time expressions could be used in conjunction
with phonon-dispersion curve information to obtain a
fractional assignment of heat conduction to separate
phonon polarizations, using a Callaway approach. How-
ever, if we presume the availability of experimenta1 data
which is reliable and accurate to the required number of
signi6cant digits, we must remember that an additional
dBBculty exists, viz. , the numerical results of the
analysis might be quite sensitive to the particular as-
sumption of the importance of four-phonon events.
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"Where, by r ', we mean a ', r, ', or (r&, 3B '+r«, ap ') since
all three statements are nearly equivalent at high temperatures, if
we ignore four-phonon processes.


