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The general relationship between the macroscopic theory of crystal elasticity and a recently introduced
microscopic formalism is established for primitive crystals. The relationship is more simple and direct than
the corresponding relationship between the macroscopic theory and the Born-Huang formalism, which has
to be established via sound-wave propagation. Additional conditions are derived for the Born-Huang formal-
ism which remove an inconsistency in the microscopic theory and confirm that purely nearest-neighbor
interactions must be central. The new macroscopic-microscopic relationship is applied to an illustrative
study of the simple cubic structure which also shows that three of the six third-order elastic constants of

the alkali halides depend on long-range interactions.

I. INTRODUCTION

HE Born-Huang coupling-parameter formulation!

of microscopic elasticity has been in use for some

time, and its relationship with the macroscopic formal-
ism has been examined in several articles.!> Recently,
a new formalism® has been set up for microscopic elas-
ticity which allowed the formal demonstration that a
purely nearest-neighbor interaction must be a central
one.? The new approach offers a number of operational
advantages over the Born-Huang formalism which have
been demonstrated in calculations of the second-® and
third-order? elasticity of crystals of the diamond type.
Thus it has now become advisable to establish the
general relationship between this new microscopic ap-

1M. Born, K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954), Chap. V.

2 See, for example, M. Lax, in Lattice Dynamics, edited by R. F.
Wallis (Pergamon Press, Inc., New York, 1965), p. 583; G.
Leibfried and W. Ludwig, Z. Physik 160, 80 (1960) ; R. Srinivasan,
Phys. Rev. 144, 620 (1966).

$P. N. Keating, Phys. Rev. 145, 637 (1966).

proach and the macroscopic formalism so that it can
be used more generally. The general relationship is set
up for the case of primitive crystals in the present
article; the case of nonprimitive crystals exhibits
special problems and will be considered in a separate
article. We shall show here that, in addition to the
advantages mentioned in previous articles,®* the new
formulation of macroscopic elasticity allows a more
simple and direct formal relationship between macro-
scopic and microscopic elasticity for primitive crystals
than is possible with the Born-Huang approach.

There has also arisen a second problem in the study
of the microscopic theory of elasticity. In Ref. 3, here-
after referred to as K, purely first-neighbor interactions
were shown to be central. Because the two approaches
begin on common ground and are designed to allow the
same invariance requirements to be imposed, they
should be basically equivalent. However, for certain
crystal structures of high symmetry, the Born-Huang

4 P. N. Keating, Phys. Rev. 149, 674 (1966).
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approach allows the existence of a noncentral purely
nearest-neighbor interaction, in contradiction to the
result obtained in K. This inconsistency will be ex-
amined in some detail and certain inadequacies in the
present Born-Huang approach will be demonstrated.
We shall find that additional conditions must be im-
posed in the case of primitive crystals.

In the next section, we shall introduce the new ap-
proach as a general formalism for primitive structures
and establish the formal relationship between it and the
macroscopic theory. In the third section, we shall com-
pare and contrast the new formalism with the Born-
Huang approach and examine the latter critically.
Finally, we shall show how the microscopic-macro-
scopic relationship applies to specific primitive crystals
by an illustrative study of the second and third order
elasticity of the simple cubic type of crystal.

This article is restricted to nonmetallic crystals and
also to nonpiezoelectric solids. However, this latter
imposes no additional restrictions, for all primitive
crystals are nonpiezoelectric.

II. THE MICROSCOPIC-MACROSCOPIC
RELATIONSHIP

Both microscopic approaches begin by assuming the
elastic strain energy V of a crystal is a function only of
the nuclear positions xx. Such an assumption relies on
the Born-Oppenheimer approximation, valid for non-
metallic crystals. Because this strain energy must be
invariant under a rigid displacement of the crystal, it
can depend only on the differences in nuclear position
X =X;—X;. However, V must be invariant under the
full Euclidean group and therefore also under an arbi-
trary rigid rotation. Hence, ¥ must be a function of the
invariants under such a transformation which can be
formed from the x;;. The only invariants under the full
orthogonal group are the scalar products Xj;-Xm» and
functions of such products.® Thus we define the in-
variants

)\klmn= (Xkl N an_'Xkl . an>/2(l() y

where X;; is the value of x;; at the zero-stress con-
figuration and ao is a unit-cell dimension. The strain
energy must be a function V=V (Agimn) of these
invariants.?

However, the set of Aiimn is not an independent set
since only 3N-6 invariants are needed to specify an
arrangement of IV points displaced only slightly from a
known configuration. The problem of finding an inde-
pendent set of invariants was tackled in K, and it was
shown how such an independent set can be obtained
for primitive crystals. However, these invariants are
not distributed uniformly throughout the crystal® and

8 See, for example, H. Weyl, The Classical Groups (Princeton
University Press, Princeton, New Jersey, 1939), theorem T',™ in
Sec. 9. The “odd invariants,”” such as the pseudoscalar
X:;j* (X11XXmn), are not invariants under the improper subgroup
of the orthogonal group.
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F16. 1. Labeling of the
six first neighbors of the
atom belonging to cell 5
() in the simple cubic
structure. % (L

are thus somewhat inconvenient to use. It was shown
in K that no distinctly different scalar products, or
products of them, arise in the bulk if a somewhat larger
set is used which has the advantage of being uniformly
distributed. Thus, if x;(!), x2(!), x3(I) are the relative
position vectors of the three nuclei adjacent to the
nucleus in cell (!) which are mutually adjacent,® (see
Fig. 1) then

V=3 ZS: A mnAmn(l)

t m,n=1

1S % Bunow =D ha b O+, (D

Ly m,n
m',n'

for the strain energy of the bulk of large, primitive
crystals, where

A (D) = X (D) - X0 (1) — X X1) /200

The term linear in the N\, can readily be shown to
vanish although, for reasons of generality, it will be
retained for the moment. The coefficients in this ex-
pansion are independent but for crystal symmetry
requirements.

The \m» are symmetric in the interchange of m, »
and thus Amwn=A4um, Bumamn=Brmmw, etc. Further-
more, the B coefficients are coefficients of a quadratic
form and thus symmetric in the sense

anm'n’ (l_l,) = Bm’n’mn(ll_l) y

but we note that Buum n 7 Bmnmns, in general.

If the concept of crystal elasticity is to be of use, the
deformation must be sufficiently slowly varying so that
it may be considered uniform over several unit cells.
In this case, we may define an energy density U in the
bulk from Eq. (1). If @ is the undeformed unit-cell
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volume,
QU(1)= Z Amn>\mn(1)+% Z Z anm'ﬂ' (l—l,)

m,n ' mmn

X)\,,m(l)kmrn' (l,)+% Z Z Cmnm’n’m"n"(ljll)l”)
v

Xxmn(l))\m'n' (ll))\mnnn (l”)—l— A (2)

This allows a much more direct relation between micro-
scopic and macroscopic elasticity than is possible with
the Born-Huang approach. In the Born-Huang formal-
ism, it is not possible to define an energy density under
homogeneous deformation because, in this approach,
the surface makes a contribution proportional to the
crystal volume, as Lax has shown.? Equation (2) is
valid for cells (/) which are an appreciably greater
distance from the surface than the range of the inter-
actions; the vast majority of the cells are of this type
in large, primitive crystals.

The lattice stability condition (i.e., V and U are
minima at the equilibrium, zero-stress condition) re-
quires that {4} vanishes and {B} is positive definite.
Because V and U cannot depend linearly on the #,°,
where u,= x,— X, we require

> AmnXne=0 for m=1,2,3; a=1,2,3.
n

Thus (Ams) is a 3X3 symmetric matrix with three
vanishing eigenvalues and is therefore null, 4,,,=0.

The {B} and {C} sets of coefficients must be invari-
ant under the space group of the crystal. The invariance
of the {B} and {C} sets of coefficients under the
quotient (i.e., symmetry) subgroup means that, in
general, more nuclei contribute to the sums in Eq. (2)
than those connected to the reference nuclei by the
vectors Xj, Xs, Xs. For example, all primitive crystals
have site inversion symmetry and hence the sum of
quadratic terms in Eq. (2), 32 ---, becomes
GX@---+31> 51--), where —n refers to the
nucleus at —X, in the equilibrium configuration. In
many crystals, there will be further symmetry which
will introduce additional terms but we note that this
does not introduce more coefficients; the final set of
coefficients is still, of course, an independent one. These
points will be examined further in Sec. IV.

Because of the similar way in which they are defined,
the variables of the new microscopic theory are closely
related to the macroscopic strain variables!?

naﬂ=%(x7.ax'y.ﬁ—6aﬂ) s
where the summation convention is used and where
x* g=0x2/3X#, if x, X are the positions of a point in

the continuum after and before deformation, respec-
tively. For slowly varying strains in primitive crystals,

1 1
Amn(D) =—X X 35 (27, oy,6~ 0ap) =—NapX n®X P, (3)
Qg [12)]
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where X ,, is the ath component of X,,.. If we substitute
this expression for A, into Eq. (2), we obtain

QU= %anm’n' (l—l/)naﬁ (l) “Narp (l’)
XX 2 X X @ X b 4. (4)

We shall consider only the case in which the defor-
mations are sufficiently slowly varying so that 5.5 does
not vary appreciably over the interaction range and
thus 1.8() =714(") in Eq. (4). This is the usual situ-
ation in macroscopic elasticity. On the other hand,
Toupin® has extended the macroscopic formalism to
include the additional contributions to U from the
second derivatives x7 ,5 and it is possible to also
evaluate the additional macroscopic coefficients thereby
introduced in terms of the microscopic B and C co-
efficients. This will not, however, be undertaken here.

Hence, if 746(0')=745() in Eq. (4), we obtain ex-
pressions for the macroscopic elasticity coefficients
when Eq. (4) is compared with the Brugger macroscopic
energy density’:

1
Cap= ——AmnXm“Xnﬂ-_: 0 ,
an

CJKECaﬂa’B’ = Z anm’n‘ (l~l/)
9(102 144

XXmaXnBXm'aan’ﬂ, 3 (5)
1

. . 1 g
CIKL=Cafa’frar’frr=——" Z Cmnm'n'm”ﬂ"(l7l >l )
Qaﬂ3 1

KX X X g X s’
XXm"u”Xn"B” ,

where the ¢sk, csxr are the second- and third-order
elasticity coefficients of Brugger.”

We note that the relations between the elasticity
coefficients and the microscopic coefficients are simple
and elegant and that the different orders are uncoupled,
i.e., there are no B contributions to ¢,xz, for example.
The generalization to fourth, and higher, orders is
obvious. The above relationship between microscopic
and macroscopic elasticity is much more direct than
for the Born-Huang theory, especially when third-order
(i.e., anharmonic) effects are to be considered. The
main reasons for this are that the new microscopic
variables are closely related to the macroscopic strain
variables and an energy density can be defined. The
complexity associated with the Born-Huang approach
is graphically demonstrated in Srinivasan’s article,?
albeit for nonprimitive crystals.

6 R. A. Toupin, Arch. Ratl. Mech. Anal. 11, 385 (1962); R. A.
Toupin and D. C. Gazis, in Lattice Dynamics, edited by R. F.
Wallis (Pergamon Press Inc., New York, 1965), p. 597.

7K. Brugger, Phys. Rev. 133, A1611 (1964).
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III. THE RELATIONSHIP WITH THE
BORN-HUANG THEORY

The Born-Huang formalism! begins by assuming
that the strain energy can be written as a series ex-
pansion in the components of the nuclear displacements,
#n?, from equilibrium

V=Vot+3 2 KnnPsmunf~+- -, (6)

where the linear term vanishes because of the equi-
librium condition. The requirement that V is invariant
under the operations of the Euclidean group is imposed
by means of conditions on the coefficients K ,..*?. For
example, displacement invariance requires that!-?

2 Kmn*f=0, (™)

and rotational invariance requires!?

Z KmnaBXm7 (8)

be symmetric in (e,y). The newer formalism can also
be reduced to the form (6) if only the linear terms in
the nuclear displacements are retained in the A,. The
K n*f are then linear combinations of the B coefficients.
One would expect that these two forms would then be
identical since the two approaches should be equivalent.
However, as already mentioned, the Born-Huang con-
ditions (7),(8) do not always exclude noncentral nearest-
neighbor forces, in contradiction to K. This is a funda-
mental and important inconsistency which requires
investigation.

We shall investigate the difficulty for the specific
case of the simple cubic lattice. In this case, the Born-
Huang conditions, together with symmetry, give rise
to the nearest-neighbor force-constant matrix

o 0 0
(Kon)= [0 B1 OJ )
0 0 B

for the nearest neighbors along the «x direction and
similar matrices for the other first neighbors. If we
confine ourselves to a nearest-neighbor model, dis-
placement invariance [Eq. (7)] requires

vy 0 0
0 v 0,

0 0 «

(]{00) =

where y= —2(a1+281). The rotational invariance con-
dition [Eq. (8)] imposes no conditions on the coeffi-
cients because

Z K()naBXn'Y:O,

n

because of symmetry. The central-force condition is
B1=0 and thus we see that the Born-Huang approach
gives results which are in direct contradiction to the
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results of K. That it is the Born-Huang result which
is incorrect can be seen from the following.

Because the K,,,*f for nearest-neighbor interactions
are symmetrical in (m,n) and in (a,8), the potential
energy can be rewritten® as

V=1 T K =) =), (9)

which is essentially the form used by Kittel® in Eq.
(4.33) of Ref. 9. The fact that the results of this calcu-
lation are inconsistent with those of the Born-von
Karméan calculation [Eq. (4.37) of Ref. 9] has already
been noted,? as has the lack of rotational invariance of
this strain energy.!'® We can see this formally by rotating
the infinite crystal rigidly from its zero-stress con-
figuration. From Eq. (9),

AV = _% Z Kmnaaraa’rﬁﬂ'ana’anﬁ, =0

where 7,0 =Raa—08aar if (Ra.) represents a rigid
rotation and X,.,=X,,—X.. The (r..) reduces to the
usual antisymmetric infinitesimal rotation matrix for
infinitesimal rotations. In this case, 7aa'=was'0aa’ar’
where w, s is a component of the rotation vector and
8awrarr 18 the Levi-Civita density. Thus we require,
using lattice translational invariance,

Z KmnaBana,anﬂraaa'a"aﬁﬁ’ﬂ” =0 )

ﬂ.ﬁ:‘r',ﬁ’
which is an additional condition not generally satisfied
by conditions (7,8). For example, in the simple-cubic
case discussed above, for o/’=3"=3, Eq. (10) gives

4:61(12:0, 61':0,

where @ is the nearest-neighbor distance.

Thus, there are additional rotational-invariance con-
ditions over and above conditions (8) which, when
applied, remove the inconsistency between the Born-
Huang formalism and the approach introduced in K.
In other words, the corrected Born-Huang approach
also requires purely nearest-neighbor interactions to be
central only.!! If contributions from antisymmetric
coefficients K,.,*® are also included in the potential
energy, however, the potential cannot be written in the
form of Eq. (9) and condition (10) is then not appli-
cable. Nevertheless, antisymmetric K coefficients do
not arise in the interior of primitive crystals? and thus
conditions (10) must always be imposed in such cases.

It is worth noting that Lax? suggested that rotational
invariance to higher orders in the infinitesimal rotation
vector might provide additional conditions on the Born-
Huang force-constants; we see that this suggestion has

(10)

ie.,

8 See Appendix A of Lax’s article (Ref. 2).

 C. Kittel, Introduction to Solid State Physics (John Wiley &
Sons, Inc., New York, 1956).

10 See, for example, H. Kaplan, Phys. Rev. 125, 1905 (1962);
R. F. Wallis, Phys. Rev. 116, 302 (1959).

11 This is also true for nonprimitive crystals, such as those with
the diamond structure, but a detailed discussion of this will be
left until a separate article on the nonprimitive case.
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been confirmed here. It is also interesting to note that
Kaplan' has indicated how the zero-pressure condition
can also cause purely first-neighbor noncentral terms
to vanish. We do not claim that condition (10) repre-
sents all of the additional requirements to be included
in the Born-Huang approach. Other conditions may
yet be found and the Born-Huang method should be
used with caution until it has been fully re-examined.!?

IV. THE SECOND- AND THIRD-ORDER
ELASTICITY OF SIMPLE-CUBIC
CRYSTALS

We shall consider the elastic properties of a simple
cubic crystal with only first- and second-neighbor
interactions present. Thus, we shall drop all terms
which connect different unit cells since these involve
third and more distant neighbors. We shall include
harmonic and (cubic) anharmonic interactions between
nearest neighbors, which are central, and two types of
second-neighbor interaction. The present calculation is
intended primarily as an illustration of the application
of the new formalism since most real crystals with this
structure are either metals or involve long-range inter-
actions. However, the present model could form the
basis of a more general model which also includes long-
range interactions.

For reasons which will become apparent below, we
choose the potential energy as

V=5 §((e/30) 5 (ot a?)?

=1

+(8/84%) ZGZ'_ (%0i- Xo;)?

7,5<1

+(v/8a?) 37 (x0—a?) (20— a?)}

1,5<i
_{_%{#/8“3) Z (x0i2—02)3
1=1

-+ (V/ 44%) Z' (wos?— a?) (02— a?)*

1,571

(/40 3 (Xoie Xop) (todt20f— 260} . (11)

1,5<1

The full crystal symmetry has been imposed on the
coefficients and we see that additional terms arise, as
discussed in Sec. II. The prime denotes that the terms

12 Since this article was submitted, we have become aware of
very recent work by D. C. Gazis and R. F. Wallis [Phys. Rev.
151, 578 (1966)], who have reached similar conclusions inde-
pendently. These workers obtain a set of conditions which are
essentially the same as Eq. (10) of this work for the case of sym-
metric force constants but also obtain a more general set of con-
ditions for which this is a special case. These additional conditions
which must be imposed make the Born-Huang approach even
more inconvenient to use, of course.
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in A4, Aes, and Asg (see Fig. 1) are to be excluded from
the sum; these are not introduced by the symmetry
conditions. We could follow the procedure used in
previous calculations®* and evaluate the energy density
in terms of the macroscopic strain variables. However,
we can now utilize the simpler method of using the
general expressions (5) to evaluate the macroscopic
coefficients. The second-order microscopic coefficients
are

B;i::(0)=0a/2,
Bi;i;(0)=8/8=B.j;;(0) = B;:;(0)
Bii;(0)=~/4= B;;i:(0),

for 7, 7 in the range 1 to 6 (5% 7).
In this case, the expression (5) for the second-order
elasticity coefficients reduces to

(i)

1
caﬂa'ﬁ’ = -—5 Z Biji/jr (O)XianBXira’led, .
a

Hence,
C11= a/a y
612=’y/d y (12)
644=,3/2(1

are the expressions for the three elastic constants. It is
to be noted that care must be taken to ensure that all
terms are included in the sum. For example, the 8
contribution to ¢4 is

6/805 Z [(XmaXn2)2+Xmanz)(naXﬂF:] .

m,nFEm

We see from Eqs. (12) that the three microscopic
constants used contribute separately to the three elastic
constants. The microscopic form (11) for the harmonic
part of the potential energy was chosen in such a way
that it can be reduced to the case of first- and second-
neighbor central interactions. The first neighbor term
is, of course, central by necessity, as demonstrated in
K and confirmed in the present article, and a second-
neighbor central interaction would involve terms such
as (x122—X122)2. NOW (1/2(1) (x122——X122) = ()\11+)\22
—2\12) and hence the second-neighbor central inter-
action involves terms such as A+ Neo®+2A 11 k02— 4N 1o
X (M1+HN22)+4N2%. The first two terms are incorporated
in ¢, the third term is represented in Eq. (11) by the v
terms and the last term by the 3 terms; it can be readily
shown that there is no contribution due to the penul-
timate term. Thus a harmonic first and second neighbor
central interaction model corresponds to the case 8=2v.
In this case, the Cauchy relation ci3=cas is obeyed, as
one would expect.

The third-order microscopic coefficients are

(i 1)
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and the expression (5) becomes

1
CaBa’f’a’’ B! =—6- Z C.'ﬁ/jr,w,'u (0)
a

XX XPX o X8 X X0
Hence
cin=2u,
C112= 81//3 y
C123=C144= 6456'—“0,
C166= 27!'/3 5

(13)

are the resulting expressions for the six third-order
macroscopic coefficients.

We can also write the anharmonic part of the
potential energy as first- and second-neighbor central
interactions. In this case, we are concerned with terms
of the type (x122—X15?)% This involves terms such as
M1, which is incorporated in the first-neighbor an-
harmonic term, 3\uhes® (the » term), and 127\
(the 7 term), together with terms which are either
equivalent to these (e.g., A\ss®) or which do not con-
tribute. Thus, the central interaction model corresponds
to m=4». Again, we find that the Cauchy relation
c112=C1es 1S obeyed when this central interaction rela-
tion is used.

Although, as already stated, this calculation was
intended primarily as an illustration of the use of the
new microscopic formalism, it also sheds some light on
the contributions to the third-order elasticity of the
alkali halides. These crystals are not primitive, of
course, but, because of the high symmetry present,
there is no internal strain and their elasticity is very
similar. If we compare our results with existing theo-
retical calculations® and experimental data*!® for
crystals with the rock salt structure, we observe some
interesting facts. In the present calculation, using terms
out to second neighbors, the elastic constants c123, ¢14s,
cas6 are zero. The experimental values of the second
and third order elastic constants almost obey the
Cauchy relations and thus central interactions pre-
dominate. Hence, the contributions to these elastic
constants are from third-neighbor and more distant
interactions and there are virtually none from first and
second neighbors. This explains both the small magni-
tude of these three constants (because only long-range
terms are involved) and their sign.!®’® The constants

13 See, for example, P. B. Ghate, Phys. Rev. 139, A1666 (1965)
and references therein.

14 See Table V of Ref. 12 and references therein.

15 E. Bogardus, J. Appl. Phys. 36, 2504 (1965).
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C123, C14s, Case are positive, whereas the others are
negative. The constants c¢112 and cig6 are due to the
second-neighbor interaction which will be predomi-
nantly repulsive since it involves ions with the same
charge. However, the three constants cies, 144, C456 are
due to longer-range terms of which the most important
will be the third-neighbor term. This latter involves
unlike ions and will therefore be attractive; hence the
positive values for these constants. Furthermore, we
should expect the Cauchy relation ¢193=c1a4=cus6 to be
much better obeyed than the other Cauchy relation
cii2=ce6 since third-neighbor interactions are likely
to be more central than second-neighbor interactions.
There will also be small four-body second-neighbor
contributions to these elastic constants but these will
be noncentral and will account only for the small
deviations from the Cauchy relations.

V. SUMMARY

The general relationship between macroscopic and
microscopic elasticity has been established for primitive
crystals using a recently published microscopic for-
malism. The relationship is more useful and elegant
than is possible if the Born-Huang microscopic ap-
proach is used. For example, the nth-order macroscopic
elasticity coefficients involve only the »nth order micro-
scopic coefficients and the relationship between them
is a direct one.

Because of some inconsistencies between the Born-
Huang approach and the more recent approach, the
question of rotational invariance in the former has been
investigated. It has been shown that the existing ro-
tational invariance conditions of the Born-Huang
theory are not sufficient in general and additional
requirements have been derived. These requirements
are similar to, although somewhat less general than,
those obtained independently by Gazis and Wallis.!?
When these are added to the existing Born-Huang
approach, the inconsistencies vanish.

Finally, in order to demonstrate how the general
macroscopic-microscopic relationship is used in practice,
an illustrative study of the second and third order
elasticity of the simple cubic structure has been carried
out. These results show that the dominant contributions
to some of the third-order elastic constants are from
long-range  (third-neighbor and more distant)
interactions.
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