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The problems of resonances in proton-hydrogen and positron-hydrogen scattering are studied. For
proton-hydrogen scattering, resonances are predicted at energies just below each of the excitation thresholds.
Inffnite sequences of resonances are found just as in the electron-scattering case, but the widths are much
narrower and these resonances are not presently observable. The positron-hydrogen scattering problem
exhibits in6nite sequences of resonances just below excitation thresholds, similar to the electron scattering
problem. In6nite sequences are also exhibited just below the thresholds for forming excited positronium.

I. DTTRODUCTION

''N previous papers O' Malley and Geltman' and
- - Temkin and Walker' used the projection-operator
formalism of Feshbach' to obtain the lowest few reso-

nances in electron-hydrogen scattering. Burke and later
Mittleman4 extended the method to multichannel reso-

nances just below the higher thresholds. In this note we

apply the same method to the problems of proton-
hydrogen and positron-hydrogen scattering. The spacing
formula relating the "resonance" positions below the
Sth state, s,~r(E)/e, (1V), are determined. Infinite se-

quences of resonances are found in both cases. For the
proton problem, the resonances lie much closer together.
For the positron problem, the spacing formulas are
found as for the electron problem but in addition other
sequences are found below the excited positronium
thresholds. In the next section the proton-hydrogen
problem is treated. The positron-hydrogen problem is

dealt with ~n Sec. III.

Q. PROTON-HYDROGEN SCATTERING
RESONANCES

The method of Feshbach' requires the construction
of a projection operator which projects out of the total
wave function all the open continuum states below the
resonance in question. We hrst deal with the problem
where only elastic scattering is possible.

The total Hamiltonian is

under interchange of the protons, R-+ —R, so that
the total wave function may be decomposed into parts
even and odd under this interchange,

f+(x,R)= wP+(x, —R). (2)

The asymptotic form of the incident wave for scattering
oK the ground state is

lt';„+= ot r. (x—R/2)e's'
~@r,(x+R/2)s —~so ia-~*l (3)

where n=2m/(2M+m)&(1. We shall be interested in
center-of-mass energies up to the ionization threshold
so that porrx is always small compared to unity. Thus,
the x dependence in the exponents of (3) can always be
dropped. We therefore seek a projection operator I'
such that PP+ has the form

ry+=y„(x—R/2)J, (R)~y,.(x+R/2)P, (—R). (4)

It may easily be shown that

8(R—R')
I'=— {y,.(x—R/2)y, .(x'—R/2)

1—Sg„g,s(E)

+y&, (x+R/2)y„(x'+ R/2)

—Sr, , g, (E)yr, (x—R/2) yg, (x'+ R/2)
—Sg. , g, (E)yg, (x+R/2)yg, (x'—R/2)) (5)

is such an operator, where the real function 5 is given by

Sg, , g, (E)= d'x yr, (x—R/2)yg, (x+R/2). (6)

io =2Mm/(2M+m),

where R is the inter-proton coordinate and x is the
coordinate of the electron relative to the center of mass

of the two protons. The Hamiltonian is symmetric
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The zero-order positions of the resonances' are given by
the eigenvalues of the operator QHQ, where Q=1—I',
which lie below the v= 2 threshold. An upper bound to
the eigenvalues can be obtained by using QHQ in the
Kohn variational principle. The trial function which
we chose ls

(Qc) o
= Q {A(,„,(x—R/2) &„„,(g)

EIm1$2tey,

+ Ah~x(x+ R/2) I"/sm, (—8))
Xe&,i+&(E)(l,„„,„,(L,M„~,), P)
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2
dip V'II+—AII.z~ NI. (R), (8)2' E2

where the distinction between (+)may now be dropped.
The vector dip contains the vector addition coefB-
cients and is proportional to the matrix element

(Qsi (x)V'Asp (a)) which may easily be shown to
vanish by use of the relation

V= iy= —mLH, rf.
The eigenvalue ~ is now the energy in rydbergs of the
resonance below the m=2 threshold and 3f is the proton
mass in units of the electron mass, M))1. Equation (8)
may be written

eM Ni= —QB—Ipz~(2)np,
de

(9)

Bip z~(2) = l (/+1) 8II.+2MA ii.z~(2) ) (10)

where AE~.~~ is identical with the analogous matrix
occurring in the electron-hydrogen scattering problem. 4

For 5-wave scattering, the only surviving elements are

3N Is'—(3+1)s '"
AI, I+Is s(N) =At+I, P(N) =—(/+1) . (11)

2 4(l+1)'—1

The matrix 8 may be diagonalized and the equations

(9) decoupled. For positive eigenvalues of B the di-

agonalized. potential in (9) is repulsive and no negative
energy (positive e) eigenvalues exist. For negative
eigenvalues b, (N) there are an infinity of negative-
energy eigenvalues' e,~(N) which obey the spacing
formula

.„(.)/. '( )=~- - -, ;(-)=LIV.) I
—:j".(12)

For m= 2 there is one negative eigenvalue b which is

b(2) = —6M/1+0(1/M)] (13)

then n (6M)ils~105, which results in

2x
"+I'(2)/e. '(2) = 1+ +".

(6M)i&s

L D. LanBaQ anl K. M. Llf sitz~ Qscs/NtÃ 3fechcw$cs
(Pergamon Press, London, 1958), p. 118 sr see

where the last factor is the usual vector addition co-
e%cient making this an explicit eigenfunction of the
total angular momentum and its Z component. As in
Ref. 4, we vary with respect to the functions N~+. The
resulting equations are rather complicated, but for
large E the overlap terms between the functions
p(x—R/2) and P(x+ R/2) may be dropped since they
behave exponentially with E. The resulting equations
are similar to those of Ref. 4. In rydberg units the
equations are

1 d' l (1+1)
QE

Thus, the proton-hydrogen and electron-hydrogen prob-
lems have similar resonance structures but in the former
the resonances are much more closely spaced. The
result (14) is for the unshifted resonance. The shift
may actually raise these values above the @=2 energy
level, in w'hich case these would no longer be resonances. '

Ke may also expect that the widths of the resonances
are much narrower for the proton problem. The width
18 given by

r=2~i(e'reQC) is,

where QC is the eigenfunction of QHQ and the precise
definition of 4 is given in Ref. 1. (Our normalization
of 0" is the usual one, a urgt amplitude plane w'ave at
infinit, which accounts for the difference of (15) and
the deflnition given in Ref. 1.) 4' is roughly the scatter-
ing function averaged over the resonance. The fact
that the proton mass is so large vill make 4" oscillate
more rapidly in the proton case than the electron case.
This w'ill result in a reduction of at least M 'I' for the
IIlatl'IX ClCI11Cllt lii (15) so tllat 'thC ICsollaIlce will bC

at least of the order M ' narrower for protons. This is
well beyond the limits of present observation.

For reson, ances below the higher thresholds the pro-
jection operator (5) becomes Inuch more complicated;
additional overlap terms 5„,„.are introduced. However,
this will not enter in the large E. limit and just as in
the electron case we arrive at Eq. (9) where the deflni-
tion (11) applies. As in the electron case, ' multiple
sequences of resonances arise. To lowest order in 3f '
the negative eigenvalues of B are given by b (3)= —9M,
bi(4) = —6M, bs(4) =—18M. Thus, just as in the elec-
tron case, multiple sequences of resonances appear
for n&4.

III. POSITRON-HYDROGEN SCATTERING
RESONANCES

The projection operator for this problem is more
complicated because of the positronium channels. How-
ever, forms have been given by Mittleman, ' and Chen
and Mittleman' which will project out the operL chan-
nels. The former seems simplest here. It is given by

sip (rt)Ni
~=~..(") ~("-:)+r.

X'—1

si(~)sx
+XI,(r) 8(R—R)+p —*(E') x„(r')

X'—1

+2 L~.(") .(")"*(~')x"(")

+x.()"(&) *(")~.(')j, (16)
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where X~, is the ground state of positronium. Here r2

is the electron and r~ the positron coordinate, both
taken relative to the in6nitely heavy proton. They are
given in terms of the alternative coordinates by

where the sum runs over all the open positronium
channels. Then a suitable trial function for the energy
region below the eth level of positronium is

r&
——R+ r/2,

r2= R—r/2.
(17)

The functions I), and ~z satisfy a homogeneous inte-
gral equation' with eigenvalue X. Their only property
which is relevant here is that they vanish exponentially
as their argument becomes large. The projection opera-
tor given by (16) projects out the ground state of
hydrogen and the ground state of positronium. It may
be used to investigate the resonance structure just
below the m=2 level of hydrogen.

As a trial function for minimizing QHQ we chose

X(l1~112m2
~

1.3E/ql2). (20)

Again minimization of (QHQ) with respect u& yields an
equation which for large R becomes

(21)

where now

1
(Qc)t —— p $2l, , (r2)~l2(rl) Fl2—2(r'1)

)Im1&2rm2

8n. (n) = l(l+1)bg p+8A „, (n), (22)

X (lr~ll2r12
~
I-cVlgl2) . (18)

The variation with respect to u~ yields a complicated
equation but again for r& ~~ the equation simplifies.
The terms with I), aod eq drop out as do the overlap of
hydrogen and positronium wave functions. The result-
ing equation is identical with that for electron hydrogen
scattering except that the sign of A~~. is changed. This
does not affect the eigenvalues of the matrix 8~~ so the
resonance spacing formula is the same as for the electron-
hydrogen case. This, of course, does not mean that the
resonances fall at the same positions. It is easily showo
that the positron resori, ance spacing formula below the
high e thresholds is also identical with that obtained in
the electron scattering case.

We may also investigate the regions below the posi-
tronium formation thresholds. The projection operator
is much more complicated than (16) when higher states
of hydrogen and positronium are included but again in
the limit of large R (i.e., when the positronium atom is
far from the proton) great simplification results. In
eGect, the projection operator becomes

X.(r) = (1//8)y. (r/2) . (23)

The factor of 8 in front of A in (22) results from the
mass of positronium (2m) and the fact that the dipole
matrix element of positronium is twice as large as that
for hydrogen. The parameter b(e) which enters in the
spacing formula (12) is again obtained from the negative
eigenvalues of B~~ . For m= 2 the negative eigenvalue is
b(2) = —L(1+ (24)')'~' —1]~23.For e=3 the equation
determining the eigenvalues is b' —8b' —5172b+ (144)'
=0 which has one negative root b(3)~ 70—

These results depend on the existence of degeD, crate
eigenfunctions of diGerent angular momenta. So there
are no resonances of this sort below the n=1 posi-
tronium formation threshold. A resonance in this energy
region may exist but this must be explored by detailed
numerical calculation.

where the matrix 3 is identical with the electron
hydrogen case. For I.=O it is given by (11).This rela-
tion to the electron matrix element is obtained from
the scaling relation

P=b(R —R') p x„(r)x„*(r'), (19) 8 Such a calculation is presently in progress, A. Temkin and
A. K. Bhatia (private communication).


