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Detailed results are presented of machine calculations of the Landau level structure and transition matrix
elements for InSb near the center of the Brillouin zone, for magnetic fields in the $1007 direction, and under
conditions typical of valence-band cyclotron resonance and interband magneto-optical experiments. Effects
of inversion asymmetry arising in the zinc-blende structure are included. The theoretical conduction-band
combinational resonance spectra of Rashba and Sheka are confirmed and extended to the nonparabolic-band
model. The results show good agreement with the recent interband magneto-optical observations by Pidgeon
and Brown. Different heavy hole "masses" are predicted for valence-band cyclotron resonance under dif-
ferent experimental conditions. Some of these coincide with reported experimental results. Details of the
predicted spin-split zero-field band structure in the (110) plane are given.

I. INTRODUCTION

'HEORETICAL band-structure models for the
III—V compound semiconductors' that crystal-

lize in the zinc-blende structure have been derived from
related band structures of Group-IV elements, crystal-
lizing in the diamond lattice, by perturbation methods.
The perturbation in question arises with the lifting of
the inversion-symmetry degeneracy of the diamond
lattice. Thus a zero-order approximation to the Landau
level structure of InSb in a magnetic field is provided
by that of Ge' ' with suitably modified parameters. This
approximation has been used, for example, in in-
terpretations of experimental magneto-optical4 and
cyclotron-resonance' results in InSb. An effective-mass
treatment of the conduction band which includes both
magnetic field and inversion-asymmetry effects up to
terms of order k' has been developed by Rashba and
Sheka' and applied by them to problems of "combina-
tional resonance" in InSb. ' An improved treatment of
interband effects has recently been given by Pidgeon
and Brown, ' to whose paper we refer for a recent sur-

vey of that area.
In this paper we present the results of machine cal-

culations of the Landau levels, and interband and intra-
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band matrix elements near the center of the zone in
InSb. In order to minimize the amount of computa-
tion involved, a single fixed direction of magnetic field
is chosen, namely, parallel to the crystalline (100) axis.
The small energy separation of the conduction and
valence bands at the center of the zone forces an accur-
ate treatment of these levels. Using a slight modifica-
tion of the method of Kane, ' the mutual interactions of
these bands are written down to second order in all the
perturbations, and the complete matrix which results
is diagonalized exactly. At zero field the bands ob-
tained exhibit explicitly the splitting of the spin de-
generacy for general points in the zone, due to the in-
version asymmetry. At moderate fields, the valence
band exhibits the complex behavior anticipated by
Dresselhaus. "

II. THE HAMILTONIAN

The Hamiltonian of the magnetic-field, problem with
spin orbit coupling is

1 eA)'
se= p ——

~

2m ci
Ii f eA)- e

+ VU)&~ p ——
~

e— o H. (2.1)
4msc' k c ) 2mc

The field is tak.en to lie along the s direction, and
adopting the Luttinger-Kohn" representation, the
eigenfunctions may be written' "

+,= Z ~'-. """+""f-(~)4'( ). ( )
2 f 72

The f are harmonic-oscillator functions of the trans-
verse coordinate. The p; are the Bloch band-edge
functions e„s(r), and at the center of the zone belong
to the five representations (Dresselhaus") 1'& through
F5 of Td. Explicit band-edge functions may be con-
structed from appropriate pairs of the cubic lattice-
harmonics, " one from each of the ten representations

9 E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957)."G. Dresselhaus, Phys. Rev. 100, 580 (1955)."J.M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
"V.Evtuhov, Phys. Rev. 125, 1869 (1962)."D. G. Bell, Rev. Mod. Phys. 26, 311 (1954).
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FIG. 1. 8&&8 Hamiltonian matrix.

of the full cubic group. Certain terms of (2.1) are re-
garded as perturbations on a soluble Hamiltonian. Matrix
elements of (2.1) between the bands of direct interest are
calculated in zero, first, and second. ord, er in the per-
turbations, and. the eigenvalues found by the secular
determinant method. To second order the (mk) element
of an approximate Hamiltonian matrix is A=(—ay, o, o) (2 4)

As is well known, the operators in (2.3) do not com-
rnute in the presence of a magnetic Geld. Strict ad, —

herence to the above scheme, with no artificial sym-
metrization, leads directly to the antisymmetrical
Harniltonian, first discussed by Luttinger. Using the
Landau gauge,

a„„&»II„,&»

+& ~"'+& s'". (2 3) Evtuhov" has derived the Schrodinger equation in the
band-edge functions. In Evtuhov's notation,

n Hy;
h' h h2

P P n; f„— V P;+V(r)P; +n, f LVVXpj nP, +P P n;tV.UXk'f. j nP; n;.f. —
n — 2m 4m2C2 n 4m2C2 2mc

It2 ih2
+Z Z n'. 4' &'f (k'f-) &4' =&—2 2 n*-f-&' (25)

2m m

where k' is the equivalent wave vector dehned by
Kvtuhov, "which reduces to k in the absence of mag-
netic field. In the following we omit the prime, since
no confusion should result.

As shown by Kane, g the term involving V'VXk' may
be absorbed into other linear-k terms which arise in
second, ord, er. The first three and the last terms of
Eq. (2.5) constitute a zero magnetic Geld Schrodinger
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CI———,
' (A+D —C——',B),

DI A+ C——D ',—B, —-
H6 2(H2———H3),

(2.7)

(2.g)

(2 9)

4m'c' ~&

&xl p. I «(nl)&(F4(«) 1'[ v vxp ~ [x1&

(2.10)

E, is the observed. energy gap, and is equal to the energy
E» defined above, apart from a negligible second-order
spin-orbit term due to interaction with F5 levels. The
following abbreviations are used:

-5

g 3
r4

J6=2(Jg+J4), (2.11)

and H3 is a similar expression with F4 replaced by F5,

equation including spin-orbit coupling but without the
lr y perturbation of band theories. The eigenfunctions of
the zero-order equation are representations of the double
group, which could be taken as a basis for a treatment
which regard, ed the remaining terms of (2.5) as per-
turbations. In the present case, the algebra is appreci-
ably reduced if the representations of the single group
are chosen as a basis, i.e., the zero-order Schrodinger
equation is taken to be given by the first two terms
together with the last term of (2.5). This may speed up
or slow down convergence of the machine diagonaliza-
tion of the final matrix, but otherwise does not con-
tribute significantly to the accuracy or otherwise of the
final results. The basis chosen is thus represented, by the
eight functions

J3=
Sm'c4 ~&

zt I vvxy ~l r, (nl&t'&[2

jvp jv
(2.12)

li' [(Xt'[VUXp. [F ( l)$)['
J4——

j.6nz4c4 ~& jv p jv

Jv= Js—J4+ 3~,

Hv ——Hg —H2 —H3,

(2.13)

(2.14)

(2.15)

Ep—E„
= —2E2, (2.16)

where E2 is the coefficient defined by Kane. ' C» is re-

X10

a2 &vy[p„[r (nl) t&(r (nl)$[vvxp a'fzt&
H, =

2&3m'c' «

S)SJX)V)Z/XJ, V/ZJ, . (2 6)
- 25

The 5 represent the I"»-type conduction-band spin-up
and -down functions and the I, Y, and. Z represent the
F4 functions (mainly p type) from which the valence
bands derive. The approximate zero-order energies of
these states (Kane') are E,=Er, the measured band
gap energy, and E~= —~3k, where 2 is the observed
spin-orbit splitting in the solid. . In accordance with
(2.3) we write down the first and second-order inter-
actions between the above basis functions for each of
the "perturbing" terms of (2.5), i.e., the third (spin-
orbit), fifth (Zeeman), sixth (k squared), and seventh
(k p perturbation). Second-order matrices are con-
veniently generated. by calculating matrices of these
four interactions between the eight basis functions and.
higher and lower F» through I'5 band edges, and multi-
plying out the relevant pairs of matrices. The final
8XS Hamiltonian matrix, to terms in second order, is
shown in Fig. 1.

In Fig. 1, the coeKcients A through G and. the matrix
element I' are identical with those d,efined by Kane. '
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lated to u ingd I ttin er's' antisymmetric coiistant E;
2mc

k,k =-'(kA +k„k ), etc., and Lk„k„]=k,k„—k„k„v 2k v

etc. Finally,

—&2=&~=~&(X&IVVXp trI F1')/4m'c', (2.17)

k+=k &ik„. (2.18)

III. ESTIMATION OF PARAMETERS
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In the absence of a complete self-consistent solution
o ezf th zero-field band structure, we rely on experiment
for estima es o pt f the parameters used above. ro

ane' arrive at aobserved conduction-band mass, Kane' arrive a a
vaue o 0.44 a.u. for the square of the matrix element
I". His estimate of the spin-orbit sp i ing
center of t e zone,h 0.9 eV appears to be as accurate as
an other' 4 '4 and is used here. Bagguley et ul. ' deduce
other parameters from cyclotron-resonance measure-
ments on p-type InSb. These were: P =

still lower, at a oub t —4.2 Ry. The lowest conduction
an, arising romb d,

' '
from Ss functions, is assigned F& symmetry.

educed fromA F4'band lies at about +0.25 Ry, as deduce rom
n order to account for

we tentatively
refIectance measurements. n
cyclotron resonance measurements we

1 1 t +0.5 Ry. This is not incompatible
with t e eve s oh l ls of the empty cubic lattice. F& an
levels probably arise at energies of +1 Ry or ig er.

fi t th t the value of the coefficient C is
s uare ofconfirmed by the optical measurements. The square o

the momentum matrix element
'
in the numerator, for

Ge, is a out e,b t 15 eV" and should be close to this in
ominator from

the optical gap, is —3.4 eV for InSb, and the ratio is
there oref e —4.4. This may be compared with a C

onance ofcoe cien es iffi
' t t'mated from cyclotron resonance o

—4.7+10%. Assuming a representative vaue or
square of the matrix element (SIp, I

F4) of 10 eV, and
E —E(F4)= —3.4 eV, we have a valuean energy gap 0

—
4 ———.

elfor the coe cien w
'

ffi t F which is the ratio of these, name y,
eof 15 eVP= —3.0A'/2m. Using the value given above o e

f h of (F4Ip, IX) and the same energy gaport esquaeo
yie savld a value for the coefficient G of —3. m.

H we haveAs regards the coefficients H&, H2, and H3,
increased Kane's estimate of E~ ————,

'= —-'ll, ) to take into
account the fact that the In 4d band is found" to be
much closer than estimated by Rane, ' and that inter-
actions wit o er

'
h th F levels are also present. n com-

r erof10'b' '
n these effects may raise H& to the order oination, ese

ntributionsa.u. Part of this increase is cancelled by cont
'

from the F4 levels which complete the fivefold de-
generacy o t e pareng f h t d levels. The F4 contributions

d b b the coefficient H2. We haveare represente a ove y
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FIG. 8. Matrix of Fig. 1 in terms of raising and lowering operators.

following Luttinger. ' For a magnetic field in the z
direction,

We write
iTk. ,k„j=eH/hc =s. (5 1)

k,= —(a++a )(-',s)'", k„=i(a+ a)(-',—s)' '7,

k, =dgs (5 2)

{k,k„)= i (a+' —a')-,'s-

Energies may be normalized to the unit

-'kpp = k' /2sm,

(5.3)

(5 4)

which is factored out of the Hamiltonian. The remain-
ing 8)(8 operator Hamiltonian is shown in Fig. 8.
The following substitutions and abbreviations have
been made there:

P& yd/V2+ p/(——2s)'7' Pp yd/K2 p/(2s)'—"— —
Pp H/(2s)'7' vd——/V2, P4=—H/(2s)'7'+7d/W2,

P4 Hd/(s)'~'+j /s, ——P4 Hd/(s)'7 j /s,—— —

Q p P+n'/2—+—Pd'+1/gd/(s)'" $/s, —

Q4 =P+n'/2+Pd'+ 1 gd/(s) '7' p/s—,
—

Q 4 =P+n'/2+Pd' 1—5/s ——t d/(s) "2

Q7 P+n'/2+PdP —1—g/s+ t d/ (s)~tP

Qp= p+ (n'+p)d'+1 —4'7/s,

Qp
——P+ (n'+P) d' —1—8/s,

Q, =p+ j/s,
Q»=& —j/s.

(k'/2m) f=P+ k'/2m, (k'/2m)P =C+D+ k'/2m,

(k'/2m)y =2G, (k'/2m)n= 2+8+k'/2m,

(k'/2m)7 =Dg,

(k'/2m)f=Hp,

(k'/2m) p =P,
(k&/2m)H =H„
(I4'/2m) s =a,

We also use
Qi= f(1+d')+1+ep/s,
Qq ——f(1+d') —1+ / e. ps

(k'/2m) j= J7,

(k'/2m)8= —Ep—Jp,

(k'/2m) pp
——Ep,

(k'/2m) p =C4,

As we have said, the matrix of Fig. 8 is intended to
operate on wave functions which are expressed as
infinite series of harmonic-oscillator functions, to pro-
duce for diagonalization a matrix of dimensions ~ by

The development of this matrix is treated in
Appendix II.



752 1&. L. BELI. AND K. T. ROGERS

2400 . 2400

2300- 2300-

2200- 2200-

E
C4

Ll.
O
Ch

LLL

LLf

2IOO-

0--

MATRIX I

2IOO--
hJ

CQ

P-
U
O
CAI-
z' 0--
D

C9
K
LLI

LLI

MATRIX 2

-IOO -IOO--

-200- -200--

-500
0 0.5 I.O 2.0

-300
0 0.5

I

I,O

kN(IN UNITS OFgeB/%) k& {IN UNITS OFJeB/'h)

Fro. 9. Landau levels of InSb, HI pp= 20 kG: (a) matrix 1, (b) matrix 2.



MATRIX- I

IOO-

"A»AAU LEVELS MAGN ETp-AgSpR PTIP N I N I nSb

-0

10'

FIG. 10. Valence-band
fI Sb H 100=1 kG, matrix 1.

E -IOO-
OJ

4
O
CA

C9

~ -200--
LLI

-20'

-300

-50'

-400-,
0

I

4 5
I

k

6

H
(UNITS OF VeB&h)

IO

Operation of H'
be broken down

' ses:
on the sum.;...3,1.„„ses: operation on the ex-

or generates a
ion

f b

- g
g

H'=—

VI. MATRIX ELEN

n the presence of a magnetic fiegnetic field described b the

na produces a e ta ertur ation

II'= —(e/m)A, (~—eA,), (6 1)
where

The spin-orbit contrib
'

c

(6.2)

e s —
'

contribution to m c
pproximation W

'
riting

can be negle t d
'ce ln

~= p+he X V'V/4m'e'.

(6.6)
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(6 4)

a f = (e)'"f„ i, —

a+f„=(n+1)'~'f„+g.
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Gathering terms therefore we have finally

H'= —(e/nz) fA,p.+A+(p A(s)'"a )—
+~ (p+ &(~)'"a+)}, —(6 7)

where the p's operate on the band edge functions and
the c's on the envelope functions, respectively. As
shown in Appendix I, for a simple (Kramers-degenerate)
band, the intraband matrix elements of p are propor-
tional to those of a, and the effective-mass approxima-
tion is recovered. The matrix elements displayed below
are appropriate combinations of p+, a+, as they appear
in (6.7).

VII. LANDAU LEVELS

Results are presented here for two values of field
only; 20 kG, representative of high-6eld cyclotron reso-
nance at millimeter wavelengths, and of interband
magneto-optical experiments, and 1 kG, representa-
tive of low-field cyclotron resonance. The full Hamil-
tonian of the previous sections is truncated to 240&(240
and diagonalized for different values of k„ to yield
the diagrams of Figs. 9 through 11. The complete

matrix decouples into two separate matrices of 120
&(120. To minimize confusion, the results of diag-
onalizing matrix 1 and matrix 2 are shown separ-
ately. For the 1 kG results, the conduction bands are
omitted from the diagrams since these are of minor
interest. Truncation of the matrices at an arbitrary
point introduces an unknown error into each level.
Fortunately, the nonzero elements of the Hamil-
tonian matrix occupy a narrow band close to the
diagonal, so that the error is small except near the
truncation point. The error may be estimated by
truncating more severely, say to 80)&80, and com-
paring the results with the 120)&120 diagonalization.
The results show that the first 60 levels from each
120&&120 matrix are quite reliable, and certain of the
later levels may be fairly accurate. A test was devised,
based on the Levi-Hadamard theorem' in the theory
of matrices, which gave an upper bound on the error
incurred in the truncation procedure. While indicating
gratifying accuracy for the conduction-band, levels,
this test tended to disqualify many of the valence-band,

'8 E. Bode@rig, Matrix Calculus (North-Holland Publishing
Company, Amsterdam, 1959), 2nd ed. , p. 67.
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levels validated by the "second truncation" test.
Levels of doubtful accuracy are shown dashed in the
figures.

To obtain the Ggures, the energy-level spectrum is
calculated for different regularly spaced values of k, .
The computer program causes a print-out of the wave
function constitution for each datum point. Straight
lines are used to join up points of corresponding wave
function, to give an impression of the band structure,
without arti6cial smoothing, however. The coarse
spacing of the points in k, may give a false impression
of certain detail, for example, the light-hole bands
should clearly meet the central axis at right angles.

Figures 9(a) and 9(b) show band detail near the
center of the zone only, for comparison with results of
transition-probability computations presented below.
Energy-level computations extended in k space well

beyond the valence-band maxima show that the heavy-
hole bands exhibit the same general behavior at 20
kG as those calculated by Evtuhov" for Ge. In par-
ticular, the Landau level crossing and the presence of
maxima away from kJI ——0 are observed in both cases,
presumably owing to valence-band warping. The effects
of the linear-k terms peculiar to the zinc-blende struc-
ture are more prominent at low magnetic fields (Figs.
10 and 11).

VIII. CONDUCTION-BAND COMBINATIONAL
RESONANCE

The absolute values of the matrix elements for the
dominant transitions among the lower levels of the
conduction band, at 20 kG, and for positive, negative,
and longitudinal polarization of the electromagnetic
iield, are shown plotted (in units of P) on a logarithmic
scale in Fig. 12. Qualitatively similar results are ob-
tained for a j. kG Geld. The abscissae of this and all
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Fxa. 13. Interband matrix elements in atomic
units —longitudinal polarization.

subsequent figures give the g values for the transitions
(or alternatively, energy difference in units of heB/2m').

The nonparabolic nature of the band causes a dis-
persion of the points for a given series along the energy
scale, and the "series limits" are indicated by arrows
in the Ggure. Owing to the zinc-blende inversion-
asymmetry terms in the Hamiltonian, weakly allowed
electric dipole transitions involving spin changes are
observed. Electric dipole transitions for negative circu-
lar polarization are seen at the spin-resonance energy
M, (cf. the positive circular polarization required for
magnetic dipole transitions) at the cyclotron resonance
energy A~, and the combinational energy 7i(2~,—ao,).
For positive circular polarization, transitions occur at
3ha&. and at A(2'.+~,), and for longitudinal polariza-
tion (E~i$0) at A(~,—co,), h(~, +&a,), and 2hco, . Such
transitions have been considered in the effective-
mass approximation in a series of papers by Rashba
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and co-workers. ' ' The $100) magnetic-field direction
chosen in this paper selects out the peak of the Oyz

function of Rashba and Sheka, ' all other angular
functions being zero for this orientation. The selec-
tion rules exhibited by the transitions in Fig. 12
are in accord with the results of Ref. 6. At the same
time the square roots of the relative intensities of
the lines at cv„~.—or„a&.+co„2a&,—~„and 2&v, +a&,
should be in the ratios 0.695:0.0:2.0:2.23:0.89, which
are in satisfactory agreement with the "series limit"
points in Fig. 12.

By successively setting the coefFicient G and the
coefficients of the "linear-k" terms in the Hamiltonian
equal to zero, it is found that the transitions at co, and
2',—co, are caused predominantly by G, those at 2', and
2~.+~. by the linear-k terms of the valence band. As

might be expected, the cyclotron resonance matrix
elements, and those of the 3cu, transition (see Appen-
dix I) are unaffected.

For a simple parabolic band, the cyclotron resonance
matrix elements would increase as e'" where m is the
Landau number of the upper state. Because of the
nonparabolicity of the band, the matrix elements at
20 kG rise much more slowly than m'", reflecting the
steady increase of m~ away from the band edge.
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tion is clea, rest for the parallel case (Fig. 13) and good
agreement is observed if the experimental line spacings
are uniformly stretched by 6%. The present computa-
tion appears to yield an electron mass 6% low, because
of an overestimate of the matrix element P. The cor-
rected value of P' is 0.436 a.u. The same stretching has
also been applied to the transverse-polarization case
(Figs. 14 and 15). In comparing the computed with the
experimental results it should be noted that the relative
densities of states will tend to emphasize heavy-hole
transitions over light-hole transitions in the experiment.
Because of the light electron mass, the exciton binding
energy corrections" for the heavy-hole transitions are
small, uniform, and probably unobservable. The cor-
rections for the light-hole transitions produce no signi-
ficant change in the fine structure of the figures (es-
pecially in the "quantum levels" where the longitudinal
masses are still large —see Fig. 9), and have therefore
not been included.

In labelling the interband transitions, it is natural to
attempt an interpretation in terms of the well-known
nomenclature for Ge.' ' ' This meets with the difFiculty
that the diagonalized energy level scheme for the zinc-
blende valence band represents a large perturbation
from the corresponding scheme without the inversion
asymmetry terms (the "quasi-Ge" model), arising as
follows. The valence bands in the quasi-Ge model are
closely spaced in energy, with splittings proportional to
magnetic field B.The perturbing terms while small are
in general still appreciable compared with these split-
tings. The linear-k terms have matrix elements pro-

IX. INTERBAND TRANSITIONS

Figures 13, 14, and 15 show the magnitudes of some
of the computed matrix elements for interband absorp-
tion of radiation of parallel, positive-circular, and
negative-circular polarization, respectively. Line posi-
tions from the experimental results of Pidgeon and
Brown' are also indicated in the figures. The interpreta-

X
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FIG. 25. Interband matrix elements in units of
P—negative circular polarization.

"R.J. Elliott and R. Loudon, J, Phys. Chem. Solids 15, 296
I,'2960).
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portional to 8'" and e'", whereas the matrix element 6
generates matrix elements in the reduced Hamiltonian
proportional to 8 and e, approximately. These connect
nearby eigenstates of the quasi-Ge model and are found
to produce splittings and shifts which are of the order
or larger than the original splittings, particularly for
low fields and/or large N. A low-order perturbation
treatment would be valid therefore only close to the
band edge used at high magnetic fields. In practice,
exact diagonalization of the perturbations produces
considerable intermixing of the quasi-Ge eigenfunc-
tions, and consequent modifications in oscillator
strengths and expected transition schemes. Simul-
taneously, the mixing introduces some ambiguity into
the parentage of the final levels, and labeling in terms of
the parent scheme is no longer unique. In the present
instance we have used a correspondence which comes
close to minimizing the number of "forbidden"
Art=&(1,3,5) interband transitions while preserving
the energy ordering in the heavy- and light-hole ladders.
Some violence is done, however, to the wave function
envelope index e, which no longer bears a useful rela-
tion to the harmonic-oscillator composition of the final
wave function.

In the present problem, diagonalization of the separ-
ate matrices 1 and 2 generates two independent sets of
levels. Selection rules for electric dipole transitions are
that "transverse" polarizations generate transitions
from set 1 to set 2, whereas "parallel" polarizations
generate transitions which occur within sets 1 and 2
separately. In Luttinger's (Ge) nomenclature, set 1
contains n0, n2, n4, etc., and P1, P3, P5, etc., as well as
b0, b2, b4, etc., and ai, a3, u5, etc. ; set 2 is comple-
mentary to the above. The selection rules are then that
for transverse polarization, the interband transitions
b+n and a+p have d,tz=&(1,3,5,etc.) and b+p and a+rr

have hn=&(0, , 264, etc.). For parallel polarizations,

l I I I I IIII
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FIG. 17. Valence-band absorption matrix elements —negative
circular polarization, 20 kG, units of P.

a+n and b+P have htz = & (1,3,5, etc.) and b*n, a+P have
Arz=&(0, 2,4,6, etc.). These rules include the Ge-like
allowed transitions, the "warping induced" transitions,
and also "Ge-forbidden" transitions Atz= & (1,3,5, etc.)
due to the center of inversion asymmetry, which we have
labelled "symmetry-induced" in the figures.

The above correlation of the present computation
with experimental results of Pidgeon and Brown' sug-
gests a conduction-band edge "interband" effective
mass of m, =0.0139m and a corresponding "interband"
light-hole mass of 0.0152trt (cf. the hole mass of 0.0159rw
obtainable via the electron mass from Kane's simpli-
fied treatment'). By comparison, intraband measure-
ments" yield a band-edge value of 0.0145m at 77 K.
Owing to a region of negative thermal expansion at low
temperatures, "the dilational contribution to the change
in bandgap' between 4 a,nd 77'K will be small. Similarly,
the calculated polaron corxection23 for the intraband
electron mass is also small —of the order of 0.5%. An
apparent discrepancy of the order of 4% remains be-
tween inter- a,nd intraband measurements of the elec-
tron mass, due possibly to strain and/or anisotropy
effects.

+
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FIG. 16. Valence-band absorption matrix elements —positive
circular polarization, 20 kG, units of P.

X. VALENCE-BAND CYCLOTRON RESONANCE

Logarithmic plots of matrix elements for absorp-
tion of positive and negative circular polarization in
valence band transitions are shown (in units of I')
in Figs. 16 and 17, respectively, for a field of 20 kG in

"E.D. Palik, G. S. Picus, S. Teitler, and R. F. Wallis, Phys.
Rev. 122, 475 (1961).

e' S. Novikova, Fiz. Tverd. Tela 2, 2341 (1960) i English transl. :
Soviet Phys. —Solid State 2, 2087 (1961)j.

e' S. D. Smith, C. R. Pidgeon, and V. Prosser, in Proceedrrsgs of
the International Conference on the Physics of Semiconductors,
Exeter, 196Z (The Institute of Physics and The Physical Society,
London, 1962), p. 301."T. D. I ee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953),
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Fro. 18. Valence-band absorption matrix elements —positive
circular polarization, 1 kG, units of I'.

the $100j direction. The large field is not inappropriate
for heavy-hole cyclotron resonance at millimeter wave-

lengths. Plots for a 1-kG field (Figs. 18 and 19) are
shown for the k, =0 region. Although this does not
qualify as a "band edge" position, densities of states
will generally be highest at this point, so that this will

be the region observed experimentally. An impression of
the expected cyclotron resonance spectrum may be
gained by imagining a base line sloping upwards from
left to right at about 45 in the figures. This takes
roughly into account the varying energy denominator
and densities of states which enter into the transition
probability. The spectrum may then be estimated by
integrating the density of points by eye, relative to this
base line.

Figures 18 and 19 display transitions (circles) which

involve states close to the top of the valence band, and
which might be observed therefore at helium tempera-
tures. Structure which would be interpreted in cyclo-
tron resonance as a positive mass hole resonance would.

be expected at m*=0.15m and a negative mass hole at
m*=0.14m, with isolated lines at higher mass numbers

up to 1.6m. These results may be compared with ex-

periments reported. by Dresselhaus, Kip, Kittel, and
Wagoner, "in particular a hole mass of 0.18m at 1550 G
(24 lcMc/sec). The strong band of light-hole transitions
at m~=0.0143m will not be observed at helium tempera-
tures in lightly doped p-type material since, as is clear
from Fig. 10, the light holes will be frozen out at tem-
peratures below 10 K. This is in fact observed" in
the disappearance of the light-hole signal in this region.
This possibility provides a direct experimental method
of estimating the magnitude of the linear-k coefficients,
since these enter to determine the energy difference be-

"G. Dresselhaus, A. F. Kip, C. Kittel, and G. Wagoner, Phys.
Rev. 98, 556 (1955).

"M. L. A. Robinson (private communication).
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FIG. 19. Valence-band absorption matrix elements —negative
circular polarization, 1 kG, units of I'.

"R. A. Stradling (private communication).

tween the edge of the valence band and the lowest
light-hole level. On applying the 6%%u~ correction factor
of the previous section, the band, edge light-hole mass at
low field is found to be 0.0152m. This may be compared
with cyclotron resonance measurements of Bagguley
et a).' and a more recent measurement of Stradling, "
yielding light-hole masses of 0.021~0.005m at 20'K
and 0.0202~0.0015m at 77'K, respectively. Allowing
for nonparabolic effects, the latter value indicates a
band-edge light-hole mass in the region of 0.017m.
Again the applicable band gap and polaron corrections
are negligible, and the difference may be attributed to
parameter uncertainties and the considerable experi-
rnental difhculties. Figures 18 and 19 show that as the
temperature is raised (crosses) the heavy-mass cyclo-
tron resonance spectrum at low fields will become a
broad featureless band of absorption, apparently
covering the mass range from 0.06 to 1.6m.

In Fig. 16 the light-hole line is shown dispersed by
the nonparabolicity of the band, having a series-limit
mass of 0.016m in agreement with the results of Pidgeon
and Brown. ' However, application of the correction to
I' d,iscussed above would. raise this to 0.017m, in better
agreement with cyclotron-resonance results. A similar
series of transitions is seen for the light-hole spin reso-
nance, having a limit in the region of g=70. In these
plots, the relevant energy levels are taken deep into
the bands, so that they represent a fairly high experi-
mental temperature, of the order of 100'K. Figure 16
shows that positive mass hole resonances are expected
in the neighborhood of m~ =0.095m and m*= —0.4m,
respectively. Other isolated lines may be observed at
relatively high mass numbers. These results can be
compared. with experimental heavy-hole masses' '
of 0.34+0.03m and 0.32m for the t 100j direction. It is
clear from the figures that the dispersion of the lines
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and, the variation of the spectrum with variation in
temperature will give rise to complex behavior which
could, if interpreted in terms of a few isolated lines
broadened by collisions, lead to erroneous concIusions
on line-broadening mechanisms and their relative
strengths. The polaron effective-mass correction is of
the order of 0.5% for electrons and light holes, 2.5%
for mass 0.32, and 4.4% for mass 1.0.

XI. CONCLUSIONS

Sample machine calculations of Landau levels in
InSb for one magnetic-field direction have demon-
strated the complexity of the valence band level struc-
ture, ' and accounted approximately for the diverse
experimental results'''4 on heavy-hole masses. The
calculated matrix elements for interband and intra-
conduction-band transitions in the model used are in
satisfactory agreement with other experimental and
theoretical results' "where these overlap. Comparison
with the experimental interband spectra' gives for
band edge electron and light-hole masses m, *=0.0139m
and mi. i, .*=0.0152m, respectively. The corresponding
value of the parameter P' is 0.436 a.u. , assuming an
energy gap of 0.2355 eV.

ACKNOWLEDGMENTS

~i g——ii,pi, (I l'k&Akbi, i, b«. (kl
I )= Ak.

The second term is

m2= Piipy Byi (I l k &(Ol I mI lo)(kl
I )

=Z«(or I
~ Ilo&&~(l vk&(kll &

(A5)

(A6)

The eigenstates of the spin-orbit coupled problem can
be chosen so that the application of a magnetic field
causes no intermixing of band-edge functions to first
order. In this case the expansion (A2) contains only one
important / value. If we consider intraband transitions
therefore, m2 is zero, since x~~=0. The third term is
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For intraband transitions, the only term of significance
in (A7) is that for /=/'. From the L Ksum rule-s,

The expansion for (+rial%'~& breaks into three main
terms. The first is

(A4)

which is approximately
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One result of the above analysis is that the matrix
elements for intraband transitions between Landau
levels are due mainly to "optical" transitions, with the
selection rules an= &1, &3, etc. Here we employ the
Luttinger-Kohn analysis to justify this to order k'.

The velocity operator associated with the Schrodinger
equation including spin-orbit coupling is

m/m= y/m+AeX V V/4m'e' (A1)

and the time-dependent perturbation operator for
small steady applied magnetic fields is approximately—meAi/m. We expand the initial and final states of the
magnetic field problem in terms of Bloch functions

I lk) =N~i(r)e'~", for example,

I+ &=2 ~ l~k&(@l&. (A2)

The Bloch functions have their own expansions in
terms of J.-E band-edge functions, the transformation
arising principally through the t ~ perturbation. To
first order,

For an isotropic band,

~re = Akron(m/m*). (A10)

In more general terms, the k m perturbation acting
between band edges of opposite parity is responsible
for light effective masses in solids. In the effective-mass
approximation, a given Landau level of say the con-
duction band in InSb will consist mainly of s-type
atomic functions modulated by some harmonic-oscillator
envelope function of order N. The k m perturbation will
admix an appreciable amount of p-type character
from the valence bands. In order to preserve the original
parity of the original level, these admixtures of opposite-
parity atomic functions will be modulated with en-
velope functions of parity (defined by their order)
n&1, n&3, n~5, etc. A given Landau level in a light-
effective-mass band therefore will consist of mixtures
of opposite-parity atomic functions modulated by
opposite-parity envelope functions. As shown above,
the principal mechansim (by a factor m/m* —1) for
intraband transitions in such a case are "optical" transi-
tions between the atomic functions. The selection rules
for electric dipole transitions between Landau levels
will therefore clearly be An= &1, &3, &5, etc.
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APPEN'DIX II

Here we give a prescription for the generation of an
approximate ~ by ~ matrix from the operator matrix
of Fig. 8. This is developed by operating with the 6nite
matrix on envelope functions whose order lies in the
neighborhood of a general function of order e, and
generating the infinite m.atrix by specializing this in
turn to the cases v=0, m=1, ~.The presence in the
operator matrix of Fig. 8 of terms in a', u, u', e+, and
a+' involves envelope functions of order e—2, n —1, e,
gg+1, and 4g+2 Th.us the generating matrix becomes
40)&8 rather than 8&&8. Instead of writing this out in
full, we give an alternative prescription for generating
the same infinite matrix using fewer terms than the
original derivation, taking advantage of the fact that
the 6nal matrix is Hermitian. First construct an 8)& ~
matrix consisting of all zeros and add in the following
elements:

(1,1)=2ggf+Qi,

(1,5)= —gP~/(~) "'= (2,8)

(1,11)= iPg(N+1)' '= (2,14),

(1,12)=Pi(n+1)'"= (2,15),

(1,21)=—', iy((n+ 1)(4g+ 2)) '~' = (2,24) = (5,17)= (8,18),

(2,2) = 2Nf+Qg )

(3,3)=4g(2P+4g')+ Qg,

(3,4) = —iQg,

(3,8) =P„
(3,9) =iPi(gg+1)' '= —(6)10) )

(3,13)=Pg(gg+1)' '= (5,11),
(3,14)= l'((gg+ 1)/2s)' '= —(4,15)= (6,11)= —(7,12),

(3,15)= iH(2(n+1)/s)'~'= (4,14),

( )=-'~'((~+ )(~+ ))'"
=—(4,20) = (6,22) =—(7,23),

(,2o)=-' ((~+ )(~+ ))"'=(4 )=(, )=(, ),
(4,4) =gg(2P+a')+Q4,

(4,8) =gPg,

(4,9)=—Pg (4g+ 1)'~g = (7,10),
(4,13)= i—P4(N+1) "'= (5)12),

(5,5)=2ggP+Qg,

(5,6)=Pg,
(5,7) =iPg,

(6,6) =n (2P+44.')+Qg,

(6,7)= —gQ„,

(6,16)= —P4(n+1)"'= (8 14)

(7,7) =N(2p+n')+ Q7,

(7,16)= iPg(gg+1)"'= (8 15)

(8,8)=2lp+Qg,

(' ")=&('("+')/')"'
This matrix, with m= 0, 6lls the 6rst eight rows of the

in6nite matrix, the corresponding block, moved eight
positions parallel to the diagonal, is occupied by the
above with m= 1, and so on. The lower diagonal half of
the matrix is filled by taking the Hermitian conjugate
of the triangular matrix generated.

Inspection of the final form shows that it can be
rendered real by considering the basis to consist of
purely real and purely imaginary wave functions, in-
stead of being all real, as implied by the foregoing. The
scheme is as follows. The basis falls naturally into
groups of eight. In the odd groups of eight, the second,
fourth, fifth, and sixth members are multiplied by
(—i). In the even groups, the first, third, seventh, and
eighth are multiplied by (—i). This corresponds to a
unitary transformation by a diagonal matrix in which the
diagonal terms are, respectively, 1, —i, 1, —i, —i, —i,
1, 1; —i, 1, —i, 1, 1, 1, —i, —i; andsoon. Examination
of the resulting matrix reveals that it can be considered
as two decoupled matrices (as in Evtuhov's work").
The 6rst of these consists only of elements coming from
rows and columns 1, 5, 6, 7; 10, 11, 12, 16, etc. , from the
original matrix. Similarly, the second matrix can be
generated by choosing only elements from rows and
columns 2, 3, 4, 8; 9, 13, 14, 15, etc. This allows the
diagonalization of twice as large a matrix on a given
machine as would be feasible without decoupling.


