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Expressions have been derived for magnon-phonon scattering relaxation times for different cases as a
function of temperature and wave vector using the theory of Sinha and Upadhyaya. The appropriate re-
laxation time is used in the determination of the effective relaxation time for magnons, and the thermal
conductivity of yttrium iron garnet has been calculated in the temperature range 0.5 to 20'K using a quad-
ratic dispersion law for magnons and a Debye spectrum for phonons.

I. INTRODUCTION
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which, for II=0, reduces to

E (0)=0.765l,kiss T'/hD. (2)

Here /, is the magnon free path and is assumed to be
constant. For a constant phonon free path /„, the
phonon conductivity is given by

Kv„(0)=326 k4tr„l'T /'hv's

where ~q is the average sound velocity.

(3)

*This work is supported by the U. S. National Bureau of
Standards.' H. Sato, Progr. Theoret. Phys. (Kyoto) 13, 119 (1955).

~ D. Douthett and S. A. Friedberg, Phys. Rev. 121, 1662 (1961).
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''N insulators the transport of energy takes place
through phonons, and heat conduction is adequately

described by the interaction between the phonons, im-

purities, and imperfections. In ferromagnetic insulators
at sufficiently low temperatures magnons can also act
as the carrier of heat energy. This possibility was in-

vestigated by Sato' in 1955. Assuming that there is no
interaction between magnons and phonons and that at
sufficiently low temperatures the mean free paths of the
magnons and phonons are boundary-limited and com-
parable in magnitude, Sato' found that the thermal
conductivity due to magnons varies as T' and is greater
than phonon thermal conductivity, which varies as T'.
Douthett and Friedberg' studied the low-temperature
thermal conductivities of ferrite crystals, which behave
like insulators at liquid-hydrogen and liquid-helium
temperatures and for which the dispersion rela. tion for
the spin-wave spectra for the important branch at low

temperatures is similar to that of a ferromagnet. Using
a magnon dispersion law h&oq=Dkq'+gPH, where the
second term is the Zeeman term, they showed that the
magnon contribution to thermal conductivity is
given by

l,ktseT' ~ PgH '1
E(H)='

3xhD ~=& kgT

If it is assumed that l„=l, and one takes v8 ——5&&10'
cm/sec, D 10 "erg cm', the thermal conductivity at
2'I& in a field of 24 kOe is expected to be reduced by
Dk/ko —0.3. Friedberg and Harris' studied thermal
conductivities of single crystals of rods of yttrium iron
garnet (YIG) in the temperature range 1.3 to 40'K and
in an external field varying from 0 to 24 kOe. They
found that if the magnetic field of 24 kOe is applied
parallel to the L1007 or $1117axis, the reduction in the
thermal conductivity in the liquid-helium region is of
the same order as mentioned above. Below 6'K,
Friedberg and Harris showed that the thermal con-
ductivity is well represented by E(0)=AT'+BT',
where the first term represents the contribution due to
magnons, and the second, the contribution due to
phonons. The constants A and 8, which are identified
as A=0.765l,kv'/ho and 8=3 26 kele„ /h' vs', are known
from the extrapolated intercept and the slope of the
plot E(0)/T' versus T. Taking vs=5&&10' cm/sec,
D= 0.83)(10 "erg cm', they obtained l, =6.0)(10 cm
and l„=5.8)&10—' cm. The assumption that the field
affects only the magnon contribution was tested by
calculating E (H)/T' with the help of Eq. (1) and
using 1,=6.0&(10 ' cm as .obtained above, and then
plotting K(H)/T' K(H)/T' v—ersus T, where E(H)
is the thermal conductivity in the presence of magnetic
field. This plot is a straight line with slope E(0)/T' and
zero intercept, which suggests strongly that E(H)—E (H) =Evh ——Eoz(0) and that Eoh is unaffected by
the field.

Similar results were also obtained by Luthi4 and
Douglass. ' The magnon contribution has been also
detected in EuS.'

The above analysis is, however, based on the neglect
of the magnon-phonon interaction, and the magnons
or phonons are assumed to be scattered only by the
grain or specimen boundaries. At temperatures above
the helium range the thermal conduction in YIG is
mainly due to phonons. In the temperature region

3 S. A. Friedberg and E. D. Harris, Low-TernperutN7e Physics
I.T8 (Butterwortb Scientiac Publications, Ltd. , London, 1963l,
p. 302.

4 B.Luthi, J. Phys. Chem. Solids, 23, 35 (1962).
' R. L. Douglass, Phys. Rev. 129, 1132 (1963).

D. C. McCollum, R. L. Wild, and J. Callaway, Phys. Rev. 136,
A426 (1964).
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where the contributions of magnons and phonons are
comparable, one cannot neglect the interaction of
magnons and phonons. In the present paper we have
obtained the expression for the frequency and tempera-
ture dependence of magnon-phonon scattering relaxa-
tion time from the theory of the magnon-phonon inter-
action discussed by Sinha and Upadhyaya. ' We have
used this relaxation time to explain the thermal con-
ductivity of the YIG sample in the temperature range
0.4 to 20'K as studied by Douglass. ' The measurements
of Douglass strongly suggest that the thermal-conduc-
tivity results are sensitive to impurities, and hence the
present analysis also incorporates the scattering of
magnons and phonons by defects.

K=K +Evt, . (4)

A calculation of the magnon thermal conductivity
has been proposed by Callaway in a way analogous to
the calculation of the phonon thermal conductivity.
The magnon thermal conductivity E is given by

k~ E ' exp(E/ksT)
E

3(2 ) i'&' Cs 7) [e p(s/a xr) —&]'

X (V,E)'r (k),)dk)„(5)

II. THEORY

At low temperatures, particularly in the liquid-helium

range, magnons contribute significantly towards the
thermal conductivity in a magnetic crystal. The total
thermal conductivity may be assumed to be a sum of
separate contributions of magnons and phonons:

Here a is the lattice constant, v is the magnon velocity,
Z is the number of nearest neighbors, 5 is the spin of the
magnetic ion, J is the exchange integral between the
neighboring magnetic ions, and co and p, are given by

a) = (1, 3X2 "', 2 '"),
p = (1, 3X2 4»»») (12)

for simple-cubic, body-centered-cubic, and face-cen-
tered-cubic lattices, respectively.

The relaxation time due to scattering of magnons by
magnetic defects is given by'

~ma =&ma&m&) =&ma&m(&a&/D) & =A Tsxs, (13)

where X ~ represents the number of magnetic defects
and x=E), ~),~z =Dk),s/kr)T. The parameter A is given
by

V 'z~~ J' '/ S' ' 4 J' J'S'
1—— — 1 ——2—— . 14

same type, 8), is the angle between vector kq of the spin
wave and the magnetization M of the specimen, and
P), is given by

P),=47rgPM/(es„+ gPH) . (9)

The relaxation time for magnon-magnon scattering is
given by"

(10)
where

3| (-', )us 3k'8=
Zco5' 2m JSZp

where k~ is the Boltzmann constant, T is the absolute
temperature, and E=E(kx) is the energy of the spin
wave of wave vector k), . Here r(kx) is the eRective
relaxation time of the spin wave of wave vector kx and
is given by

1/r(kx) =1/r b+1/r +1/r, +1/v g, (6)

where ~ b is the relaxation time for the boundary
scattering of magnons, 7 is the relaxation time for
magnon-magnon scattering, 7 p is the relaxation time
for the magnon-phonon scattering, and r & is the
relaxation time for the scattering of magnons due to
magnetic defects.

The energy E(k),) is given by'

E(k,) = (e„„+gPa)(1yy, sin'8, }'», (7)

where II is the external magnetic field and e» is given by

es„=2S P J~—2S P j~e.~~.R

Here R„ is a direct lattice vector, J„is an effective ex-

change integral which is same for all vectors R„of the

~ K. P. Sinha and V. N. Vpadhyaya, Phys. Rev. 127, 432 (1962).
' J. Callaway and R. Boyd, Phys. Rev. 134, A1655 (1964).
9 T. Holstein and H. Primako6, Phys. Rev. 58, 1098 (1940).

Here Vo is the atomic volume, ~ is the magnon
velocity, 5 is the spin of the atom which constitutes the
magnetic defect and is coupled to the nearest neighbors
with an exchange integral J', and J and S refer to the
host lattice.

III. RELAXATION TIME DUE TO MAGNON-
PHQNON SCATTERING

Sinha a,nd Upadhyaya have given a theory of magnon-
phonon interaction in magnetic crystals. The Taylor
expansion of the crystal-field potential of the neighbor-
ing ions provides the perturbation which mixes some
excited orbital states with the ground orbital states of
the magnetic ions. Starting with the one-electron wave
function defined in the presence of this perturbation,
the total Hamiltonian is expressed in an occupation-
nurnber representation by the method of second
quantization. Such a representation provides the inter-
action term of the Hamiltonian. Using the relationships
between the conventional spin operators and the
creation and annihilation operators of one-electron
states, expressions are obtained for the magnon-phonon
interaction term, which is further simplified by express-

"F.J. Dyson, Phys. Rev. 102, 1217 (1956).
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ing the relative displacements between the ions in terms
of creation and annihilation operators of phonons, and
using Holstein-Primako6 spin deviation and other
operators.

The magnon-phonon interaction for the one-phonon
process is given by

nJ(R )LSikg R44 Si(ky —4) R44

giV»oi
V

+e 'o'""'—1jXG,„a), otal'(b, „t b,„—), (15)

where Rk=Ri —R =R~, and

(~.e-l G~. l e.e()(@.I v"
I e))

J(Ri„)—=P-
(E —E))

Here G~o ——1/r(o, where r~o is the distance between the
electrons 1 and 2, pi and p represent the unperturbed
ground-state wave functions for the magnetic ions l and
r)4, n is the excited state, and V" is given by

where

one obtains
G.u- (&/2~—.W)"

4 (i i'4

(i) (—2k),qa' cos8k,)
QE (2(do~M

XL25 J(R),)j (23)

from the 8-function relation

@k,„=——P 25 J(RP,)
QiV k

XLS'k) Ra' S'( ) 4) 4' 1+S—'o Ra']G „(21)
Here it has been assumed that Lrq„k~T and that
AT/T=(T, Ti)/—T (where T,=T) is a constant and
independent of temperature. Vsing

(8V/8R. ) bR.—
I 8V/»kllbRkl,

(22)

Bv) 1 O'V
V= Vo+P

I
&Ra+& — lbR„bR, .

BRki p»' 2 BR„BR„,)
i.e.)

E), ,+Eo, E).=—o, —

2kkq8aksa'(ql 2k, —cos8, +Q'n/2Qok„a) =0

(24)

= Vo+Q V".&Rk+p P V»'8Rkt')Rp;, (17) where

where Vo is the static crystal-field potential due to
nearest-neighbor ions at the ith electron when it
is localized at the ion at Rio and is given by
Vp=g „ip(r, —R p). The relative displacement bRk
between the ions l and m is given by

Hence
O~D = hats/ksa.

cos8k =q/2kk+HD/2eakka. (25)

Case I: E),«kgT

The relaxation time is obtained in two special cases,
E),«kggT and E),&kgT.

k
bRg —P(—i)——e„-

I (b,„'—b,„)
giV on 2p),re

64+5'( J)' qT'—1—~)t qy
i'&sOceno kk'

(26)

X (s4o.RP sco Rm )
1

(b t b )(sip R( sip Rm )S qu
(18)

Case II: E&)k&T ) Eq&k&T ) E& q E& Eq&k&T

64~aS'( J)' q'T'
~&qu (27)

&M~sO~cO'n k),'
Sincer p (q)=gkkr)o~ andr P (kk)=+or),o„

one obtains the following expressions for magnon-
phonon relaxation times for the two cases:

(19)
Case I:4'+» —4=0. 325'(~J)'Qk„

r-. '(q) = gT )
7rMosOaOn'

Two-phonon Raman processes are found to be un-
important at low temperatures.

The relaxation time due to magnon-phonon scattering
is given by

85'(~J)'Qq 4r, '(kk)= kg T o

vrM'vs O~ oO~D

Here kk is a magnon wave vector. In deriving the
magnon-phonon interaction only normal processes have
been assumed and the following momentum conserva-
tion relation has been used for the one-phonon process:

2%

Tgqy Xqy
A;

~E7,lk~T

(ss) &»~ 1) (s&) oi&s~ 1)(s+e~i&s~ —-1)— —

Xb(E), ,+E „E),), (20)—

Case II:
32aS'(~J)'Qkr: '(q)= VT)

mMpsO~oO~g&

32aS'( J)'Qqg)'
r p '(k),)=- k), 'T'.

5~MvsOoOD

(29)
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E~h ——CT' Ly'e"/(e& —1)']r~zdy,

Here 0 is the volume of unit cell and k is the maximum The phonon thermal conductivity Eph is given by
value of the magnon wave vector kq. Similarly, qD

represents the maximum wave vector for phonons. (32)

IV. MAGNON AND PHGNGN CGNTRIBUTIGNS
TO THE THERMAL CONDUCTIVITY OF YIG

where

D—1/2k 7/2T5/2 oa 2 7/2exr (k„)d2.

3~'bi' 5 (e*—1)'

x= lion/ksT=Dkz2/ksT.

(30)

The upper limit may be safely taken as infinity at the
temperatures under consideration. The effective relaxa-
tion time r(ki, ) for magnons is given by

r ( )k=1r b +7 p +1
P(DTg)1/2+ (~DT)g—1+A T2g2 (31)

where

A correct estimate of the magnon-phonon interaction
and the scattering of magnons and phonons due to
impurities and boundaries is necessary to give an ac-
curate description of the low-temperature thermal con-
ductivity of a real magnetic crystal. Unfortunately, the
information about the nature and concentration of
magnetic and nonmagnetic impurities and the quanti-
ties such as O~~, 0+D, J, and k is not available. How-

ever, an attempt has been made to study the tempera-
ture dependence of thermal conductivity of YIG by
adjusting the relevant parameters and making the
following simplified assumptions:

(1) A quadratic dispersion law (E&=Dk&2) is taken for
magnons, and phonons are assumed to have a Debye
spectrum consisting of one (average) acoustic branch.

(2) For the calculation of magnon thermal conductivity,
magnons are assumed to be scattered by boundaries,
phonons, and impurities.

(3) For the calculation of phonon thermal conductivity
the contribution due to scattering of phonons by mag-
nons is considered negligible in the temperature range
where phonon thermal conductivity is appreciable.

(4) For the scattering of magnons and phonons due to
defects a Rayleigh-type scattering is assumed. Since the
Rayleigh scattering parameter A is independent of
temperature and frequency, calculations can be per-
formed for different values of A'/A" where A' and A"
correspond to magnons and phonons, respectively. Since
the temperature dependence of the thermal conductivity
is independent of the parameters 2' and A", they are
taken to be the same for the sake of using a minimum
number of adjustable parameters.

The magnon thermal conductivity can be expressed as

—1 —1 l —1
mph 7yb i ~pi

= V,/l„+A "y4T4, (33)

where /„ is the relaxation length of phonons for
boundary scattering, y =E,„/ks T= Aoi, ~/ks T, and
A"=A (ks/k)4.

The experimental data for the thermal conductivity
of YIG have been taken from Douglass, and sample 1
is considered for the present calculations. It is assumed
that at 20'K the whole contribution to thermal con-
ductivity comes from phonons. The parameter A, which
is so adjusted that the calculated phonon thermal con-
ductivity agrees with the experimental data at 20'K, is
9.797&(10 sec3.

According to Klemens, the scattering parameter 3 is
given by

A = 12V22S 2'/d/47r7/S2, (34)

where Vo is the atomic volume, S~ is the number of
scattering centers per unit volume, v8 is the average
phonon velocity, and 5, is a dimensionless scattering
parameter related to the scattering cross section which
includes terms corresponding to the deviation hM of
the mass 3E, the force constant F„and the nearest-
neighbor distance E . The expression for S,' has the
form

3f12 AF, AR
Sg =/21

~
+ ~1 +C1

mJ Z. R. )
(35)

Using III=738.01X1.67X10—'4 g for Y2Fe2(Fe04)2
and p=5.17, one obtains V0=239&(10 "cm'. Substitut-
ing this value of Vo and 7/s=4. 57)&105 cm/sec in Eq.
(34), one finds EdS,2= 1.72X1012 cm 2 for the product
of point-defect concentration and the square of the
scattering parameter S„which is related to the scatter-
ing cross section. If one takes X~——10"cm—', one finds
5 '= 17.2.

The scattering cross section 0- can be expressed as
o =1/X4/, where Xq is the concentration of scattering
centers and / is the corresponding mean free path. 0- can
be calculated if the matrix elements connecting the
initial and scattered states are known, since the
collision rate

~= (ks/2. 2,S) (ks/k) 5,

y= A5o, „/ksT,

and the different symbols have their usual meaning.
The total relaxation time 7ph is given by

P = 21
—'ksi/2I5 —'/' r llr7/So = 7/S/l ~ (36)

32aS2 (~J)2Qqi)'

57r7/sMO'oO~Dks

From Klemens's theory of point-defect scattering,

Wd/T =3 (2 )'Vp7'7NdS, '/0. 90hi/S', (37)
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where t/t/d is the phonon thermal resistance at a tempera-
ture T due to point-defect scattering. If one writes in
the Debye approximation

QOO—

500—
+00—

one has

E= ~Cphe'7. , (38) 200—

Cph& Cph& s

3 (2m)'Vo'NgS 'T

0.90hvs
(39)

which gives
o.= (2n-)'Vo'Su'CpnT/0. 90k@. (4o)

Using C,g=142 erg deg ' cm ' and 5 '=17.2, as ob-
tained previously for Nd=10' cm ', one obtains the
scattering cross section 0-= 17.16)&1.65)&10 "cm '.

In the present calculations we have taken A'=A"
for the sake of minimizing the number of adjustable
parameters. This means that

A (kii/k)4= N gA (ka/D)'.

If the phonon velocity is same as the magnon velocity,
one obtains, after substituting for A and A

192~'S 2N D2S 2

— J' ' S' ' 4( J' J'5'i-
k., J S 3~ J J51

Substituting S 'Nd ——1.72)& 10' cm, D =0.81&(10
erg cm', vs=4. 57&& 10' crn/sec, J'/J =0.1, and 5'/5=-,',
one 6nds N q ——1.05)&10' cm '. This value of N d is
quite reasonable, which shows that A' A". A lower
value of N z wouM require that A'&A".

The parameter n is adjusted so that at 2'K the
total thermal conductivity (E +Yah) agrees with the
observed thermal conductivity. For the calculation of
phonon thermal conductivity only scattering of phonons
by boundary and point defect is considered, and phonon-
phonon scattering, which is negligible near the con-
ductivity maximum (about 20'K), is not considered for
T»&20'K. The present calculation reveals that although
at 0.5'K the magnon contribution is as high as 46% of
the total thermal conductivity, the phonon contribution
in general dominates at temperatures greater than
0.5'K. Scattering of phonons by magnons is also
negligible as far as the calculation of phonon thermal
conductivity is concerned.

The value of n which has been obtained by adjust-
ment is 1)&10"sec g

' deg ' cm '. The parameter n is
proportional to the square of the derivative of the
exchange interaction, J(Ri,), where J(Ri,) is given by

]00—
80—
60—

40—

20—

$0—E
S—
'6—

f.D—
.8—

I

~ 5
t I t

4
TEMPERATURE K

t

10 2O

FIG. 1. Thermal conductivity of YIG. Circles represent the
experimental results. Solid curves give the theoretical results ob-
tained for the total thermal conductivity E +E~h and magnon
thermal conductivity E . Parameters for the theoretical curve:
lb ——1.15X10 2 cm; lf,„=3.4X10 cm; VS=4.57X105 cm sec
A'=A"=2.875X10' sec ' deg ' ce=1X1036 sec g ' deg ' cm 4;
D= 0.81X10 "erg cm'

where

5irGV8 MO~ck
(aJ)2

3a425' k4Q'n4

qD =kii 0'n/kw 8.

Substituting n=10" sec g
' deg ' cm ) 8s 457)(10'

cm/sec, HE=738.01)&1.67&&10 "
g, 0'c= 1000'K (used

by Sinha and Upadhyaya), a=12.376X10 o c, 5=2o,
0~ii=538'K, one finds J=1.27&&10 ' dyn. This value
of J may be compared with the value of

Qo"*I (~V/~R~)ol44n &-125&&» ' dyn

which was obtained by Sinha and Upadhyaya for iron.
The results of calculation are shown in Fig. 1, and a

good agreement betweeen theory and experiment has
been obtained in the entire temperature range. The
reasonable agreement between theory and experiment
in the temperate. le Ig,nge 0.5 to 2'K, where the magnon

The factor J(Ri) when expressed in terms of the
experimentally adjusted parameter n is given by

oB~Q~&Q~

( J)'=
32aSg

which reduces to
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contribution is appreciable, justifies the use of our
expression for the temperature and wave-vector de-
pendence of magnon-phonon relaxation time. In view
of the fact that phonon contribution dominates over
the magnon contribution at temperatures beyond 2'K,
the accuracy of the magnon contribution to thermal
conduction beyond 2'K cannot be checked; for example,

the magnon contribution at 10'K is about 10% of the
total conductivity.
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The optical properties of indium-doped ZnO crystals, with free-carrier concentrations ranging from
10"to 5)&10"cm ', have been studied at room temperature. The condition of the crystal surfaces has been
shown to inQuence radically the reQectivity in the near infrared. The optical e6ective mass for free electrons
has been calculated from the dispersion in the near infrared to be m, pt, = (0.265&0.015)m, which is in close
agreement with other determinations. Experiments with polarized radiation revealed no measurable anisot-

ropy of effective mass. The "polaron" effective mass in ZnO is estimated. and brieAy discussed.

I. INTRODUCTION

l
~OPTICAL properties of semiconductors have been

very instrumental in determining energy-band
structures and eRective masses. In particular, analysis
of the exciton spectrum and fundamental absorption
edge of zinc oxide (ZnO) has revealed that the minimum
in the conduction band is very nearly spherical and at
k=0.'' The effective mass of electrons in the conduc-
tion band has been the subject of much discussion.
Values as high as 0.5m have been reported for the
density-of-states effective mass' and as low as 0.06m for
the "inertial" effective mass from infrared reAectivity. 4

Hutson' has discussed the history of the effective mass
of electrons in ZnO and has reached statisfactory agree-
ment between most determinations with the possible
exception of 0.06m reported by Collins and Kleinman. 4

It is the purpose of this paper to report on the de-

termination of the electron effective mass of ZnO from
dispersion in the infrared due to free carriers. This work
is similar to that by Collins and Kleinman, 4 but
it results in more close agreement with other
determinations.

II. SAMPLE PREPARATION AND
EXPERIMENTAL APPARATUS

The single crystals of ZnO used in these experiments
were grown from the vapor phase in these laboratories.

' D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).
~ R. K. Dietz, J.J. Hop6eld, and D. G. Thomas, J. Appl. Phys.

Suppl. 32, 2282 (1961).' A. R. Hutson, Phys. Rev. 108, 222 (1957).
4 R. J. Collins and D. A. Kleinman, J. Phys. Chem. Solids 11,

190 (1959).' A. R. Hutson, J.Appl. Phys. Suppl, 32, 2287 (1961).

The crystals were rough-cut to thin plates approxi-
mately 0.05-cm thick with an area of approximately
1 cm' to facilitate doping and optical measurements.
Each was oriented so that the c axis was in the plane
of the plate. Subsequent to the doping and optical
measurements the crystals were cut to dimensions

appropriate to electrical measurements.

The free-carrier electron concentrations of the plates
were controlled by doping with indium at various
equilibrium temperatures, as discussed by Thomas. '
The time required for uniform doping was, in general,
about twice as long as that calculated for simple diffu-

sion in a thin plate using the diffusion rates given by
Thomas. ' The progress of the diBusion was intermit-
tently checked by visually observing, with a micro-

scope, gradients in transmission of red light through
the crystals parallel to the crystal plate faces. These
gradients in transmission were due to gradients in the
free-carrier adsorption, which was appreciable in the
red portion of the spectrum for high carrier concentra-
tions. Because the absorption coefficient is proportional
to the concentration of free carriers, ~ transmission
gradients give a rough estimate of the uniformity of
doping. When no visual non-uniformities of doping
could be observed, the crystals were mechanically
polished for further optical and electrical measurements.
The uniformity of doping was further checked by
repeated optical and electrical measurements on crystals
for which the thickness had been substantially reduced

by grinding.
The free-carrier concentrations were determined from

' D. G. Thomas, J. Phys. Chem. Solids 9, 31 (1958).' D. G. Thomas, J. Phys. Chem. Solids 10, 47 (1959).


