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A united theory is proposed for the resistivity change in a metal due to an arbitrary distribution of point
imperfections and to the lattice strain around them. Mott's treatment of the scattering power of an isolated
impurity atom in a free-electron metal, using the phase-shift formalism, has been generalized to apply to a
complex of interacting point defects. Lattice distortion is approximated in the scattering scheme by a system
of charge dipoles. The theory takes a very tractable form when the scattering potential of the assembly is
very nearly a superposition of the potentials of discrete imperfections. Empirical data on the scattering
power of isolated point defects can then be utilized to yield good estimates for the resistivity change due to
aggregates of these defects. For illustration, the scattering power of vacancies, interstitials, divacancies,
di-interstitials, Frenkel pairs, and trivacancies in copper have been evaluated.

I. INTRODUCTION'

A GGREGATES of point imperfections are formed
in metallic specimens after radiation damage,

quenching and cold working, and in alloys after solute
precipitation. Valuable information can be obtained on
their concentration, spatial distribution, interaction,
and annealing mechanism by a careful interpretation of
data on the resistivity change (in correlation with data
on the changes in other physical properties) they bring
about in the metal. It is in this interpretation of resis-
tivity data that an accurate theoretical estimate of the
resistivity change in the specimen can be an extremely
useful parameter. Previous theoretical estimates of
these resistivity changes have been rather crude most
of them were restricted to simple systems: specimens
with a uniform distribution of point defects'*' or con-
taining defect aggregates with a high degree of sym-
metry. ' Moreover, except in the case of aggregates with
spherical symmetry and of defect pairs, 4' the scattering
power has always been worked out in the Born approxi-
mation instead of the phase-shift formalism which gives
a far more accurate description of the scattering of
conduction electrons by point defects. Another source
of error in most of the previous treatments was the
approximate scattering potential employed in the
defect model. The conventional potentials for point
defects (i.e., the square-well, ' ' the screened Coulomb '
the self-consistent-field, ' and others") give at best,
only an agreement of 25% with experiment in the

*This work was carried out partly at Atomic Energy Research
Establishment Harwell, Berkshire, England and partly under the
auspices of the U. S. Atomic Energy Commission.
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more tractable case of an isolated point defect and they
cannot lead to reliable estimates for complex defect
systems. Most of the previous estimates of the scattering
power of either isolated defects or defect aggregates
have also given a poor account of scattering from the
lattice strain around them. Lattice distortion is believed
to contribute significantly to the resistivity change,
particularly in the case of aggregates containing inter-
stitial defects. The most significant approaches to the
problem of scattering froIn lattice strain are the de-
formation-potential method of Overhauser and
Gorman, " and Jongenburger, " and the deformed-
atomic-cell treatment of Blatt."The strain scattering
is overestimated with the first method, however, and
Blatt's treatment, though leading to better estimates,
is limited to isolated point defects.

The present investigation will attempt to remedy
some of the short-comings of these previous treatments.
In the first place, the more realistic and the more general
problem of scattering from an irregular distribution of
point defects will be considered, instead of that of
scattering from simple geometrical systems. Next, a
formulation of the scattering power of an aggregate of
point defects in terms of the phase shifts and the position
vectors of the individual defects will be presented, as
an improvement on the Born approximation. In
addition, the scattering power will be expressed in
such a form that semiempirical scattering amplitudes
of the defects can be employed in the place of ampli-
tudes derived from theoretical models —thus avoiding
errors generated by approximate scattering potentials.
Finally, a simple prescription, based on the assumption
that a displaced ion scatters like a dipole, will be pre-
sented to deal, within the proposed phase-shift scheme,
with the scattering due to the lattice strain. For
illustration, the theory is employed to estimate the
resistivity change in copper due to some standard
defects and defect complexes, viz: the monovacancy,

' A. W. Overhauser and R. L. Gorman, Phys. Rev. 102, 676
(1956).
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the interstitial, the divacancy, the trivacancy, the
interstitial-vacancy pair, and the di-interstitial, taking
into account the lattice strain around them. The values
obtained for the resistivity changes are in good agree-
ment with experimental estimates (where available).

sphere, and dta' is a surface element on the k' sphere.
The conductivity in the metal can then be obtained
from Ohm's law:

3

J;=Q o.;, R;,

II. THEORY

A simplified working model of the scattering system
can be obtained by separating the defect population
in the metal into complexes of point defects. A complex
being defined here as the assembly of all point defects
that are close enough to each other (within 8.0 A for
the common metals) to interact signilcantly. It follows
from this definition that the complexes themselves do
not interact with each other and that their respective
scattering powers are additive. The resistivity change
d,p in the specimen can therefore be expressed as the
sum of the resistivity change Ap due to each complex;
leading to the simple relation

In the more general case of an anisotropic system, the
relation is

where 0-;; is the conductivity tensor. On comparing
Eqs. (3) and (4) and inverting the a,s matrix, it can
be shown that for small resistivity changes in an initially
isotropic metal, the resistivity change parameter is
given by

Dp";;= — — (h,' fe,)fe;I—'s'dradta'.
4' pkp'

This expression can be evaluated once PI,~' is known in
terms of k and k'.

The transition probability PI,~' can be defined as'

(6)

where A (k,k') is the total scattering amplitude of the
conduction electrons for the potential V(r). Formally,
A (k,k') is given by the expression"

A(k, k') =lim rP%' —e'~'] je*~"

where Ap;; and hp;,™are changes in the resistivity
tensor. The basic problem is now reduced to the
determination of the resistivity change Ap ol Ap;~~
for the mth, i.e., the typical defect complex in the
specimen.

It will be assumed that this typical defect complex
is made up, in general, of interstitial atoms, vacancies,
impurity atoms, and charge dipoles distributed at an
arbitrary set of points pro) in the lattice and that its
effective scattering potential is V(r). Adopting a free-
electron model of the host metal and assuming elastic
scattering of the conduction electrons and small changes
in resistivity, the Boltzmann electron transport equa-
tions'4 can be solved for the current density in the metal,
giving the expression

3sp7'

4xkp4
(E k)kdta

3sp7
+ t E (k' k)$I's"'—kdtadta', (3)

4mkp'

"J.K. Mackenzie and E. H. Sondheimer, Phys. Rev. 77, 264
{1950).

where np is the number of electrons per unit volume,
r is the thermal relaxation time, 'U is the volume of the
metal, Akp is the Fermi momentum in the metal, E is
the electric field, PI,~ is the transition probability for
scattering from momentum hk to momentum tttk' by
the potential V(r), dta is a surface element on the k

A (k,k') = e*&'-'& 'Vdr,

which is unfortunately, accurate only for potentials
satisfying the condition

2k ' (10)

The expression (7) is valid, in principle, for all poten-
tials. In practice, difficulties may be encountered in
obtaining a good function for 0', as the exact solution of
Schrodinger's equation for the multipole-type potential
of a defect complex can be very tedious. The problem is
considerably simplified, however, when V(r) is a super-
position of the potentials (which is a very useful approxi-
mation when defect interaction is weak) of isolated
defects or defect pairs. The effective scattering potential
of the complex is then given by

V=+ V, (r—r,),

"J.M. Slatt an.d V. P. Weisskopf, Theoretical ENclear I'hysics
Qohn Wiley 8z Sons, Inc. , New York, 1956)."P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc., 1953).

where + is the solution of Schrodinger's equation

V'4+th' —2V3%=0.

In the Born approximation, Eq. (7) reduces to the
more tractable form"



THEORY OF RESISTIVITY CHANGE IN A METAL

1 F,'(k, q)p&'(q, k')
+ llni p dq

2' ~~ g~ ~0 g

+ terms of higher order in F, (12)

where F '(k, k') =e'&" a'&' A, (k,k') with A, (k,k') de-
noting the scattering amplitude corresponding to the
potential V„and taking the integrals on the energy
shell. Substituting for A(k, k') in Eq. (6) gives the
result

ps Lgpipik+(++pip 2@+ )

+p p p sp, „s+y ]/Zs (13)

where P,sp, ss is the second term on the r.h.s. of Eq.
(12). This expression for Pi,~' can now be substituted in
Eq. (5) to give a tractable expression for the resistivity
change parameter, hp;; . To facilitate the evaluation of
hp;, , the exponential phase factor in Ii,', Il,'Ii~'~,
etc. can be expanded in spherical harmonics. It can
then be shown that

Qp. Pn

kreoko'U
(k —k,)k;

X(p AgA &,
* Q (2)I.+1)i'j&(~k—k'~

X [r,—ry, ()P& icos(k —k', r,—rs) g

+ terms of higher order in A,) draco', (14)

which can be evaluated to the desired order of harmonics
and scattering interference terms.

In the case of a complex with a high order of sym-
metry and weak interacting defects, only the 6rst term
of the harmonic expansion has to be considered and the
higher order terms in A, can be neglected. Equation
(14) then reduces to a simple relation for the resistivity
change due to an isotropic complex with weak defect
interaction

2mkp
Ap = — f(8)sin8(1 —cos8)d8,

Zx

where 8 is the angle (k,k'), Z is the valency of the metal,
K the number of atoms in the metal, and

sinL2
I
r —rs

I
&s sin(8/2) 3

f(8)=P A,A.*
2 Ir,—r& I &s»n(8/2)

"L. H. Schick, Rev. Mod. Phys. 33, 608 (1961).

V, being the potential of the isolated defect or close
defect pair centered at r, . It can then be shown that"

A(k, k')=Q F '(k k')

The only quantity remaining to be de6ned explicitly
in the final expression for hp;; or hp is the scattering
amplitude A ~ corresponding to the scattering potential
P', .Expressions for A, of interest to the present problem
are obtainable in the Born approximation and the
phase-shift formalism. In the Born approximation, the
scattering amplitude is given by Eq. (9) with V, re-
placing V. As it was pointed out earlier, Eq. (9) is
exact only when the Born condition (Eq. 10) is satisfied.
It has been con@non practice, however, to employ the
Born approximation for potentials well outside that
range, simply because analytical expressions for A, can
be obtained for most of the conventional defect
potentials; thus simplifying considerably further mathe-
matical operations. One should bear in mind that resis-
tivity estimates obtained with the Born approximation
could be oB by a factor of 3 or more and are notreliable
parameters in the interpretation of experimental data.

In the phase-shift formalism, 3, is obtained from
Eq. (7) after replacing V by V, . As opposed to the Born
approximation, there is, in this case, no simple expres-
sion for the scattering amplitude for a general potential;
the form and the complexities of 3,will depend largely
on the number of poles and on the anisotropy in V,.
For several potentials of interest in defect problems,
explicit phase-shift expressions for 2, can be derived
without difhculty. For example:

(f) Cerstral Field. The scattering amplitude due to
the spherically symmetric 6eld of an isolated point
defect is given by the familiar Faxen and Holtsmark"
expression

A, = (iks ') Q (21+1)e'&'g sing~, PiLcos(k, k')], (16)
l=o

where g~, is the phase shift of the 1th-order partial
wave for the central potential V,.

(Z) Horrropole. In the case of a pair of like defects at
close range, the scattering amplitude can be obtained
for a spheroidal well-type potential. Bross and Seeger"
have shown that

A =(2iks) ' g P (—1)~(2l+1)(es'«~~—1)
l=o m~l

XPs) "(cosy, ',7s)Ps)"(cosy„ps)e'"I& —4'*'& (17)

where 7 is a parameter related to the potential well and
the interdefect separation, y„g, and p, ', p, ' are the
angular coordinates of k and k', respectively, referred
to a prolate spheroidal coordinate system, Ps~ and
Ps~ are spheroidal wave functions, and g~ g is the
phase shift of Ps~ for the potential V,.

(3) Dipole. Although the dipole is not a regular defect
in metals as it is in semiconductors, it can still be a

"M. Fax6n and G. Holtsmark, Z. Physik. 45, 307 (192'I).
is A. Seeger and H. Bross, Z. Physik. 145, 161 (1956);I, Phys,

Chem. Soiids 6, 324 (1958).
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useful concept in the construction of mathematically
tractable models of certain defect configurations, par-
ticularly in the treatment of lattice distortion. The
potential of a dipole is weak enough to be treated in
the Born approximation. "It can be shown that for a
screened-Coulomb-type dipole potential, i.e.,

V,= cos(M„r—r,)L1+q l
r-r,

l g
1'—1'g

Xeml —air —r, l j, (18)

where M, is the dipole strength, and q the screening
constant, the scattering amplitude is given by

A, =2i expLi(k —k') r,j sinL(k —k') a)A, ', (19)

where the charges of the dipole are at r,+a and
r,—a, and A, ' is the scattering amplitude due to one
of the charges of the dipole when isolated. In the phase-
shift representation, A, ' can be taken formally to be
expression (16), the scattering amplitude for a central
Geld.

III. APPLICATIONS

The basic procedure in utilizing the present theory
to estimate the resistivity change in a specimen consists
in: (1) breaking down the defect population into com-
plexes of known atomic configuration and scattering
potential, (2) determining the resistivity change due to
each complex from Eqs. (5) or (14), and (3) adding up
these resistivity changes in accordance with Eq. (2).
When solutions of Eq. (8) are not immediately available,
the superposition potential expression, Eq. (11},can
be employed. Errors due to this approximation can be
minimized by a judicious choice of the defect units
within the complex, i.e., which to treat as isolated
point defects, homopoles, or dipoles. The scattering
amplitudes for the three types of potentials given in
Eqs. (16), (17), and (18), should cover the conunon
defect complexes except dense defect zones like the
"displacement spikes" resulting from high-energy
bombardment. The homopole will apply to pairs of
like atoms or of vacancies at close range. The dipole
can be used in the treatment of lattice distortion when
it is assumed that a displaced ion leaves an equal point
charge of opposite sign at the vacated lattice site. As it
was pointed out earlier, none of the theoretical defect
potentials consistent with the free-electron model
lead to satisfactory values for the resistivity change.
Good estimates can be obtained, however, with the
simple expressions of the present model by employing
scattering potentials or scattering amplitudes derived
from a more accurate theory or constructed from
empirical data.

For illustration, the results of the previous section

N R. Stratton, J. Phys. Chem. Solids 23, 1011 (1962); A. G.
Samoilovich and M. V. Nitsovich, Fis. Tverd. Tela 5, 2981 (1963)
[English trans) ;Sqy&et Phys. —. Solid State 5, 2182 (1963)g.

have been employed to evaluate the resistivity change
in copper due to 1 at.% of some standard defects and
small defect complexes taking into account the lattice
strain around them. The specific cases considered are
those of the rnonovacancy, the interstitial, the di-

vacancy, the trivacancy, the interstitial vacancy or
Frenkel pair, and the di-interstitial. The atomic
configurations considered for these calculations are:
those of Tewordt" for the monovacancy, of Benneman'
for the interstitial, of Oli and March" for the divacancy,
and of Damask and Ors." for the trivacancy. In the
case of the interstitial-vacancy pair and the di-inter-
stitial, a superposition of the single defect configurations
at nearest-neighbor distance has been adopted, as
suggested by Johnson and Brown. s' The basic scattering
unit for this set of defects is the vacancy (as displaced
ions, following from Eq. (19},can be taken to have the
same scattering amplitude as a vacancy with a change
of sign). In the present calculations, two different
scattering amplitudes were employed for the vacancy:
one was derived from a square-well-type potential for
a vacancy in copper" and the other was obtained semi-
empirically, by a method suggested by Kohn and
Vosko."The results for these two cases are presented
in Table I and compared with experimental estimates
(where available).

It is found that the semiempirical phase shifts give
a better over-all agreement with experimental estimates
than the square well. This indicates that semiempirical
scattering amplitudes should lead to more reliable
estimates of the resistivity change for large defect
aggregates. The more striking features of the results
for the semiempirical phase shifts are: (1) there is
agreement with the findings of previous authors"' that
the resistivity of the divacancy is 5% less than the
combined resistivities of two isolated vacancies, (2)
the scattering power of the di-interstitial is 2% less
than the combined scattering of two isolated intersti-
tials, (3) the contribution to the resistivity change from
the lattice strain is 0.5% for the vacancy and 25%
for the interstitial, and (4) there is agreement with the
observation of Flynn4 that the residual resistivity due
to a defect complex can be approximated within 5%
by adding up the resistivity change due to each defect
unit in the complex. This is found to be true, however,
only when the configuration of the complex is roughly a
superposition of the configuration of the isolated defect

n L. Tewordt, Phys. Rev. 109, 61 (1958).
sr K. H. Benneman, Z. Physik. 165, 445 (1961).
n B. Oli and N. H. March (private communication).
~ A. C. Damask, Q. J. Dienes, and V. G. Weizer, Phys. Rev.

113, 781 (1959).
s5 R. A. Johnson and E. Brown, Phys. Rev. 127, 446 (1962).
«'C. Budin, F. Denayrou, A. Lucasson, and P. Lucasson,

Compt. Rend. 256, 1518 (1963)."W. Kohn and S. H. Vosito, Phys. Rev. 119, 912 (1960).
I R. 0. Simmonds, J. S. Koehler, and R. W. BalufB, Radiatioe

Damage ~n Solids international Atomic Energy Agency, Vienna,
1962), VoL 1, p. 155.
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TAnLE I. Change in resistivity for Cn in pQ-cm/at. %
due to several types of defects.

calculated
with semi-
empirical
phase shifts

1.43 2.12 2.81 2.61 3.45

experimental 1.1
or semi-
empirical
estimates

~1 5b ~2 Oo ~2 9b 2

a Reference 26.
b Estimated by addition rule for defect pairs.

Reference 28.
&A. Seeger, E. Mann, and R. V. Jan, J. Phys. Chem. Solids 23, 639

(j.962),

units; the rule does not apply when there is a major
redistribution of atoms on aggregation.

It should be pointed out that the results presented
above apply to a random distribution of defects or
defect complexes and do not include the anisotropic
contribution from the second and higher harmonics of
Eq. (14). Anisotropy in the scattering power is im-

portant in the case of extended defect clusters, defect
discs and loops; it is not very significant for defect pairs
unless they occur in a preferred crystal orientation, ' "
nor for the trivacancy which has tetrahedral symmetry.

IV. DISCUSSION

The theory presented in this report gives a simple
and quite eScient method of estimating the resistivity
change in a metal due to multiple point imperfections
and to the lattice strain around them. It is applicable
to most defect containing systems of interest; namely:
radiation damaged, quenched and cold-worked metallic
specimens, ordered and disordered alloys, and alloys
with precipitation zones. The mathematical operations
are clear-cut and the labor involved depends generally
on the intricacies of the defect configurations and on the
accuracy desired. The problem is in its most tractable
form when the scattering potential of the defect system
can be approximated by a superposition potential. In
that case, it is possible to utilize arbitrary potentials
and scattering amplitudes for the individual defects in
the cluster —thus ensuring good estimates for the resis-
tivity change due to large defect complexes.

To make a proper assessment of the potentialities of
the theory, it should be compared with relevant previous
work, in particular, with the treatment of the resistivity
of alloys by Nordheim, ' and Asch and Hall, "and with
the recent work of Flynn, 4 ' and Keller" on the scatter-

ss A. F. Asch and G. L. Hall, Phys. Rev. 132, 1047 (1963).
& j'. M. Keller, J. Phys. Chem. Solids 24, 1121 (1963).

Type of Inter- Di- Di-inter- I"renkel Tri-
defect Vacancy stitial vacancy stitial pair vacancy

calculated 1.504 2.40 3.07 4.70 3.61 5.81
vrith square-
vrell phase
shifts

ing power of pairs of (like and unlike) defects. The
present treatment can be considered as a generalization
of these theories. In the Qrst place, the work of Nord-
heim, and Asch and Hall has been extended beyond the
Born approximation to the phase-shif t formalism
which is far more accurate. It has also been extended to
apply to a completely anisotropic scattering system
rather than to a random or ordered distribution pf
scattering centers. The work of Flynn and of Keller has
been extended to apply to complexes made up of more
than two defects. As a matter of interest, it can be
verified that Eqs. (13) and (14) of Flynn' and Eq. (9)
of Keller for the relaxation time can be obtained from
Eq. (14) of this report when g and h are set equal to 2,
and rs= (a,e./2, 0), or r&, and rs= (a,7r/2, a.), or rs, and
using the appropriate multiplying factor. It should also
be pointed out that the interference terms in the scatter-
ing amplitude Lsee Eq. (12)j for a superposition
potential were neglected by Keller, while Flynn' only
referred to them formally. These terms are presented
here in a tractable form, as they can contribute signih-
cantly to the scattering when defects are at close range.

Neither Xordheim nor Flynn or Keller discussed the
resistivity change due to lattice distortion. The treat-
ment of this problem by the deformation potential and
the deformed-atomic-cell methods is not as Qexible or
as accurate as it is by the present theory. The deforma-
tion-potential method tends to be clumsy for systems
with a nongeometrical con6guration and it leads, more-
over, to unrealistic estimates of the residual resistivity.
The deformed-atomic-cell approach, on the other hand,
is restricted to isolated point defects or central force
Qelds. It is of interest to point out, however, that the
distorted-atomic-cell treatment could be extended to
apply to arbitrary aggregates of defects if it is assumed
that the deformation of the atomic cell due to an isolated
defect or impurity does not change when these imper-
fections are brought together to form a complex. One
could then utilize Eq. (14) to estimate the resistivity
change, treating each individual defect and the lattice
distortion around it as a single scattering center. The
scattering amplitudes to be utilized can be derived from
Blatt's prescription or semiempirically, with the modi-
6ed Freidel's sum rule. "

Although the present theory is a net improvement
on previous work, it can still be criticized on several
important points. The most serious shortcomings and
some suggestions for their corrections are discussed
below:

The Mott Model. The metal model employed in this
investigation is essentially that used by Mott in an
early theory of residual resistivity in alloys. There are
some drastic approximations in that model, like the
use of plane waves, spherical Fermi surfaces, and the
neglect of electron interaction, which can lead to
signilcant errors in the resistivity estimates. It is only
quite recently that investigators have concerned them-
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selves with improving the Mott model. Harrison" and,

Goodings and Mozer" have considered the scattering
of Bloch waves from point imperfections, Gautier"
and Huebener'4 have treated nonsph eric al Fermi
surfaces, and Langer35 and Suris" have dealt with the
problem of scattering for an interacting electron gas.
These modi6cations, although quite elaborate, can, in
principle, be incorporated with the present theory.

Electronic structure attd irtteractiom of defects. Treating
atomic defects as point charges is another approximation
of the Mott model. It is a very convenient concept ln a
mathematical theory but it can lead to inaccurate re-
sults due to neglecting the structure of the ionic core.
The appropriate corrections can be made by replacing
the point charge by a signer-Seitz cell or by some other
cellular model. "Another source of error associated with
the electronic structure of the defects is in the deter-
mination of the scattering potential and scattered wave
function for a defect aggregate. In principle, this
corresponds to the extremely dificult problem of
calculating the electronic structure of a large polyatornic
molecule. Utilizing a superposition potential in the
place of the correct self-consistent 6eld amounts to
neglecting interaction between the defects and this
can be a serious omission for defects at close range.
Since a rigorous solution of the potential problem for
a cluster of Qve or more defects is so difficult, an inter-
esting alternative would be to solve the problem in

e' W. A. Harrison, Phys. Rev. 110, 14 (1958).ID. A. Goodings and B.Mozer, Phys. Rev. 136, A1093 (1964)."F.Gautier, J. Phys. Radium 23, 105 (1962).
u R. P. Huebener, Phys. Rev. 138, A803 (1965)."J.S. Langer, Phys. Rev. 120, 714 (1960); 124 1033 (1961).
se R. A. Suris, Fiz. Tverd. Tela 5, 458 (1963) LEnglish transl. :

Soviet Phys. —Solid State 5, 332 (1963)7.» 'F. S. Ham, in Solid State Physics (Academic Press Inc. , New
York, 1955), Vol. I.

steps, by a perturbation method, starting with the
superposition potential as the 6rst approximation.

Lattice distort~oe. The treatment of lattice distortion
in the present investigation is extremely simple-minded;
it is based entirely on the shaky assumption that an
atomic defect can be equated to a point charge. The
errors due to neglecting the ionic core are even more
serious here, since one is concerned with changes within
a fraction of an A from the nucleus. The displacement
potential approach, in spite of the fact that it overesti-
mates the resistivity change, seems a more realistic
treatment of lattice strain. It should give more useful
results if it were modified to incorporate a phase-shift
formalism, or if semiempirical parameters were intro-
duced in the scheme.

Phase shifts. The semiempirical phase shifts obtained
by the method of Kohn and Vosko are not very realistic,
as phase shifts of order greater than 1 are neglected.
It may not be a serious error for vacancies or divalent
impurities in a monovalent metal but in the case of a
large residual defect charge, the inclusion of phase shifts
of higher order could alter signi6cantly the resistivity
change due to large defect complexes.

V. CONCLUSION%

In conclusion, it is quite clear that a great deal of
research has still to be done on the problem of the
resistivity change due to multiple point defects before
reliable estimates can be obtained from a theory which
does not employ empirical parameters. In the meantime,
it makes sense to employ the experimental scattering
power of point defects, which are now available for
most metals, in attempts to estimate the resistivity
change due to their aggregates. In that context, the
present theory, with some slight modifications perhaps,
is a most useful approach to the problem, as far as
expediency and accuracy are concerned.


