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The one-electron (Bethe-Sommerfeld) model of electron tunneling is formulated to describe tunneling
when the curvature (electron mass) and centroid of the one-electron constant-energy surfaces vary across
the junction. The conductance for an abrupt GaAs p-» tunnel diode is calculated and shown to exhibit
minima near zero bias for highly asymmetrical doping ratios. The conductance of metal-oxide-semimetal
(M-O-SM) tunnel junctions is evaluated both with and without the inclusion of space-charge effects and of
surface states. All calculations are performed using solvable models for which the WKBJ approximation is
not imposed. Neither the removal of the WKBJ approximation nor the space-charge effects give rise to
maxima in the conductance of the M-O-SM junctions near a band edge.

I. INTRODUCTION

LTHOUGH electron tunneling in metal-insulator-
metal (M-I-M) junctions has been extensively
studied,! junctions in which one or more of the com-
ponents is a semimetal? or degenerate semiconductor
have been systematically examined primarily within the
context of p-» junctions.? In this paper we consider the
modifications of the tunneling current in semimetal
and p-» junctions caused by the dependence of the
shape of the space-charge-induced barrier on the
applied bias. We construct sufficiently simple models
of the junctions to yield potential barriers for which the
one-electron Schrédinger equation can be solved ana-
lytically. This procedure permits us to calculate the
tunneling current without using the WKB] approxi-
mation, and thereby achieve a more accurate descrip-
tion of the tunneling near band edges.!®* We also
generalize the Bethe-Sommerfeld* model to incorporate
the cases of differing masses and differing locations of
the electron (hole) ellipsoids in the various component
elements of the junction. The generalized model is
employed to calculate the differential conductance due
to tunneling current through the junctions.

In the case of p-» junctions, several authors® have
used the WKB] approximation to estimate corrections
to the Zener-Keldysh-Kane uniform-field model.? They
did not find the doping-sensitive structure in the differ-
ential conductance which we will demonstrate below,
and Nathan concluded that the corrections generally
reduced the agreement between the calculations and
(room temperature) experimental data. Ivanchik® also

1See, e.g., W. A. Harrison, Phys. Rev. 123, 85 (1961); J
Slmmons J. Appl. Phys. 34, 1793 (1963) ; 34, 2581 (1963). Refer-
ences to extensive early literature may be found in these papers.

2L. Esaki and P. J. Stiles, Phys. Rev. Letters 14, 902 (1965);
16, 574 (1966).

3 References to an extensive literature may be found in R. T.
Shuey, Phys. Rev. 137, A1268 (1965).

4 A. Sommerfeld and H. Bethe, Handbiich der Physik edited by
S. Fliigge (Springer-Verlag, Berlin, 1933), Vol. 24/2, p. 150.

5 M. I. Nathan, J. Appl. Phys. 33 1460 (1962); P. N Butcher,
%1 121 )Hulbert, and F. K. Hulme, ]. Phys. Chem. Solids 31, 320

961).

¢1. I. Ivanchik, Fiz. Tverd. Tela 3, 103 (1961) [English transl.:
Soviet Phys.—Solid State 3, 75 (1961)7]; See also P. André, in
Proceedings of the I nternational Canference rm the Physics of Semi-
conductors (Dunod Cie., Paris, 1964), p
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has developed an effective-mass theory of tunneling in
p-n junctions. However, he limited his attention to
symmetric diodes and used the WKB] approximation.

The theoretical discussion of metal-oxide-semimetal
(M-O-SM) junctions given herein is, to the authors’
knowledge, the first that has been presented. A treat-
ment of metal-semiconductor contacts has been given
by one of us elsewhere.” Although our models of the
junctions are not as refined as those customarily used
in metal-oxide-metal junctions,! they exhibit the ad-
vantage that the entire calculation of the tunneling
probability can be performed in closed form. As the
effects of the bias-induced changes in the space-charge
region and the mass changes across the junction have
not been examined previously, we feel that analytical
simplicity is essential at this stage of the development
of the theory in order that the consequence of these
new features be separated from the consequences of
approximations made on more elaborate models.

In the next section we introduce our generalized
Bethe-Sommerfeld model for the calculation of the
tunneling current. In Sec. III, we give the results for
an abrupt-junction model of p-» junctions. Section IV
contains a discussion of the M-O-SM junction which
includes both the effects of space-charge in the semi-
metal and of surface states at the semimetal-oxide
boundary.

II. THE EFFECTIVE-MASS MODEL

In order to apply the Bethe-Sommerfeld free-electron
model to the calculation of tunneling probabilities in
semimetal and semiconductor junctions, two aspects
of the model must be generalized. First, we must
formulate it in a fashion to account for the possibility
of large changes in the effective mass of the tunneling
electron as it passes from one component of the junction
to another. Second, we must consider the possibility
that the constant-energy ellipsoids are centered about
different points in momentum space in the various
components of the junction. The values of the effective
masses and location of the constant-energy surfaces in

77. Conlef/ C. B. Duke, G. D. Mahan, and J. J. Tiemann,
Phys. Rev. 130, 466 (1966).

683



684 D. J. BENDANIEL
momentum space are taken from models of the energy
bands of the bulk materials.

It is well known?® that if a slowly varying potential
V (x) is imposed in a solid, the resulting wave functions
within a given band # are given by the (approximate)
expressions:

%E(X)=Zk: fr, 8(B)Ynk(x), (2.1a)
k—lffk-x X" (2.1b

S )—-\‘/5 e x f,(x)d%, .1b)
[E.(—iV)+V(X) ] fre(X)=Efnzr(x), (2.1c)

where E, (k—k,) specifies the bulk one-electron energies
as a function of the distance in % space away from their
minimum (or maximum) located at k=ko and @ is the
volume of the system. The effective-mass model con-
sists of expressing the tunneling probability solely in
terms of the envelope functions f rather than using
the full wave functions ¢. It is evident that some in-
formation about the wave functions is lost in this
approximation (although the approximation underlies
the Bethe-Sommerfeld model). In order to examine the
extent of this loss, we can compare the results of our
effective-mass model with those of the full Bloch-wave
calculation for a one-dimensional system comprised of
an abrupt junction of two materials with dissimilar
one-electron periodic potentials. One finds that current
conservation is guaranteed in both cases by use of the
boundary condition

)l
mL* ox. z-»OL—mR* o z->0R

in place of the usual continuity of the derivative of f
at the boundary. In Eq. (2.2) the subscripts “L” and
“R” denote the left- and right-hand sides of the
boundary. We have considered a region of energies
where both sides of the junction have allowed energy
bands which are adequately approximated by

E. (k)= Eot+1°k*/2ma* .

(2.2)

(2.3)

An alternative statement of Eq. (2.2) is obtained by
noting that, if we permit the change in energy-band
structure with position to be simulated by a spatially
varying effective mass m*(x), then the appropriate
Hermitian one-electron Hamiltonian is

B2
H=——V_.
2

V4TV (x). (2.4)

m(X)

Equation (2.4) is the analog of Harrison’s' Eq. (4)
in which a=m"1 and f=1. Equation (2.2) represents

8 See, e.g., J. C. Slater, Phys Rev. 76, 1592 (1949);
]ames, zb1d 76 1611 (1949) . Kohn, Solid State Phys 5 238
(1957).
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the limiting case of (2.4) for an abrupt junction in one
dimension.

Equations (2.2) or (2.4) guarantee that within the
energy region for which Eq. (2.3) is an adequate
approximation, we lose no information in the matching
condition on the derivative of ¥ by using only the
envelope function f. However, we always lose the
information contained in the Bloch functions when,
in the effective-mass method, we apply the boundary
condition of continuity of f rather than continuity of .
Thus the method is valid only when the Bloch functions
do not change rapidly as a function of k over the
energy range of interest. This condition is usually
satisfied if Eq. (2.3) is an adequate approximation of
the one-electron energies, (i.e., near a stationary point
on the one-electron energy surface).

We use in this paper the abrupt-junction approxi-
mation for which Eq. (2.2) is relevant. In p-» junctions
this boundary condition is most relevant for hetero-
junctions® although for purposes of illustration we
apply it herein to a GaAs homojunction. In the uniform-
field,? as well as junction-potential,’® models of tunneling
in homojunctions, one considers the tunneling to be
induced by interband matrix elements of an appropriate
slowly varying junction potential superimposed on a
single underlying band structure. Like these models,
for a uniform-field p-» junction the generalized Bethe-
Sommerfeld model gives the Zener transition proba-
bility, exp(—CE"?/F), where E, is the band gap,
F=¢E, E is the constant field strength, and C is a
constant which depends on the point in the junction
at which the change in mass is imposed according to
Eq. (2.2). However, the generalized Bethe-Sommerfeld
model is less relevant for p-» homojunctions than the
junction-potential model. We propose it for abrupt
heterojunctions and as a rough alternative to the
junction-potential model of homojunctions on the basis
of which one can obtain qualitatively correct results
with much less labor.® The features of p-» tunneling
discussed herein, i.e., the effects of the bias dependence
of the space-change region and the behavior of the
conductance near a band gap, have not previously been
discussed using the junction-potential model.

Within the framework of a one-electron approxi-
mation, we expect our abrupt-junction boundary con-
ditions to describe adequately tunneling in M-O-SM
junctions for energies near the band edges in the
semimetal.

We conclude this section by reiterating, for later
reference, some well-known!%1 formulas for the tun-
neling current density from the left to the right of a
tunnel junction, with the boundary condition of con-

9 D. M. Cook has recently reviewed the one-electron model of
heterojunctions in General Electric Research Laboratory Report
No. 63-RL-3516G, 1963 (unpublished).

(110 % R. Fredkin and G. H. Wannier, Phys. Rev. 128, 2054

962).
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servation of the components %,; of k parallel to the face
of the junction.

dme ™
]LR=7 dEg[ fo(Er+eV)— fo(Er)]

—00

X / dk”Z(k.,,ER), (2.52)

(2m)?
fo(E)={1+exp[ (E—p)/xT ]} .

We use « to denote Boltzmann’s constant, u the
chemical potential, V' the bias applied to the left-hand
side of the junction, e the magnitude of the electron
charge, and Z the barrier penetration probability cal-
culated from the one-dimensional generalized Bethe-
Sommerfeld model. The left-hand side of the junction
is taken to have either electron (4+) or hole (—)
spherical surfaces of constant energy centered about
k=0.

(2.5b)

Ep==12k.2/2my,. (2.62)

This side is the metal in the metal-semimetal junctions
and the p-type side in the GaAs p-n junction. The
right-hand side has the spherical energy surfaces

#2

Ep=AE+—— (ki g~ ku,0)2+ (ki r—k10)?] (2.6b)

ZmR

centered about ko, either electron(+)- or hole(—)-like,
and with the bottom of the band shifted by AE relative
to the bottom of the band on the left-hand side of the
junction. We finally note that in accordance with Eq.
(2.1c), only the shift of the energy spheres in the &,
component affects the kinematics of the tunneling in
the M-O-SM junctions.

III. p-n TUNNEL JUNCTIONS

As stated in the Introduction, we reconsider the
calculation of the conductance of tunnel diodes from
the standpoint of the generalized Bethe-Sommerfeld*
model rather than the uniform-field model*! for two
reasons. First, we examine the tunneling near a band
edge without the use of either the WKB] approxi-
mation or its equivalent.? Second, a previous discussion
of space-charge effects in metal-semiconductor contacts’
led to the conclusion that these effects caused a re-
sistance maximum near zero bias. As similar con-
ductance minima have been observed in p-z diodes,?
we calculate the conductance in highly asymmetrical
tunnel junctions for which, in the limit that one of the
contacts is much more heavily doped than the other,

11 See also E. O. Kane, J. Phys. Chem. Solids, 12, 181 (1959);
P. N. Argyres, Phys. Rev. 126, 1386 (1962).

2R. N. Hall, J. H. Racette, and H. Ehrenreich, Phys. Rev.
Letters 4,456 (1960) ; R. N. Hall, in Proceedings of the International
Conference on Semiconductors, Prague, 1960 (Academic Press Inc.,
New York, 1961), p. 193; R. A. Logan and J. M. Rowell, Phys.
Rev. Letters 13, 404 (1965); R. M. Williams and J. Shewchun,
7bid. 14, 824 (1965); 15, 160 (1965).
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we recover the metal-semiconductor Shottkey barrier
case.

The abrupt-junction model of a p-» homojunction
is illustrated in Fig. 1. The most important feature to
be incorporated into any model of the junction.is a
description of the change in the junction-potential with
applied bias. The abrupt-junction model reproduces
this feature, and in addition leads to a potential for
which the one-electron Schrodinger equation is exactly
solvable in terms of Weber functions.’® The junction
between the p- and #-type material is taken at x=0.
At this point we use the heterojunction joining con-
dition, Eq. (2.2), and continuity of the envelope
function f as the boundary conditions. In the abrupt
step-junction model, the negative space-charge in the
left-hand plane terminates at x=—d, and the positive
space-charge in the right half plane at x=d,. The
negative of the space-charge and the corresponding
potential energy of an electron is shown in Fig. 1.
Continuity of both f and f’ are required at x=—d,
and x=d,. When a bias V is-applied to the p-type side
of the junction, the potential energy is given by

V(x)=Ve—eV x<—d,

21N .62
=Vo—eV—-< >(x—i-afp)2 —d,<x<0
€0
3.1
27!'Nd62 ( )
=< >(ac—d,,)2 0<x<d,
€0
=0 x>dy

B3, C. P. Miller, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 685.

1 See, e.g., L. P. Valdes, The Physical Theory of Transistors
(McGraw-Hill Book Company, Inc., New York, 1961).
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Ne=3x10", Ng=3x10"
[,=51.5 meV, [ =504 meV

\ ——— Ng=3x10'% | Ng=3x10"®
\ _;u=51.5 meV, { =109 meV

\ e Np=310", Ngz1x10™®
$,=51.5 meV, { =52.1 mev”~

m \
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Fi16. 2. Conductance as a function of applied bias calculated for
a GaAs diode at 4.2°K. The doping ratios are indicated in the
figure. The parameters E,=1.55 eV, (m./m)=0.07, (mn/m)
=0.17, and (mn/m),=0.65 were used in the calculation. (The
quantity » denotes the free-electron mass.)

in which V, is the junction potential, ¢ is the static
dielectric constant of the junction material, IV, is the
acceptor concentration, and N4 the donor concentration.
We consider only degenerate semiconductors at low
temperatures for which

Vo=Egt+{at Ig‘PI ’ (32)

where E, denotes the band gap, {, the electron Fermi
energy, and {, the hole-Fermi energy. We do not in-
corporate small alterations in Eq. (3.2) associated with
the details of the band theory of very degenerate
materials' as they do not change our qualitative
results. The continuity of ¥ (0) and V’/(0) imposes on
d, and d, the conditions

Nod 24 Nad:2=e(Vo—eV)/2me?, (3.3a)
Nady=Nad,. (3.3b)

From Egs. (3.3) and (3.1) we compute the junction
parameters for any given applied bias V.

Using the boundary conditions specified above, the
transmission probability associated with a one-electron
eigenstate of energy E=E; 4 E, is given by
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in which mp is the electron mass and m;, the (positive)
hole mass. Only the contribution to the current due to
the light holes has been calculated, although the Fermi
energy is located by filling both the light and heavy
hole bands. The quantities X and ¥ may be written in
terms of the two linearly independent solutions U (a,x)
and V(e,x) to Weber’s equation.’® The complete ex-
pressions for X and Y are given in Appendix A.

The conductance dJ/dV is calculated by using the
expressions (3.4) in Eq. (2.5) and performing the two-
dimensional integral numerically. The scale of J(V)
differs drastically from one doping level to the next.
To get representative results on the same graph, we
show in Fig. 2 the conductance at 7=4.2°K associated
with various doping ratios (N./Ng) plotted on an
arbitrary scale. Comparison of these results with the
experiments of Ref. 12 indicates that the observed con-
ductance anomalies near zero bias are too narrow to be
adequately described by our independent-particle
model. The conductance minimum near zero bias for
highly asymmetric junctions is a consequence of the
fact that in this case, we begin to recover a metal-
semiconductor contact” in which the dropoff in the
density of states in the p-type material prevents a
well-formed conductivity minimum at eV ={,.

Summarizing, we see from Fig. 2 that the bias-
induced alteration in the transmission probability
calculated from a single-particle model can introduce
structure in the conductance both near zero bias and
near the valley-current region. The Bethe-Sommerfeld
model, as we have developed it, is thought to be appli-
cable for the description of the prephonon current in
direct-band-gap tunnel diodes. The experiments in

BAND DIAGRAM FOR
M-0-SM TUNNELLING

16k1ks b7 1

= o LT (3.4a)
ki=kr= 2mgE,/#)\?, (3.4b)
ka=kr= 2mpE,/#*)"?, (3.4¢)
bo="[16wmrN ae*/ Hleo ], (3.49)
bs=[16wm N e/ #2eo /4, (3.4¢)

Rev. 131, 627 (1963).

15 . Bernard, H. Roth, A. P. Schmid, and P. Zeldes, Phys.
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Fic. 3. The potential energy band diagram for M-OSM tun-
neling. The linear variation of the barrier was approximated by
an average value, corrected for space-charge effects. The electron
mass in the metal and in the barrier were taken as the free-
electron mass m,.
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Ge %16 junctions were not designed to study the details
of the conductance as a function of bias and doping.
They, at most, verified an approximate inverse-field de-
pendence of the exponent in tunneling probability. We
have pointed out that this dependence is a consequence
of the Bethe-Sommerfeld model as well as the Keldysh-
Kane model. The current-voltage curves in silicon
diodes have been studied by Logan and Chynoweth!’
and interpreted in terms of Kane’s more recent theory
of tunneling in impure semiconductors.!® Their results,
like those of Hall et al.?? without the zero-bias anomaly,
are consistent with conductance-bias plots like the
solid line in Fig. 2. Finally, we have made no corrections
either for the Coulombic image forces in the space-
charge region® or the Coulombic electron-hole final-
state interaction.?® As these corrections can be signifi-
cant, they should be made before detailed comparison
of the model with experiments are warranted.

IV. METAL-OXIDE-SEMIMETAL (M-O-SM)
TUNNEL JUNCTIONS

Also within the framework of the generalized Bethe-
Sommefeld model, we consider the description of
tunneling current between metals and semimetals
through a barrier of oxide. Of particular interest is:

16 D. Meyerhofer, G. A. Brown, and H. S. Sommers, Jr., Phys.
Rev. 126, 1329 (1962).

17 R. A.Logan and A. G. Chynoweth, Phys. Rev. 131, 89 (1963).

18 E, O. Kane, Phys. Rev. 131, 79 (1963).

1 See, e.g., J. G. Simmons [J. Appl. Phys. 34, 2581 (1963)]
for an extensive study of these corrections in metal-insulator-
metal junctions.

2 W. Franz, Z. Naturforsch 14a 415 (1959); C. B. Duke and
G. D. Mahan, Bull. Am. Phys. Soc. 11, 182 (1966).

ev

(1) the existence of contributions to the tunneling
current from both the conduction and valence bands in
the semimetal.

(2) The division between the oxide and a space-
charge layer in the semimetal of the total (applied plus
contact potential) bias across the junction.

(3) The effect of differences in the metal and semi-
metal work functions (i.e., contact potential) and of
surface states at the oxide-semimetal interface on the
space-charge layer.

These features are illustrated in the band diagrams
of Fig. 3. We adopt the convention of measuring the
bias voltage in units of electron potential energy, and
taking as our reference the bottom of the semimetal
conduction band or the top of the valence band as
appropriate.

The exact spatial behavior of the space-charge layer
in the semimetal has been analyzed in Appendix B. We
have demonstrated there that an adequate approxi-
mation to the exact solution for the potential in this
region is an exponential decay into the interior whose
characteristic length is given by the linearized Poisson
equation. The total potential drop across the space-
charge layer is determined by the interface boundary
condition on the potential and the electric displacement
vector. In the absence of a contact potential and of
surface states, a flat band condition prevails at zero
bias. At nonzero bias the total potential change between
the metal and semimetal is shared between the oxide
and the space-charge layers, the proportions being a
sensitive function of the relative dielectric constants.
Figure 4 shows the value of the potential drop across
the space-charge layer as a function of applied bias for
some typical experimental parameters. The role of a
nonzero contact potential is identical with that of a
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F1G. 5. The effective-mass electron and hole Fermi surfaces for
the trigonal face of bismuth. The quantities P,=#2k; 2/2m;=1.08
eV and P,=0 used in Eq. (4.4) are obtained from this figure.

fixed reference bias voltage. Finally, surface states
provide a discontinuity in the displacement vector for
electron surface states; the potential barrier is enhanced
for electrons tunneling from the semimetal and there-
fore, in that case, this will tend to diminish contact
potential effects if @sm— ¢n>0. We have assumed a
density of surface states ~102/cm? as suggested by
Bardeen. Therefore, our model of the electrostatic
potential-energy barrier in M-O-SM tunneling is, in
the semimetal,

o=Ue s, 0,<a<+o,

67"1082 1 1
]
€sm §' e I §' h‘
where U=U(V) is discussed in Appendix B; 7, is the
electron (hole) density in semimetal; and {,, {» are the

electron and hole Fermi energies, respectively. In the
oxide we have the potential

=% (PmTt Gsm) —Xozt (€V—U)[1+4 (x/x5)];
—xp . <a<0_,

(4.1a)

(4.1b)

(4.1¢)

where ¢m, gsm=metal, semimetal work functions, V is
the bias applied to the metal, X,, is the oxide electron
affinity, and «; is the barrier thickness. Finally, in
the metal, we have the constant electrostatic potential

(4.1d)

We have further approximated the barrier in the
oxide by replacing the linear spatial variation by the
value o(—xp)+(eV—U)/2.

The exact solution of the free-electron wave equation
in the semimetal is given by Bessel functions of imagi-
nary order and real or imaginary arguments. The
detailed discussion of these solutions is relegated to
Appendix C. By invoking the boundary conditions
discussed in Sec. II, one obtains an expression for
the tunneling probability for use in Eq. (2.5a) as

o=—eV, —olx<lxp.

2 J, Bardeen, Phys. Rev. 71, 717 (1947).
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follows:
16k1ksy2e 2Y%my/m 1
ZM-0-sM= (4.2)

(R2+ Tz) (727”32/ m22+k32) ’

where m,, ms, mz=-effective masses in the semimetal,
oxide, and metal, respectively; ki, ks=normal com-
ponent of the effective one-electron momentum in the
semimetal and metal, respectively ; y=decay coefficient
in the oxide;

RE’YSl'— (M2/'M1)SI’ )

T=vSs— (ms/m1)Se’ , (4.2a)
where we have defined for convenience
Sl+1S2E'p(O) )
S’ +i4Sy'=y¢/(0). (4.2b)

Appropriate series expansions for ¥ (0) and y’(0)
are given in Appendix C.

The expression for the tunneling probability given
by Eq. (4.2) is exact except for neglect of terms in
€~ in comparison with et7%,

As an example of an M-O-SM junction, we have
considered tunneling between the trigonal face of

CONDUCTION
BAND

~n
T

3J/3V (ARBITRARY UNITS)

TUNNELLING CONDUCTANCE
FOR MOSM JUNCTIONS

[~ CONDUCTION AND VALENCE
BAND CONTRIBUTIONS

Fi1c. 6. This figure shows the separate conduction- and valence-
band contributions to the tunneling conductance for the cases (a)
square-barrier approximation neglecting space-charge effects; (b)
space-charge effects; (c) space-charge effects including a contact
potential of 0.54 V and 10?/cm? electron surface states. For
positive bias the average barrier height is decreased whereas for
negative bias it is increased. This effect is responsible for the larger
space-charge-induced changes in the conductance at positive bias.
The corrections to the effective-mass approximation for large
values of | V| flatten out these curves. The use of a multiple-band
model, on the other hand, enhances their rise away from zero bias.
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bismuth, through a barrier of oxide into aluminum.
The projection of the effective-mass Fermi surfaces of
bismuth as seen by the aluminum is shown on Fig. 5.2:22
Following the discussion of Sec. II, the elongated and
tilted Fermi-surface ellipsoids have been replaced by
spheres. We recall that the shift in the normal com-
ponent of ko of the center of the Fermi spheres does
not enter the calculation, in the effective-mass
approximation.

In the kinematics, we have utilized conservation of
energy and momentum in the direction parallel to the
junction plane (specular reflection) and have replaced
the small azimuthally dependent term in the calculation
of k3(k:) by its angular average, which is zero. The
relations one obtains for ki, ks, and v in terms of the
total kinetic £ and the component E,, parallel to the
plane of the junction in the bismuth are

2m1 12
k1=<—“(E—Eu)) 3
h2

ZM3 my Pe 12
ka‘—‘(‘f;{:’:E‘i‘eV'l‘fe,a——l: +En:”)

mgLLp

2m3 1/2
zC—gQ, (4.4)

#2?

2ms ( @st @sm $e
'Y=(—“{ —Xouc:i:I: “'E‘I‘En]
7 2 h,1

(4.3)

—aw—wbm,@a

2Y. Kao, Phys. Rev. 129, 1122 (1963).

|
-032

| | | | | | |
-.008 0 .008 .0l6 024 .032 040 .048
vV (eV)

1 I
-024 -.06

where the upper sign or quantity refers to the con-
duction band and, consistent with taking the top of
the band as our reference in the case of the valence
band, the lower sign or quantity refers to the holes.
The quantity P is the displacement of the center of the
Fermi spheres of the bismuth, as taken from Fig. 5.

Figures 6 and 7 show the behavior of the conductance
dJ/dV as a function of V for the conduction and valence
bands and their sum, respectively. On each figure, the
calculation for: (a) the simple average-height square
barrier; (b) the average-height adjusted square barrier
plus the space-charge region of the semimetal utilizing
a flat band condition at zero bias; and (c) the average-
height adjusted square barrier plus the space-charge
region of the semimetal including a 0.54 eV positive
contact potential and 10'2/cm? surface states distributed
uniformly between £0.025 eV.

These and other results indicate that inclusion of
space-charge, contact potential, and surface states does
not significantly alter the fundamental character of the
conductance curves. In particular, one effect is the
slight lower of the adjusted average-height square
barrier because that part of the voltage drop or of the
contact potential always appears across the space-
charge layer. Thus, in the case of positive V, the barrier
does not rise quite as much with inclusion of the space-
charge layer [cases (b) and (c)] as when this layer is
neglected. This may be seen as the effect of U on v in
Eq. (4.5). Also the space-charge layer acts to modify
the dynamics of the electrons in both bands in the
bismuth (band bending). These effects are illustrated
in Fig. 8. For any reasonable choice of parameters, the
voltage drop across the space-charge layer is small in
comparison with the barrier height provided by the
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QUALITATIVE EFFECT s
OF BAND BENDING ON Y
VALENCE BAND

WKBJ,

/ SQUARE BARRIER

EFFECT OF
BAND BENDING
ALONE BAND BENDING PLUS
BARRIER ADJUSTMENT

V(BIAS)

Fic. 8. The qualitative behavior is shown of the conductance
curves for the valence-band component of M-O-SM tunneling.
The WKB]J approximation rises ~ (|{r|+V) from the band edge;
the exact square-barrier model, which as an additional prefactor
~ky, rises as (|| 4+ V)32 The effect of band bending alone is to
enhance this component of tunneling for negative bias and depress
it for positive bias. The voltage drop across the space-charge
region, however, is reflected as a modification of the barrier height,
which overcomes the effect of band bending. For the continuum
electrons in the conduction band, the average barrier effect tends
to enhance the space-charge effect.

oxide. This fact provides the essential difference between
the rather marked effects seen in p-» junctions and the
relatively small effects in M-O-SM tunneling. The small
effects of both removing the WKB] approximation! and
including the space-charge-induced “band-bending”
demonstrate the inadequacy of the interpretation of
their tunneling experiments on Al-oxide-Bi junctions
suggested by Esaki and Stiles.? However, we have not
included the contributions to the tunneling current due
to electrons trapped near the surface by an attractive
space-charge potential.?

The negative conductance exhibited by the valence
band at negative biases |eV|<|{x| is due to the
lowering of the oxide barrier height with applied bias.
Although the effect is small in our application, it is
thought to dominate the conductivity at large bias
values into degenerate semiconductors.?

Note added in proof. Since the submission of this
manuscript we have performed an analysis of the con-
tributions to the conductance of localized, discretely
spaced two-dimensional energy bands for which the
electron motion normal to the plane of the junction is
described as a bound state in the accumulation region
near the oxide—semimetal interface in Fig. 3.25 When
such a state occurs at zero energy, the conductance
due to continuum electrons may be found from Egs.
(2.5) and (4.2) to be Ga(eV—¢,)!/2 for an electron band.
This result still does not justify the interpretation given

B F, F. Fang and W. E. Howard, Phys. Rev. Letters 16, 797
(1966) ; A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles,
ibid. 16, 901 (1966). )

2¢ L. Esaki and P. J. Stiles, Phys. Rev. Letters 16, 1108 (1966)

25 D. J. Bendaniel and C. B. Duke, General Electric Research
and Development Center Report 66-C-331, 1966 (unpublished).
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in Ref. 2. However, for localized states with binding
energy Eg>0 one obtains? an additional contribution
to the conductance which is proportional to the two-
dimensional density of states for motion parallel to the
plane of the junction, and of magnitude roughly (Eg/¢.)
relative to the continuum electron conductance at zero
bias, Structure in the conductance near zero bias,
similar to that reported in Ref. 2, can be attributed to
such localized states associated with either a very
narrow electron band or with several wider bands in a
multiple band model.

ACKNOWLEDGMENTS

The authors are indebted to V. Scavullo for assistance
in programming and to Dr. C. P. Bean, Dr. L. Esaki,
and Dr. I. Giaever for discussions on the material
presented in Sec. IV.

APPENDIX A: COEFFICIENTS FOR THE
TRANSMISSION PROBABILITY IN AN
ABRUPT p-n JUNCTION

The following expressions specify the quantities used
in Eq. (2.4) in the text. All symbols are defined in the
text.

X=— bzbs{ V’ ((12,0) V’ ((13,0)M3
+ U’ (a5,0) U’ (2,0) M s— V' (a2,0) U’ (a3,0) M 4
=U’ (02,0) Vv’ ((13,0)M1} —|—k1k4{ v (02,0) V(da,O)Ma
+ U(dz,O) U(dg,O)Mz— VI ((12,0) U/ (03,0)M4

—U"(a2,0) V' (a3,0)M 1}, (A1)
V=— bzk4{ V' (ag,O) V (aa,O)Ma
+ U’ (dz,O) U((Zs,O)M2— V’ ((12,0) U(da,O)M4

—U'(a2,0)V (a5,0)M 1}, (A2)

M= (bs/m1)V (a5,b2ds) U’ (a3,b5d5)
— (ba/mr)U (a3,b3dp) V' (ag,02dn) ,  (A3)

M2= (ba/mL) V(dz,bzdn) V/ (G/S)bl’»dp)
— (bao/mR)V (as,bsdp) V' (a2,02d5) , (A4)

M3= (bg/mL) U(dg,b2dn) U/ (aa,bsd,,)
— (bo/mr)U (as,bsdp) U’ (as,b2dn),  (AS5)

M= (bs/?’ﬂl,) U(dz,bzdn) v’ (a3;b3dp)
- (bg/mk) V (da,bgdp) U (az,b2dn) . (Aﬁ)

The forms of Ul(a,x), V(a,x), and their derivatives at
x=0 are known (see Ref. 13). In numerical calculations
their ‘‘thick-junction” asymptotic forms were used
when x=‘bd” in the above formulas. The parameters
a2 and @3 are given by

k2 #2eo 1/2
ar= ——[———] , (A72)
2 41rmRNde2
¥ Heo 12
az= —-—l:——-—] . (A7b)
2 LArm N 4e
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APPENDIX B: SPACE-CHARGE LAYERS AT
INSULATOR-SEMIMETAL CONTACTS

We adopt the model of a semimetal in which electrons
and holes in parabolic bands are treated as a two-
component electrically neutral plasma. At an oxide
interface, space-charge regions occur just as in de-
generate semiconductors’ only in this case the space-
charge is mobile rather than the charge on immobile
ionized donors or acceptors. Denoting by a subscript e
the electron parameters, by a subscript % the hole
parameters, and by ¢ the bulk Fermi energies of the
semimetal at zero temperature, Poisson’s equation for
the one-electron potential energy # is given by

a*u dre?

—- _G_R[ne(x)—nh(x)]

(B1)
in the absence of surface states. The quantities 7.(x)
and #,(x) are the particle densities of electrons and
holes, respectively, and we have taken the semimetal
to extend from x=0 to x= . The boundary conditions
on Eq. (B1) are

lim #(x)=0, (B2a)
lim du/dx=0. (B2b)

At zero temperature the particle densities are given
by the Fermi-Thomas model to be

ne(x) =no[1—u/C P20 c—u), (B3a)
mn () =no[1+u/| | TR0(|n| —u),  (B3b)

where 7, is the bulk particle-density of electrons and
holes and

0(x)=1; x>0
=0; x<0. (B4)
In this case Eq. (B1) can be reduced to the quad-
rature
SGR 1/2 u(z)
x= du/D(y), (BSa)
(167”’!062) L(o)

D<y>={o(u I;h[)ml[u. l;[]slz—ls“hl—?e

5/2y1/2
+e(1—%)§el:1—g—] } . (BSh)

The quantity #(0) is determined by considering a
particular model of the total metal-oxide-semimetal
junction. In the absence of surface states the difference
in the work function of the semimetal ¢, and that of
the metal ¢m IS A= @sm— om. We take the model in
which the voltage drop of Ap+eV is divided between
an oxide layer of thickness %, from x=—x; to =0
and the semi-infinite semimetal. The boundary con-
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F16. 9. Comparison of the exact space-charge-induced potential
with the exponential approximation to it. The relevant parameters
are indicated in the figure. The value of # at x=0 is determined
from Eq. (B7). The exact potential is obtained from Eq. (BS)
and the exponential approximation from Eq. (B8).

ditions at the oxide-semimetal interface are

u(x— 0)=u(x— Ozr), (B6a)
e (x— 0r)=egu/ (x — Op) (B6b)
u(x)=F(x+xp), —x:<20<0  (B6c)
Apt+eV=—u(0)+Fxs, (B6d)

where F is the field due to the constant field in the
oxide. #(x) is just the electrostatic component of the
potential and is augmented in the oxide by a square
barrier of height V=% (¢m=+ @sm) —Xox- By taking the
derivative of Egs. (B5a) and (B6c) we can eliminate
F and obtain the set of coupled equations for #(0) and
#'(0), i.e.,

U=u(0)=—A¢—eV+(ertt' (0)xp/er), (B7a)
#' (0)=—sgn(V) (16wne®/5er)V2D[U].  (B7b)

To obtain the space-charge potential in the semi-
metal for a given bias, Eqs. (B7) were solved iteratively
on a GE235 computer and then the potential was cal-
culated from Eq. (BS).

In calculating the tunneling current, we used the
exponential barrier shape obtained by using the solu-
tion to the linearized form of Eq. (B1) for the particle
densities, Eq. (B3). This solution is

u(x)=U exp[—kpx], (B8a)

671'%062 1 1
L L
€R g- e l g'hl
Even for sufficiently large bias such that #(0)>>¢., ¢
the linear approximation represents the exact solution

to within 10-20%,. An example for the most extreme
parameters used in the analysis is shown in Fig. 9 to

(B8b)
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illustrate the accuracy of the linear approximation.
The semimetal parameters are those appropriate for
Bi at a Bi-Al:0.-Al junction.

Next, consider the modification of the above results
imposed by a band of surface states which trap

ns=ps[ (eV+Eg)0(eV+Ep)0(Ez—eV)
+2Eg0(eV—Egp)] (B9a)

states per unit area at the oxide-semimetal boundary,
where p, is the number of states per unit energy and
area. The charge density associated with these states is
os= (sgng)en, (B9Db)
where sgng denotes the sign of the trapped carriers.
The effect of these states is to alter the condition of
continuity of D in Eq. (B6b) to give
eLu’(x—>0L)=eRu'(x—>OR)—41ras|e[ . (BIO)
(Recall that # is the potential-energy seen by an
electron.) Thus the net effect of surface states on our
previous analysis is to replace Eq. (B7a) by

U=u0)=—Ap—eV
+ (xs/er) (ert’ (0)—4masle]) (B7c)

which is solved iteratively with Eq. (B7b).

APPENDIX C: WAVE FUNCTIONS IN AN
EXPONENTIAL POTENTIAL

The Schrodinger equation in the semi-metal is

2| m
Y'=——(WFUe %)y,

- (c1)
where the minus sign applies to the conduction band
and the plus sign to the valence band where, in that
case, the mass |m;| and the kinetic energy |W| are
used, with W measured from the top of the band.
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The solutions of Eq. (C1) are linear combinations of
the two Bessel functions? given by
1/2
@] ). ©

1 Zmer““n“
Yar~J :FZiKl/kD<—_ —[_——
KD #2
where
b= Qm,/H)W 12,

For the calculation of the barrier transmission it is
sufficient to know the outgoing solution and it is con-
venient to normalize such that

Y — eth1e (C3)

as x— +oo.
We obtain

Yi=[GI T (14)],(Ge07), (€39

where I'(2) is the complex gamma function,?® and we
adopt the notation

8mi(F)U
G=—- (C4a)

72 (—«p)?
v=—2ik1/kp. (C4b)

Utilizing the general series expansion for the Bessel
functions? the resultant expressions for the amplitude
and slope of the wave function at =0 are

= (—1G)T(1+»)

¢(())=Z —_—, (C3)
=0 T (14v+0)
and —1@) G (14v)  kpry(0)
VO)=3 —= . — - (0

=0 4(—1) T (14r+1) 2

These summations are obtained by summing the series
numerically using the standard complex two-term
recursion formulas.

2% F. W. J. Oliver, in Handbook of Mathematical Functions
edited by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 355.

26 P_ J. Davis, in Handbook of Mathematical Functions edited by
M. Abramowitz and I. A. Stegun (U. S. Department of Commerce,
National Bureau of Standards, Washington, D. C., 1964), Appl.
Math. Ser. 55, p. 253.



