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Attenuation and. Rotation of Plane-Polarized Ultrasound in Copper
in a Longitudinal Magnetic Field*
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The rotation of the plane of polarization and attenuation of a shear sound wave at 4.2'K have been
measured for the propagation vector q parallel to the magnetic Geld B in the L001j direction in copper. Fre-
quencies from 30 to 110 Mc/sec were used. Both the attenuation and rotation are periodic in v/8, where v

is the sound frequency. The period for the attenuation is 0.0201&0.0005 Mc/sec G, whereas the period for
the rotation is 0.0402&0.001 Mc/sec G. A theory is presented which describes this eifect. The oscillations in
the attenuation are of the type predicted by Kaner, Peschanskii, and Privorotskii, with a peak in the at-
tenuation preceding an absorption edge. An absorption edge is observed at about one-fourth the magnetic
Geld value expected for the free-electron case. The results are interpreted in terms of the Fermi surface of
copper as put forth by Roaf. A method is suggested for determining co,7, where ~, is the cyclotron frequency
and r the relaxation time; a value of mA=0. 381+0.009X10» g cm/sec is assigned to electrons with
orbits near the plane k, =0.45 X10 cm ', where m, is the cyclotron effective mass, 8, is the drift velocity, and
h, is the L001j direction.

I. INTRODUCTION

HE literature in recent years has carried the results
of many measurements of the attenuation of

ultrasound in a metal in a transverse magnetic Geld.

However, very few experimental results have been
reported for the longitudinal-Geld case, i.e., where B~~q

(q is the propagation vector of the sound wave). The
theory of ultrasonic attenuation in pure metals at low

temperatures for shear waves propagating parallel to
an external magnetic Geld has been worked out by a
number of authors. ' '

These authors consider a circularly polarized shear
sound wave propagating in a metal single crystal. The
external magnetic Geld B and the propagation vector q
are taken along the s axis of a coordinate system. Thus
the lattice displacement s, the lattice velocity u = Bs/Bt,
and the resulting internal electric ield I are all perpen-
dicular to B. These conditions are those which charac-
terize a cyclotron resonance experiment except that the
frequency co of the sound wave (and hence of the electric
field E) is lower by a factor of about 10' than the fre-

quencies employed in such experiments. However, as
an electron executes an orbit on the Fermi surface in a
plane perpendicular to B it also drifts along the axis
with a velocity v, which is the average s component of
its Fermi velocity. Therefore the electron does not see
a sound, wave of frequency ~, but rather a Doppler-
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shifted or "effective" frequency ~, given by

co,=(u(v, /c, —1),
where c, is the velocity of sound in the sample.

It is possible for an electron to gain energy from the
sound wave via interaction with the accompanying
electric 6eld (we neglect the deformation potential
contributions here) if the electron stays in phase with
the sound 6eld, and if its mean free path t is long
enough so that it may sample the electric Geld over a
distance of the order of a wavelength of sound before it
is scattered. Such a condition of constant phase will
be met by an electron which executes one cyclotron orbit
around the Fermi surface while traveling in the s
direction a distance equal to one wavelength of sound.
This amounts to setting co,=co, .'

(o, = co (t,/c, —1),
where ~,=eB/sss, c is the cyclotron frequency and m, is
the cyclotron mass of the electron. (Since v,/c, ))1 for
most electrons, the 1 will be neglected in most of the
discussion that follows. )

It can be seen that, for values of B such that
co,(&o8, '"/c„ there will be a group of electrons on the
Fermi surface with the correct value of 8, to satisfy
Eq. (2) and. that these electrons will gain energy from
the sound wave, thus giving rise to attenuation. It is
possible of course that the magnetic Geld may be so
large that Eq. (2) cannot be satisied by even the maxi-
mum value of 8,. In this case the attenuation falls off
to zero and one observes the absorption edge Grst
predicted by Kjeldaas. '

Circularly polarized sound, waves are 4'&cult to
generate, but one may perform the experiment with
plane-polarized shear waves, making use of the fact that
such waves can be resolved into right- and lef t-circularly
polarized waves of equal amplitudes. As these two
waves propagate through the metal they suffer different
velocity changes and hence acquire a phase difference.
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This causes the plane of polarization of the sound wave
to rotate by one half the phase difference of the right-
and left-circularly polarized waves. Since the receiving
transducer is sensitive only to the component of particle
motion in a particular direction, this rotation results in
an "apparent" attenuation added to the true attenua-
tion of the wave.

The rotation of the plane of polarization has been
studied by Kjeldaas' in terms of the magnetoconduc-
tivity tensor, and by Kotkin' and Vlasov and Filippov, 4

who relate it to the dynamic elastic constants of the
metal.

There are few published papers dealing with the
experimental observation of these effects. Mackintosh'
has measured the attenuation of plane-polarized shear
waves in tin and Jones' has reported similar measure-
ments in aluminum. Although both of these papers
report the observation of absorption edges in the
attenuation as a function of the magnetic field, neither
took into account the rotation of the plane of polariza-
tion which, according to Kjeldaas, ' should be greatest
at the absorption edge. Miller~ has measured the
attenuation of circularly polarized sound waves in tin.

The purpose of this investigation is to measure the
rotation of the plane of polarization of a shear sound
wave in copper as a function of magnetic field intensity
and sound frequency and to determine the true attenua-
tion curve by correcting for the effects caused by the
rotation. The results are interpreted in a simple
geometric manner in terms of the expression for the
Fermi surface of copper as put forth by Roaf. '

In Sec. II the theoretical ideas are reviewed. In
Secs. III and IV the experimental arrangement and
method of data analysis are given. Section V presents
the experimental results and Sec. VI deals with the
interpretation of the results.

A preliminary report of the results of this work has
already been published. '

II. THEORY

Most of the theoretical work on this problem has
assumed the validity of the free-electron theory of
metals. The work of Kotkin2 does not contain this
assumption, but he does assume an infinite electron
mean free path. The results of the free-electron theory
will be quoted here and then we shall consider the
effects that arise from a nonspherical Fermi surface.

%e consider a transverse sound wave propagating
through a metal single crystal in a direction of cubic

K. B. Vlasov and B.N. Filippov, Zh. Eksperim. i Teor. Fiz.
44, 922 (1963) PEnghsh transl. : Soviet Phys. —JKTP 17, 628
(1963)j.' A. R. Mackintosh, Phys. Rev. 131, 2420 (1963).

' B. K. Jones, Phil. Mag. 9, 217 (1964).
' B.I.Miller, Bull. Am. Phys. Soc. 10, 371 (1965).' D. J.Roaf, Phil. Trans. Roy. Soc. London A255, 135 (1962).
' J. D. Gavenda and J. R. Boyd, Phys. Rev. Letters 15, 364

(1965).

e I'(k. ,y')
ii (k„P)= — —exp

„(v,(k,) toe

where

and
I'(k) = —ev (E mu/er)= —ev—D—

f(r,k, t) = fe t)(r,k, t) (c)fs/8 —e) .

One may calculate the electronic current as follows:

j= (e/4'') vs(8 fs/ae)dk.

We now use Maxwell's equations to eliminate j:
VXb= (4'/c) (j+J), cVX E= —Bb/&&, (8)

where J is the lattice current and b is the magnetic field
set up by the sound wave. Finally we proceed to the
equation of motion of the lattice:

c)ss/cip = cosciss/cia&+ F

where I"~ is the force per unit mass acting on the ions
and co is the sound velocity in the absence of any
perturbations. There are two such forces, the I.orentz

& T. Holstein, Phys. Rev. 113, 479 (1959).

symmetry and parallel to an external magnetic field B.
Vlasov and Filippov have shown that, for such a
situation, the normal modes are circularly polarized.
The direction of propagation is taken along the 2 axis.
The space and time variation of the sound wave is
assumed to be given by expLi(qs —o&t) $. It follows then
that all quantities which depend on the sound 6eld,
such as the particle velocity u and the electric field E,
have the same space and time dependence; therefore
one may write 8/c)s=iq and 8/c)t= —io~.

As a starting point one writes down the Boltzmann
transport equation for the electron distribution func-
tion, Maxwell's equations for the internal electric and
magnetic fields E and b that are set up by the sound
wave, and the equation of motion of the lattice for a
circularly polarized sound. wave. The self-consistent
solution of these equations allows one to find the
attenuation and dispersion of the sound wave.

The Boltzmann equation is

c)f/c)t jv (8f/Br)+k (Bf/ak) = (cjf/c)t)..ii, (3)

where f(r,k, t) is the distribution function of the
electrons.

A relaxation time 7- is introduced in the standard
manner:

(Bf/Bt)„it= —[f(r,k, t) —fo(r,k —mu/h, 1)]/r(k). (4)

The function fs(rk mu/k f) is a Fermi distribution
function shifted in k space by @au/h. This takes into
account the effect of collision drag as developed by
Holstein. "The solution to the Boltzrnann equation is



PI ANE —POLARIZED ULTRASOUND IN Cu 647

force on the ions and a collision force:

Fq= (e/M)LE+ (u&&B)/cj+ (m/M) ((v) —u)/r, (10)

where M is the mass of an ion.
The self-consistent solution of Eqs. (7), (8), and (9)

leads to the following equation (after converting to
circularly polarized components W=E,+iE„,etc.): A+= (m/Mrcs) Re(1/G+ —1). (15)

Here the dependence of G+ on ~ has been ignored. One
should carry out a self-consistent solution of (11) and
(12). It can be seen that the effect of the external
magnetic field is to split the frequency degeneracy of
the two circularly polarized sound waves.

The energy attenuation per cm A+ is given by

oP—cp2q2~Q, M—
iso (1+iP) (1—G+)-

s+= 0, (11)
Mr (6++iP)

The velocity of sound is given by

cg=cpL1&Q /2co+ (m/2M(ur) Im(1/G+) j. (16)

G+= 3/4
s 1—'Lr (re+re —gvp cosH)

(12)

for a free-electron Fermi surface.
Equation (11) or its equivalent was derived by

Kjeldaas, ' Quinn and Rodriguez, "and Langenberg and
Bok," although Langenberg and Bok neglected the
I orentz force on the ions and Kjeldaas neglected the
collision force on the lattice. The complete solution of
Eq. (11), as pointed out by Quinn and Rodriguez, "
yields right- and left-circularly polarized acoustic
waves and a left-circularly polarized electromagnetic
wave called a helicon. The properties of helicons and
their interaction with acoustic waves are discussed by
Quinn and Rodriguez" and by Kaner and Skobov. rs rs

Below the Kjeldaas edge, that is, for ~,(q8, ' '"',
the helicon waves are damped out. Above the edge, the
normal modes of the system are circularly polarized
acoustic waves and a helicon wave, and as such they
are only weakly coupled except near resonance, where
their wavelengths coincide. At this helicon-phonon
crossover, the sound wave undergoes a resonant
attenuation and generates a helicon wave. However,
for the acoustic frequencies and magnetic fields used in
this experiment we need not concern ourselves with the
helicon solution. For copper, assuming free-electron
values of the parameters, the helicon-phonon interaction
takes place at magnetic fields of the order of 10' G. We
may neglect p at the frequencies and magnetic 6elds
used here (8=10' 6, co=10' sec ') because P~10 '
while ~G+~ 10 '. If we let co+=coP+ues+, where coal
and co~+ are real, we have

cog= cpg~D /2+ (m/2Mr) Im(1/G+ —1), (13)

where Q.=eB/Mc is the ion cyclotron frequency
P = (c/c, )s(&u/4vro p), and

sin'8d8

Figure 1 shows a plot of A+ versus y+ (proportional
to &) given by Kjeldaas. ' The absorption edge can be
seen at y+=1.

The preceding paragraphs present the main ideas in
the theory of the attenuation and dispersion of a
circularly polarized sound wave propagating parallel
to B in an ideal metal. The physical picture is that, as
the magnetic field is increased from zero, the band of
electrons contributing to the attenuation leaves the
central cross section of the Fermi surface and "slides
out" on the surface in the direction of B. T»s may be
seen by a consideration of the expression for G+ given
in Eq. (12), which may be rewritten as follows:

3 sin'8L1+sr (a)a(u, —yes cos8)fd8
G+=- . (17)

4 p 1+r (Gl+toz —g'vp cos8)

The real part of the integrand has a peak at ~~~.
—

q&p cos8= 0 and falls off to zero at a rate dependent on
the value of q/, the width of the peak being proportional
to (gl) '. Thus only bands of electrons which satisfy

q'vp cos8= m+co, (18)

contribute to G+ and hence to the attenuation. This,
however, is just the condition set forth in Eq. (2), except
that it takes into account both polarizations. We see
that for the (+) sign in Eq. (18), cos8= (a&+re,)/gas,
whereas for the (—) sign cos8= (or —~,)/gvp. Since
~&&~ this means that the band of electrons on one side
of the Fermi surface interacting with the (+) wave

1.0

0.6

res+= (m/2Mr) Re(1/G+ —1) . (14)

"J.J. Quinn and S. Rodriguez, Phys. Rev. 133, A1589 (1964)."D. N. Langenberg and j. Bok, Phys. Rev. Letters 11, 549
(1963).

'3 E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 45,
610 (1963) [English transl. :Soviet Phys. —JETP 18, 419 (1963)g.

V. G. Skobov and E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 46,
273 (1964) [English transl. : Soviet Phys. —JETP 19, 189 (1964)]."E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 46,
1106 (1964) [English transl. : Soviet Phys. —JETP 19, 749
(1964)g.
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FIG. 1.Attenuation of a right-circularly polarized acoustic wave
in a free-electron metal versus 7. y is approximately proportional
to the magnetic 6eld. The curves for the different u=q/ are
normalized to 1 at y =0 (after Kjeldaas, Ref. 1).
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Using I
a—+ I'=

I
a + I' we find

00 1z+=p' m„la„+ls
1+ 'L,+ (4n+1) .&'

dk„(32)
1+r Lst,p—(4na1)a&,]s

m, I
„I'dk,

s, .„1+r'I qv, —(2n+1)(o,]' (33)

In a similar fashion we find. that

I+= I = Q (——1)"
n=p

s~'* m, rs
I
a„I sPqv, (2n+1)cp, g—dk,

1+r'(qv, (2n+1)tp )—'
(34)

We note that the shifts in velocity will have opposite
signs for the two different circularly polarized, waves,
and furthermore, that the signs will reverse for successive
resonances.

We can obtain the qualitative behavior of the
attenuation and rotation by assuming that the inte-
grands are dominated by the resonant denominators
and considering the remaining terms to be slowly
varying. The resonances occur for

I qV,/cp. l
=2n+1.

For a given 8, q, and, n, the group of electrons with the
appropriate value of qv./cp, to satisfy this condition will
dominate the attenuation, but the range of integration
over k, for which this contribution is made will depend
on the slope of qv, /~, . If d(qv, /~, )/dk,:—(qv, /pp, )' is
large, the range will be small; if (qv, /cu, )' is small the
range will be large, thus giving a larger contribution.
Therefore, peaks in the attenuation should occur for
those Geld values for which the contributing band of
electrons has a minimum in (qv, /&p, ) . This is the
physical argument for the attenuation peaks Grst d.e-
scribed by Kaner, Peschanskii, and. Privorotskii. " In
their paper and, also in one by Stolz the mathematical
basis for the peaks is presented. The mathematical
arguments are given in Appendix A. The results are

where the prime on the summation sign means that the
term for m=0 must be multiplied, by one-half. One
obtains resonances for either the positive or the negative
values of 8, from alternate terms in the series for the
(+) and (—) waves, respectively. Using the symmetry
of the Fermi surface about the plane k, =0 we find that
v(k.) = —v( —k,), pp, (k,) =cp, (—k,), and

I a.+(k.) I= Ia„+(—k,) I

—=
I a„l. If we assume that cp((&o, so that

+,—qv„ it follows that 8+=8 =—8, and the sum can
be rewritten as

and

I+=&2s-(lbl '"m.r Q (—1)"Ia I'Ms(b, j,p )) (36)

Pn=~p

and Ms(b, ),p ) has a peak at

Pm= ~p p

(37)

(38)

where Ap ——3 '~s(M„pr) ' and ~,p is the cyclotron fre-
quency for the condition qv, /cp, = 1.

Thus we see that the attenuation A is described by a
series of peaks of the type shown for Mt(b, ),fj,„) in
Fig. 4, the selection rule for the peaks being

I qV,/~.
l

= (2n+1)+Ap.

The arguments for the rotation curves are similar but
with two important differences. First, the selection rule
for the peaks is

I qv, /~ I
= (2n+1) —Ap (40)

This means that the attenuation peaks and rotation
peaks are shifted from the condition

I qv, /&o, I
= (2n+1)

by an amount ~Ap, respectively. A measurement of
this shift would determine ~,p7. The second point to be
observed is that consideration of Kqs. (29) and (34)
shows that the resonances in C caused by the odd values

p
g
g 1

I
I
I
l
l
I
IIII

I
l

Ir
rr

rr

FIG. 4. Resonance
functions Mq(b, p,p)
(solid line) and
352(b, g,p) (dashed
line) versus p. for
b&0 and )=0.1.

where

~=(-. )- .=
I
(q-./-.).,I-(2-+1), b= (q-./-.)-.„

kt is the value of k, where (q8,/co, )'=0, and Mq and 3IIs
are defined in (A2) and (A3). Figure 4 shows the
behavior of 3fj and M2 near a resonance. We shall see
in Sec. VI that b(0 for electrons which cause the
resonances in copper. For b &0, M&(b, j,y„) has a peak at

R=27rgl bl 'm, r P la„l'Mr(b, (,p„)
0

(35) -i.o "0.5
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and

A = (q ImC44)/(2 ReC44),

C = (q ImC4s)/(2 ReC44),

(42)

(43)

e= tanhL(q ReC4s)/(2 ReC44)], (44)

where e is the ellipticity, i.e., the axial ratio, of the
elliptically polarized wave.

III. EXPERIMENTAL PROCEDURE

The measurements were carried out at 4.2'K using a
single crystal grown from 99.999%%uq pure copper. At
4.2'K the electron mean free path was impurity-limited.

The sound wave was generated by electrically exciting
a quartz transducer with a fundamental resonance at
10 Mc/sec with the output of a pulsed oscillator. The
transducers were bonded to the sample with Nonaq
stopcock grease. Frequencies from 30 to 110 Mc/sec
were employed. The signal from the receiving trans-
ducer was amplified, detected, and displayed on an
oscilloscope. A gating circuit selected the proper signal
echo and fed it into an integrator and logarithmic
ampliher. The output of the logarithmic amplifier,
which is proportional to the attenuation, was connected
to the I' axis of an X-F recorder. The X axis was
connected to the output of a rotating-coil Quxmeter
which sampled the magnetic field. Magnetic fields up
to 10' 6 were produced by a 7-in. Harvey-Wells
electromagnet having poles tapered to a diameter of
four inches. The attenuation and magnetic field values

of e are positive maxima while those caused by the even
values of e are negative maxima. This causes the period
of oscillation in the C curves to be twice that of the 2
curves. This effect has been observed in the present
work.

The attenuation, rotation of the plane of polarization,
and ellipticity of the sound wave can be put in terms
of the elastic constants of the metal. For B~~q along a
crystallographic axis Vlasov and Fillipov' have shown
that

(a+)'= (C44wsC4s)q'/p, (41)

where C44 and C45 are elastic constants and p is the
density of the metal. From this equation we see that
right- and left-circularly polarized waves propagate
differently in the metal in a magnetic field. The metal
is no longer isotropic. The appearance of the rotation
and ellipticity of an initially plane-polarized wave is
caused by this anisotropy. From an experimental point
of view this equation points out a difhculty: Additional
rotation and ellipticity will be generated when the wave
goes from an isotropic medium (the bond material
between the transducer and the sample) to the aniso-
tropic metal. These effects will depend on the bond
thickness. In principle they could be eliminated by the
use of a quarter-wavelength bond, but experimentally
this is a problem.

It is also shown in Ref. 4 that

FIG. 5. Schematic of the rela-
tive orientations of planes of
polarization of the transmitting
(T) and receiving (R) trans-
dncers on the (001) faces of
the sample. The angle of
rotation of the transmitted
wave is indicated by C.

R
= OTo)

were also punched on paper tape for later analysis on
a CDC 1604 computer. The attenuation values were
calibrated relative to the 8=0 value by a voltage
measurement. Magnetic field values were calibrated
with NMR equipment.

The ac-cut transducers produce a shear sound wave
whose plane of polarization is known. The arrangement
of the direction of the planes of polarization of the
transducers is shown schematically in Fig. S. On one
(001) face of the sample the receiving transducer R is
oriented so that its plane of polarization lies along the
L110j crystal direction. On the other end of the sample,
the plane of polarization of the transmitting transducer
T makes an angle 8 with R.

The experiments consisted of measuring the attenua-
tion rr (B), then reversing the magnetic field and
measuring n( —B). These two curves are different
because the rotation is reversed when the magnetic
6eld is reversed, and allow one to separate the effect of
the actual attenuation A(B) from the effect of the
rotation of the plane of polarization C (B) as is shown
in the next section.

It is also possible to use two receiving transducers
whose planes of polarization are rotated 90' from each
other. One may measure the attenuation using each
transducer without reversing the 6eld. However, this
introduces one more transducer bond and it is then
necessary, in the analysis of the data, to add two curves
taken with different bonds.

IV. DATA ANALYSIS

If we assume that positive rotation is toward E, then
we see from Fig. 5 that

ri(B)L= —ln(~cosL8 —C(B)Lj~ ~cos8~ 'e ~in&1)

rr( —B)L=—ln(~cos[8+C (B)L)~
~
cos8) 'e "iii&r}, (45)

where we have used A (B)=A (—B) and C (—B)
= —C(B). L is the path length, n is the measured
attenuation in Np/cm, A is the actual attenuation in
Np/cm, and C is the rotation in rad/cm

In deriving Eq. (45) we have neglected the effect of
the ellipticity. This should be serious only when the
plane of polarization has rotated to approximately 90'
from the sensitive direction of the receiving transducer.

Subtracting one equation from the other we obtain

E~(—B)—~(B)3L
= —lnL~1 —tan8 tanCL~ ~1+tan8 tan&L) '] (46)

by using standard trigonometric identities. Now if
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Fro. 6. Examples

of a(B) and n( —I)
at 92 Mc/sec. The
zero of the cx(—B)
curve is shifted 10
dB/cm upward for
clarity.
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5I Mc/sec

—1(tan8 tanCI. &1, i.e., 8—z./2&CL&z-/2 —8,

1—exp(La (B)—a (—B)$L)
tanCL= (47)

tan8(1+exp(La(B) —a(—B))L})

If m/2 8&CL&—7r/2 or —z/2(CL&8 —z/2, then we
obtain

1+exp{La(B)-a(- B)jL)
tanCL= (48)

tan8(1 —exp I ( a(B)—a(—B))L()

If (CL()z-/2 one merely computes CL from Eq. (48)
and then takes the true value as x—CL or —m —CL.
Thus, using Eqs. (47) and (48) we may 6nd the rotation
from the two measured curves a(B) and a(—B). By
adding the Eqs. (45) we find A (B):
A (B)=La(B)+a(—B)j/2

+(1/2L) ln(cos'CL —tan'8 sinsCL, (. (49)

a (B) and a (—B) are automatically punched on paper
tape and the two sets of data then interpolated on the
CDC 1604 at certain values of 8 by fitting a cubic
equation through six data points, three points on each
side of the interpolated point. Then C(B) and A(B)
are computed according to the above formulas and
automatically plotted versus B and i/B, where v is now
the frequency of sound. The results of the measurements
and calculations are given in the next section.

IO
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"IO
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I
I-30- I

I
I

E -40E

o -50-
EP I
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e -60
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-70—
I
I

-80—
I
I-90 — I

RUN 2

V. EXPERIMENTAL RESULTS

Representative examples of a(B) and a(—B) are
shown in Fig. 6. The eGect of the rotation of the plane
of polarization is evident in these graphs. The sharp
peak in a(B) is caused by the plane of polarization
having rotated to a direction perpendicular to the sensi-
tive direction of the receiving transducer.

Plots of C versus p/B are shown in Figs. 7-9. Plots
of A versus 8 are shown in Fig. 10.Since the periodicity
of the A versus i/B graphs is evident only for fre-
quencies of 92 and 110Mc/sec, only these are shown in
Fig. 11.It can be seen, however, that the graphs of C

versus v/B are quasiperiodic even at 51 Mc/sec.
A note of explanation concerning the graphs shown

is due. The rotation graphs were computed erst from
the data using Eq. (47). The 6eld value at which the
dashed line appears is that at which the plane of
polarization has rotated to 90' from the sensitive
direction of the receiving transducer. From that point
on, Eq. (48) should be used to compute C. If one does
this, however, it is found that the resulting curve does
not join the curve computed from Eq. (47) at the 6eld
point in question. This discrepancy is ascribed to the
fact that the acoustic wave is no longer plane polarized,
but that it is elliptically polarized. It was pointed out
in Sec. IV that near the point where 8—CL= &a./2 we
expect Eqs. (47) and (48) to break down because, in
deriving them, the effect of ellipticity was ignored. No
matter how small the ellipticity is, when the major axis
of the polarization is 90' from the direction of polariza-
tion of the receiving transducer, the minor axis gives
the entire contribution to the signal.

-40

-50

-Ioo—

-I I 0
0

l

O. I

I t

0.2 0.3
"60

0 O. I

I (

0.2 O.'5

~&/I3(Mc/sec G)

Fn. 7. Rotation of the plane of polarization of shear waves
propagated along L001$ in copper versus v/B. The zero of the
51 Mc/sec curve is shifted down 20 deg/cm for clarity.

&/B(Mc/sec G)

Frc. 8. Rotation of the plane of polarization of shear waves

~~

~~

~
~~

~
ropagated along L0017 in copper versus v/B for two runs at
0.8 Mc/sec. This graph indicates the reproducihility of the data

for two different transducer bonds. The zero of the lower curve is
shifted downward 20 deg/cm for clarity.
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Therefore, in the presentation of the curves, the solid
lines are computed from Eqs. (47) and (48) Df Eq. (48)
is required], and the breaks in the curves are indicated
by a dashed line.

A certain amount of rotation, attenuation, and
ellipticity is introduced at the interface between the
bonding material and the sample. This is caused by the
mismatch of the acoustic impedances of the two
materials and is a function of the magnetic held and the
bond thickness. The eGects of these bond properties
on the absolute values of the attenuation are difficult
to isolate, but they appear to have no eGect on the
positions of the peaks, as evidenced by the fact that
the peaks always appear at the same field values, even
when different bonds are used.

The behavior of the plots follows the description in
Sec. II. The C versus v/8 curves have twice the period
of the A versus v/8 curves as the theory predicts. An
absorption edge can be seen in the graphs of 2 versus 8
but it is not of the type discussed by Kjeldaas. ' It is
modified in the manner predicted by Kaner, Peschanskii,
and Privorotskii. ' That is, the absorption edge is
preceded by a peak in the attenuation, since the edge
is caused by electrons lying within a band on the Fermi
surface which approaches some intermediate plane
k~&k, ' on the surface as the absorption edge field is
approached. Under these conditions, the absorption
edge itself has no simple relationship to the dimensions
of the Fermi surface as in the free-electron model.
Nevertheless, there is a direct relationship between the
shape of the attenuation curve and the properties of
the Fermi surface, the interpretation of which is given
in Sec. VI.

2.2
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I.6

Eo I.2

I.O

O.B

0.6
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0.2
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»PQ
0 4 6

B(kG)
10

FIG. 10. Relative attenuation of shear waves propagated along
L001$ in copper versus magnetic field for several frequencies. The
zeroes of all except the 31-Mc/sec curve have been shifted for
clarity of presentation.

As was mentioned in Sec. II, a measurement of
he=3 ''z(~. sr) ' would determine the quantity w, pr,

where Go p is the electron cyclotron frequency at the
point halfway between the fundamental peaks in the
rotation and attenuation curves. We recall from Sec. II
that the peaks of the attenuation curve are shifted by
+As from the condition

~
qo,/~,

~

= (20+1), whereas the
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FIG. 9. Rotation of the plane of polarization of shear waves
propagated along $001$ in copper versus v/B. The zero of the
lower curve is shifted downward 20 deg/cm for clarity.
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92 Mc/set:
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FIG. 11.Relative attenuation of shear waves propagating along
L001j in copper versus p/B for 92 and 110 Mc/sec. The zero of
the 110 Mc/sec curve is shifted downward 0.2 neper/cm for
clarity.
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0.4
0 Attenuation
+ Rotation

peaks of the rotation curve are shifted by —Ap from
this same condition. The quantity Ap is given, therefore,
by one-half the vertical distance between the lines
plotted for the attenua, tion and rotation peaks in
Fig. 12 divided by the slope of the lines. Figure 12 is a
graph of values of v/B versus (2tr+1) for the successive
peaks in the attenuation curves and for successive peaks
and valleys in the rotation curves. Successive peaks
and valleys were plotted in the case of the rotation
curves because, as was pointed out in Sec. II, the
selection rule ~q8, /pp,

~

= (2m+1) corresponds to peaks
in the attenuation curve and valleys in the rotation
curve for even values of e, but it corresponds to peaks
in both curves for odd values of e. It should be noted
that the intercept of the rotation plot in Fig. 12 should
be —Ap, whereas it appears to go through the origin.
The reason for this is not known. Perhaps the numerator
of Eq. (27) gives rise to an additional phase shift over
that which we have considered.

To obtain Ap from the data, one merely requires the
vertical distance between the lines in Fig. 12 and the

TABLE I. Summary of data relating to the phase of the attenua-
tion and rotation peaks in Fig. 12. Bo is the value of B at the
point halfway between the fundamental peaks in the attenuation
and rotation. The last column is computed from Bo and ~,pT by
assuming the cyclotron mass to be that of a free electron.

Frequency
(Mc/sec)

110
92
90
70.8
51
31
30.8

Average
~o

0.23
0.25
0.23
0.28
0.30
0.45
0.45

Number
of

points
1Il

average ~cOT

5 2.5
4 23
4 2.5
2 2.1
2 1.9
1 1.3
1 1.3

v/8 p

(Mc/G)

0.0250
0.0255
0.0250
0.0245
0.0255
0.0250
0.0250

T using free-
electron eu,

(10 "sec)
3.2
3.7
3.9
4.2
5.6
6.0
6.0

03—

,r
0P-

4 ' 0 c, e

0 I 3 5 7 9 II I3 l5 l7 l9 2I R3 25
Zn+ I

FIG. 12.v/13 versus 2N+ 1 for successive peaks in the attenuation
curves and for successive peaks and valleys in the rotation curves
for several frequencies. All but the 110 Mc/sec curve are shifted
successively to the right for clarity of presentation.

slope of the lines. For the frequencies where there was
only one peak (valley) to plot so that the slope could
not be determined, the slope of the other lines was used.
The slope of the lines is 0.0201%0.0005 Mc/sec G.
Table I summarizes the results obtained for the values
of hp.

The values of co.pT in Table I should be considered
reliable only to an order of magnitude. In determining
Ap it is necessary to subtract two small and nearly equal
values of v/B. The values of v/B are known to better
than 1%, but the position of a given peak with respect
to v/B is only known to about 2% in this experiment.
Upon performing the necessary subtraction to find Ap,

the error in Ap is about 20%. In order to determine hp,
and hence M pT to within &4%, it would be necessary
to be able to determine the position of a given peak to
within &0.5% with respect to v/B. The above values
of v., however, are of the same order of magnitude as
those found by Deaton and Gavenda" in a study of the
limiting attenuation at high-field values on the same
copper sample.

We note that the peaks in the attenuation and
rotation curves do not scale exactly with frequency.
This is because the attenuation peaks are shifted by
+Dp and the rotation peaks and valleys are shifted by
—Dp from the condition

~
qv, /pp,

~

= (2mj1). It can be
seen from Table I, however, that the value of v/B
midway between the attenuation peaks and rotation
peaks (or valleys) does scale reasonably well with

frequency, as it should.
In principle one would find the value of

~
m, v,

~

at the
plane of the Fermi surface where (m,8,)'=0. One would

simply use the equations

and
~
m,e,

~

=eB(21$+1+Ap)/cq

jm,v, ] =eB(2m+1 —Ap)/cg

"B.C. Deaton and J. D. Gavenda, Phys. Rev. 129, 1990
(1963).

for the attenuation and rotation, respectively. In reality,
as we shall see in Sec. VI, the result will be an average
value of im, v,

~

weighted over several sections of the
Fermi surface according to the strength of the inter-
action between the sound wave and electrons on dif-
ferent portions of the Fermi surface. The value of
im, v,

~

which can be measured is given by

~m, u.
i
=ec,(27rch(v/B) j

where h(v/B) is the period of the oscillations given by
the slope of the lines in Fig. 12. The values we obtain
is

~
m,v,

~

=0.381&0.009X10 "
g cm/sec, using h(v/B)

=0.0201&0.0005 Mc/G and c,=3.00X10' cm/sec.
In Fig. 13 a plot of C versus B at 92 Mc/sec is shown

for comparison with the free-electron results shown in
Fig. 3. The general shape is similar, but there are
important differences. The experimental results show
the higher harmonic oscillations in C at magnetic field
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—m,v, = ec,B/2zr vc,

and therefore it follows that

(51)

B(k,)= (kvc/ec, ) (BS/r)k.) . (52)

Roaf' has published an empirical equation for the
Fermi surface of copper. The equation was deduced
from de Haas —van Alphen and anomalous-skin-eGect
data. Using Roaf's equation and Eq. (52) we may find
8 as a function of k, . The attenuation is expected to be
proportional to the number of electrons on the bands
of the Fermi surface which contribute to Eq. (29). It
then follows, as shown in Appendix 3, that the attenua-
tion A (k.) caused by a band of electrons of width hk,
centered on k, is given approximately by

resonance condition PEq. (26)j we find that

2z—r vm, v,c/ec, B=40&1

for electrons making the major contribution to the
attenuation. If we ignore the subharmonic resonances
for the moment (i.e., set zz= 0) we have

Fro. 13. Rotation of the plane of polarization of 92 Mc/sec
shear waves propagated along L0017 in copper versus magnetic
field. Compare with the free-electron result in Fig. 3.

VI. INTERPRETATION OF RESULTS

The results of the preceding section can be interpreted
in terms of the Fermi surface of copper. Harrison" has
shown that

m,v, = —(k/2zr) (85/rik, ), (50)

where S is the cross-sectional area of the Fermi surface
perpendicular to the direction of B. However, from the

Fn. 14. Central
cross section of the
copper Fermi surface
in the (110) plane
according to Roaf.
The dashed lines
represent the inter-
section of the Fermi
surface with the
Srillouin zone.

~ [ooi]

zz W. A. Harrison, Phys. Rev. 118, 1190 (1960).

values below that for the fundamental oscillation. These
oscillations are caused by the fourfold symmetry of the
copper Fermi surface in the $001$ direction. We also
note that the fundamental oscillation occurs at a 6eld
value somewhat more than one-fourth of that for the
free-electron model. As we shall see in Sec. VIr, this is
because the absorption edge is caused by a section of
the Fermi surface where m,v, is only a fraction of that
for the free-electron case.

A (k,) ~ m, (k.)Ak, . (53)

If we assume that Roaf's equation is valid for energies
other than the Fermi energy, we may use it to compute
m, (k,). Then, by eliminating k, between Eqs. (52)
and (53), we can plot 2 versus B. Since m, (k,) serves
only as a weighting factor, we only need to know its
variation over the surface. The relative values corn-

puted from Roaf's equation agree rather well with the
cyclotron resonance data of Koch, Stradling, and Kip."

Figure 14 shows the central cross section of the copper
Fermi surface in the (110) plane according to Roaf.
Figure 15 shows a plot of the cross-sectional area 5
versus k, in the (001j direction, Fig. 16 shows a plot
of ~85/r)k,

~
versus k„and Fig. 17 shows a graph of

m, /me versus k, for k, along the L001] direction. In
calculating the attenuation caused by a band at a given
value of k„hk, was taken to be 0.025)(10 cm '. This
was equivalent to taking 53 bands to cover half of the
Fermi surface.

In Fig. 14 we see that from k, =0 to approximately
k,=0.60)(10' cm ' the orbits are electron orbits. From
k, =0.60)(10' cm ' to 0.96&10' cm ' the orbits are hole
orbits which form the so-called "rosette" through four
Brillouin zones. From k, =0.96&(10' cm ' to the
limiting point of the Fermi surface at k, = 1.33)&10' cm '
the orbits are again electron orbits.

Recalling the discussion in Sec. II, where it was
shown that the peaks in the attenuation and rotation
curves are caused by those portions of the Fermi surface
where (m,e,)'—0, we see from Fig. 16 that the section
of the copper Fermi surface most likely to cause the
peaks is the section centered around the point k, =0.45
X10' cm '. One may also see from Fig. 16 that the

"J.F. Koch, R. A. Stradling, and A. F. Kip, Phys. Rev. 133,
A240 (1964).
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FIG. 15. Cross-sectional area of the Fermi surface of copper versus
k, for k, in the r 001$ direction, according to Roaf.

quantity b= (qv, /o~, )"—is negative for this portion of the
surface since b is proportional to (m,a,)" and hence to
—(BS/Bk,)'. There are, to be sure, other parts of the
Fermi surface where (m, tt,)'=0, but this section covers
the largest range in k, and hence dominates the others
because more electrons contribute to the attenuation,
Numerical calculations indeed verify that the section
of the Fermi surface from approximately k, =0.2X10'

3.5—

3.0—

2.5—
I0+

N 2.0—

cm ' to 0.58)&10' cm ' gives rise to most but not all of
the attenuation at the peaks. The calculations were
carried out numerically in the following manner.

From Eq. (33) it can be seen that the half-width of
the resonant denominator in terms of the quantity
qv, /o~, (see Appendix A) is (o~,r) '. In terms of the
quantity —(BS/Bk,) the half-width is t by use of
Eq. (50)$ —(BS/Bk,) =2xm, /qkr

Using r=4.8X10 " sec (the average of the values in
Table I), the free-electron mass for m„and the value
of q appropriate to 110 Mc/sec we find the half-width
in terms of —(BS/Bk,) to be approximately 0.5X10s
cm '. A value of —(BS/Bk,) I corresponding to a value
of 8 through Eq. (52)$ is selected and electrons lying
within a range of &0.25X10s cm ' on the ordinate of
Fig. 16 are assumed to contribute to the attenuation.
This region is then divided into three equal parts. Each
of these parts defines a range over k, on the abscissa.
Then the area under the curve of m, in Fig. 17 is found
for each of the three regions of k, .The area for the range
closest to the resonance is weighted by 0.9, the next
one by 0.65, and the last one by 0.4 in an attempt to
approximate the actual character of the resonance
denominator in Eq. (29). The resulting number is then
plotted at the value of 8 corresponding to the central
value of —(BS/Bk,). This should be equivalent to a
plot of A versus B. This plot is shown in Fig. 18 and
compared with the experimental results at 110 Mc/sec.
The calculated attenuation has been scaled so that the
two curves coincide at the peak, but 8 is computed
directly from Roaf's surface using Eq. (52). The lower
horizontal line in Fig. 16 shows the value of —(BS/Bk, )
corresponding to the value of 8 for the fundamental
absorption peak. It corresponds to a value of
m,t, =0.284X10 "

g cm/sec.
It can be seen that the general shape of the calculated

curve is similar to the experimental one, although no

l.5

I.O

0.5

0

1
I

r

J

t

1

I

0 0.2 OA 0.6 0.8 I.O l.2 IA

k, (A ')

Fxo. 16.
r SS/Sk, r

for the Fermi surface of copper versus k,
for k, in the L0017 direction. The dashed line indicates where
BS/Bk, is positive, the solid where it is negative. The lines termi-
nating at the top of the 6gure approach k, =0.60&(10' cm ' and
k, =0.96)&10' cm ' asymptotically. The upper horizontal line
represents the experimental value of

~
BS/sk,

~
measured from the

slopes of the lines in Pig. 12. The lower horizontal line represents
the value of

~
SS/Sk, r

calculated for B at the large peak in Fig. 18.
The shaded area indicates that portion of the Fermi surface which
gives the major contribution to the attenuation.

6
cp 2

F.

0
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I
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FIG. 17. Cyclotron
mass for B along L001$
normalized with respect
to mz, the cyclotron
mass for k, =0, assuming
Roaf's equation valid
near the Fermi surface
as well as on it.
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by the shaded area of Fig. 16. Thus the average ob-
tained from an integral over all of the contributing
orbits is less than the expected value.

For higher harmonic peaks a smaller band of orbits,
with m,e, values closer to that at the peak, may con-
tribute, so the slope of the lines connecting the peaks
in Fig. 16 may be less than expected. This will result
in a value of ns,v, larger than the true value. It is also
possible that the period may be affected by the fact
that the a„are functions of k„rather than constant as
assumed in the derivation earlier.

The fact that the two difIerent approaches yield
values of m,v, on either side of that predicted from
Roaf's surface is good evidence for the validity of that
surface, at least near the plane k, =0.45X10' cm '.

VII. SUMMARY

I IG. 18. Comparison of the experimental attenuation with the
calculated attenuation at 110 Mc/sec. The ordinate of the
calculated curve is chosen to fit at the main peak, but the abscissa
is calculated from Roaf's surface using Eq. (52).

attempt was made to include the harmonic peaks in the
calculated curve. The calculation shows that the
character of the attenuation curve is caused almost
entirely but not completely by the electrons on the
Fermi surface with P.2X1PS cm i(P ~P $8X10s cm ~

The neck orbits provide some background attenuation,
and the orbits beyond the necks begin to come into
play at fields corresponding to the fundamental
absorption peak.

In Sec. V we found a value of m,v, =0.381&0.009
X10 "

g cm/sec from the periods of the oscillations
in A and C. This should be the value of m,v, at the point
where (tie, ) =0, i.e., at the plane k, =0.45X10' cm '.
By using Eq. (SO) we find that this corresponds to—(BS/elk, ) =2.28+0.06X10' cm '. This value is shown
in Fig. 16 by the upper horizontal line. We note that it
lies considerably above the value of 1.99X10' cm '
expected from Roaf's surface.

The cause of the discrepancy between the value of
m,v, obtained from the periods of the attenuation and
rotation peaks and that obtained from the shape of the
surface proposed by Roaf (which appears to explain
the general form of the attenuation curve) can be found
in Fig. 12. The straight lines drawn through the
attenuation peaks do not pass through the origin.
Instead, the first peak occurs at a corisiderably higher
value of v/8 than would be obtained from the slope of
the line through the points. That is, the first peak is
observed at a lower value of magnetic field than one
would expect from the period of the attenuation peaks.

The phase shift of the peaks results from the 6nite
value of 1/~, r. A relatively large region of the Fermi
surface contributes to the main resonance peak, and
most of the contributing orbits have m,v, values less
than that at k, =0.45 X10' cm '. This region is indicated

The rotation of the plane of polarization of shear
sound waves propagating parallel to an external mag-
netic 6eld in copper has been measured. The rotation
is periodic in v/B. The attenuation peaks described by
Kaner, Peschanskii, and Privorotskii'~ have been ob-
served and they are also periodic in i/B.

A real-metal theory based upon the fourfold sym-
metry of the copper Fermi surface has been presented
along the lines suggested by Kotkin. 2 The results of
this theory show that the attenuation has a period half
that of the rotation and that the selection rule for the
attenuation peaks is qv, /&u, =2m+1+Do, whereas for
the rotation peaks it is qu, /~, =2m+1 —d, e, odd values
of e giving positive peaks and even giving negative
peaks, where ho=3 '"(Ql pT) '. The experimental results
are in general agree'ment with the theory but it is not
possible to determine a precise value for 60.

The fundamental attenuation peak was calculated
numerically from the Fermi surface of copper deduced
by Roaf' and compared with the experimental results
at 110Mc/sec. The principal features of the attenuation
curve are accounted for by the calculation.

Finally, it has been demonstrated that one must be
rather cautious about identifying an absorption edge
with a radius of curvature of the Fermi surface at a
certain point since the absorption edge may be caused,
not by one point on the Fermi surface, but by a rather
large portion of the surface.
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APPENDIX A

We wish to evaluate integrals of the type

zmaX

p, . 1+r'$qv, (2—m+1)pp, ]'

p„=8(kg) —(2/p+1) . (A1)

For co,r))1 the integrand is a peaked function for k,—k~

and nearly zero elsewhere, so the range of integration
may be taken to be from —pp to + pp. Thus letting
x= (k,—k~) we have

where we have assumed v,)0 near the point where

(qV,/p/. )'=0. We assume only one such point over the
range of integration but the result can easily be general-
ized. Let $= (p/. r) ' and 8=qf/, /p/, . We expand 8(k.)
about the stationary point k, =k&.

8(k,)=8(kg)+ (b/2) (k,—kg)',

where b= (B'8—/Bkg)p„so that the denominator can be
rewritten as

r'[qV, (2m+—1)p),j'= p& 'r'P(k, )—(2 +1)j'
= C +(b/2) (k.—ki)'1'/t',

where

where

Mg(b, ),p )
=L(P+J ')'" p—(sgnb)7" (8+/ ') '" (A2)

The rotation integrals are of the form

((/J, „+bx'/2)dx

-- 8+ (/ -+bx'/2)'

The poles are the same as in the previous integral, but
the residues are diferent. They are

E~ —$/2——$—2
~

b
~
(i)+//„) (sgn b)J/P

Ep j/2)2——
~
b( (i$—p„) (sgn b)J/'.

The result for I„is

where

~p(»$, ~ )
P($2+~ 2)1/2+~ (sgn b)gl/2(g2+p 2)

—1/P (A3)

We note that the only difference between Eqs. (A2)
and (A3) is the change of the sign of //, .

APPENDIX 3
The attenuation caused by the electrons lying within

E = a band of a given width centered on k, is expected to be

P+ (y +bx'/2)' proportional to the number of electrons on the band,
which in turn is proportional to the electron density of

The roots of the denominator in the complex plane are states on the band times its width, Ak, .
The density of states per unit energy range on the

Fermi surface is given by

We perform the standard integration in the upper half
of the complex plane around the semicircle R)

~
z~ and

then let R~ ~. There are simple poles at z~ and z2 in
the upper half-plane.

z~= —(sgn b)L(—sgn b)2(i)+p„)/~ b~ J/P,

zp= (sgn b)L(sgn b)2(it p„)/~ b
~

J/P—.

1V(e/.) = (8~'np) '
i Be/Bki 'df, (81)

where df is the element of the Fermi surface and /pp is
the number of electrons/cm'. However,

~

hv
~

=
~
Be/Bk

~

and df/ ~
hp

t
= (r/p, /A') dk, dP, so we have

The value of the integral is 2~i(Eq+Ep), where E~ and
E2 are the residues at z~ and z2.

X(ep) = (k'ep) —' m, dk, ; (82)

E~= $/2iL —2 [b [ (i/+//„) (sgn b)]'/P,

Ep &/2i(2
~
b] (i&—p—„—) (sgn b)J/'

Thus we obtain

therefore the number of electrons per unit energy range
per cm-' at the plane k, is m, (k,)/k'r/p. One thus expects
the attenuation produced by a band of electrons at k,
to be given by the following expression:

A (k,) ~ m, (k,)hk, . (83)


