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TABLE III. Comparison of the clustering characteristics from
different models. Energies are in eV.
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See Refs. 10-12. b See Ref. 7.

to 1.08 eV and in nickel from 1.35 to 1.55 eV. Thus the
nickel calculations agree better, but not strikingly so.
The copper divacancy binding and migration energies
are thought to be about 0.1 and 0.6 eV, respectively,
while the nickel divacancy migration energy is in the
range of 0.8—1.0 eV. Especially with regard to the di-
vacancy migration energy, the Born-Mayer and Morse

results are in conflict with the data, whereas the present
calculations are in agreement. The single-interstitial
results were discussed previously, " and no reliable
interstitial-clustering data are available.

The primary difference between the present calcula-
tions and those using either Born-Mayer or Morse
interactions is that the interaction used here gives rise
to a nearest-neighbor "bond" which must be broken
if the atoms are to be separated at all. The Born-
Mayer interaction is purely repulsive and the Morse,
although it has an attractive tail binding atoms to-
gether, is long in range, so that motions of the order of
a nearest-neighbor distance do not involve making or
breaking the "bond" between atoms. It is the existence
of this bond which gives rise to reasonable values of
vacancy and divacancy migration energies in the present
calculations.
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The dynamics of an edge dislocation in a two-dimensional crystal model are investigated using a localized
unstable normal mode of vibration of the model. The model used is a simple-cubic lat tice with linear central
and noncentral nearest-neighbor interactions and a piecewise linear restoring force between atoms on the
slip plane. The atoms below the slip plane are fixed. Lattice parameters are chosen to allow specific stable and
unstable configurations of the lattice, and it is assumed that the dislocation progresses by passing alternately
through stable and unstable states. It is found that there is one localized unstable ro.ode of vibration whose
components are very large in the neighborhood of the dislocation. This localized mode is used to approxi-
mate dislocation motion in the unstable state, and it is altered —by symmetrizing it with respect to the stable
lattice configuration —to approximate motion in the stable state. Two coordinates, given by harmonic equa-
tions of motion, then characterize the dynamics of the dislocation. The relation between the two coordinates
gives an energy-loss mechanism which leads to a steady-state dislocation velocity when a shear stress is
applied to the lattice. Transient and steady-state velocities and the minimum stress necessary to maintain
a steady-state velocity are calculated. The same quantities are found using computer simulation of a finite
lattice, and a comparison is made. Reasonably good agreement is found for velocities up to about 0.7 times
the velocity of sound in the continuum in the direction of slip. The analytic theory underestimates the mini-
mum stress necessary to maintain a steady-state velocity.

I. INTRODUCTION
' 'N spite of the importance of the subject, little
~ ~ theoretical work has been done on the dynamics of
dislocations in crystals from a discrete, microscopic

*This research was supported by the U. S. Air Force through
the Air Force Once of ScientiGc Research under Contract No.
AF-AFOSR- (228)-68.

f Currently NAS-NRC Postdoctoral Fellow at Institute for
Materials Research, National Bureau of Standards, %ashi1igton,
D. C.

viewpoint. The earliest work on two-dimensional
dislocation dynamics considered a single volterra dis-
location in an infinite elastic continuum; in this model
the dislocation may move freely at any velocity less
than the speed of sound without an applied stress. ' A
similar solution was found' ' for a modified continuum

F. C. Frank, Proc. Phys. Soc. (London) A62, 131 (1949).' J. D. Eshelby, Proc. Phys. Soc. (London) A62, 307 (1949).'R. Bullough and B. A. Bilby, Proc. Phys. Soc. (London)
B67, 615 (1954).
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model proposed by Peierls4 '. In order to account for
the periodicity of the lattice and the resulting variation
in lattice strain energy as the dislocation passes from
one equilibrium position to the next, opposing atoms
on the slip plane were assumed subject to a periodic
sinusoidal restoring force, the rest of the crystal above
and below the slip plane being taken as elastic and
continuous.

In order to develop a relationship between applied
stress and dislocation velocity, an energy-loss mechan-
ism must be postulated. This question has been
recognized as quite important, and some of the work is
summarized with further references to the literature by
Cottrell' and Seeger. ~ A critique of earlier estimates of
energy loss along with calculations resulting in much
higher values than the earlier estimates is given by
Kuhlmann-Wilsdorf. The loss mechanisms considered
include the eRects of thermal motion of the lattice, of
other lattice defects, and of the discrete nature of the
lattice. The last eRect is the subject of the present work.
Because of the complexity of the problem it is clear
that any atomistic treatment must of necessity be
based upon a highly idealized model. Nevertheless,
such treatments provide insights into the nature of the
processes which may then be incorporated in more
phenomenological models. An added incentive for
analysis in this area has been provided by development
of experimental techniques by Johnston and Gilman'
for the measurement of individual dislocation velocities
in crystals.

Much recent work has concentrated on one-dimen-
sional linear-chain models because these may be treated
in greater detail with fewer assumptions. A discussion
of the Peierls model and earlier work on linear-chain
models is given by Seeger. ~ Atkinson and Cabrera, "
taking issue with the continuous approximations made
in the dynamic analyses of some of the previous work,
treat a linear chain from a discrete viewpoint.

In a recent paper, %einer" has presented an approx-
imate analytical procedure for the computation of
dislocation velocities in a linear chain of atoms. In
this approach successive states of the dislocation,
referred to as stable and unstable, are distinguished.
In each state the atom velocities in the neighborhood
of the dislocation are approximated by use of the
appropriate localized normal mode of motion of the
chain. It is found, for the atoms of the chain under an
applied stress, that steady-state dislocation velocities
are attained because of the imperfect transfer of energy

4 R. Peierls, Proc. Phys. Soc. (London) 52, 34 (1940).
~ F. R. N. Nabarro, in Advances in Physics, edited by N. F.

Mott (Taylor and Francis, Ltd. , London, 1952), Vol. 1, p. 269.' A. H. Cottrell, Dislocations and Plastic glom in Crystals
(Clarendon Press, Oxford, England, 1953), p. 56.

A. Seeger, in Hondblsh der Physsh edited by S. Fliigge
(Springer-Veriag, Berlin, 1956), Vol. VII I, 563.' D. Kuhlmann-Wilsdorf, Phys. Rev. 120, 773 (1960).' %.G. Johnston and J.$. Gilman, J.Appl. Phys. 30, 129 (1959).' W. Atkinson and N. Cabrera, Phys. Rev. 138, A763 (1965)."J.H. Weiner, Phys. Rev. 136, A863 (1964).

between successive localized modes. Computer simula-
tion of the linear chain showed that the localized-mode
approximation was reasonably accurate except for
dislocation velocities approaching the speed of wave
propagation for infinite wavelength in the in6nite
chain. It is the purpose of the present work to extend
the localized-mode approach to a two-dimensional
crystal model.

The model studied is similar to that employed by
Sanders" in his treatment of the static Peierls stress.
However, for the present dynamic calculations a further
simplification of Sanders' model is made by replacing
the eRects of the crystal below the slip plane by a
time-independent substrate potential. The resulting
model is described in Sec. II. Also contained in this
section are the analyses of the static conlguration of
this model which are necessary preliminary to the
dynamic calculations. Particular attention is paid to
the determination of the characteristics of the stable
and unstable equilibrium configurations. One surprising
result is that, as opposed to the results for the linear
chain, there is no localized mode (localized normal mode
of vibration) associated with the stable equilibrium
configuration of this two-dimensional model. However,
there is a localized mode associated with the unstable
equilibrium con6guration.

In Sec. III a dynamic analysis is made based on the
following assumptions: (1) The motion of the disloca-
tion while the lattice is in an unstable con6guration is
essentially given by the localized mode associated with
this configuration"; (2) the motion of the dislocation
while the lattice is in a stable configuration may be
represented by the above-mentioned localized mode
altered so that it is symmetric with respect to the stable
equilibrium configuration. As in the linear chain, it is
found that there is imperfect transfer of energy between
modes. Transient and steady-state velocities and the
minimum stress needed to sustain motion are then
calculated.

Finally, numerical calculations on a 6nite lattice
using the IBM-7094 computer are made. A detailed
discussion of the theoretical and numerical results is
presented in Sec. V.

II. MODEL DESCRIPTION AND
STATIC ANALYSIS

A Rosenstock-Newell crystal lattice, simple-cubic
with atomic spacing b and central and noncentral

~2 W. T. Sanders, Phys. Rev. 128, 1540 (1962)."It has been noted PH. B.Rosenstock and C. C. Kiick, Phys.
Rev. 119,1198 (1960)j that the contribution to the relative atomic
displacements near the point of localization of the localized mode,
of the large number of nonlocalized modes, taken together, may
be of the same order of magnitude as that of the localized mode.
The results of previous work (Ref. 11),however, indicate that the
localized mode may nevertheless provide a good approximation
for the directed, athermal motion of the dislocation under con-
sideration here; the nonlocalized-mode contributions, on the other
hand, are important in the study of thermal effects upon this
motion PJ. H. Weiner, Phys. Rev. 139, A442 (1965)$.
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and f is the distance from a potential minimum. The
force law corresponding to this potential is shown in
Fig. 2. Thus, the atoms of the slip plane are connected
to a 6xed boundary by springs with spring constant k2

I jl +M and —2ksp/(b —2p) for
I jl &M

former atoms are said to have strong bonds with the
substrate potential, the latter atoms weak bonds with
the substrate potential. Finally, the forces Gsr are
released.

Lattice configurations with one weak bond and with
two weak bonds, M=1 and M=-,', will be considered
in this paper.

FIG. 1.Reference position for displacements due to the introduc-
tion of an edge dislocation into a simple-cubic lattice. The atoms
below the slip plane are 6xed. The forces 6~ were applied after
the crystal had been separated along the slip plane and an extra
half-plane of atoms introduced into the upper half, so that the
atoms (~ j~ &M) on the slip plane would align when the crystal
was brought together again.

linear interactions of spring constant k~ and A2, respec-
tively, is used. "

An edge dislocation is introduced by the following
procedure: The crystal is separated along the slip
plane and an extra plane of atoms introduced into the
upper half. Two columns are chosen from the center of
the upper half, and labelled —M and M (Fig. 1). To
each atom of column —M a force Gsr given by Eq. (2.1)
is applied and to each atom of column M a force —G~.

(2 1)

Forces —Gsr, Gu. are applied to the columns —M+1
and M—1, respectively. The result is shown in Fig. 1.
If there are an odd number of columns between —3f
and M, the central column is labeled 0; if an even
number, the central pair of columns is labeled —

2 and —', .
All other column indices increase by 1 per column
from —1V to E. M is thus either an integer or a half
odd integer. It characterizes the width of the dislocation
in that all slip-plane atoms for which

I jl &M are
directly opposite atoms in the lower half, while the
others are out of register by —,'b. The row index i ranges
from 1 to R.

The halves are brought together. The atoms of the
lower half are 6xed and their effect on the upper half
replaced by a periodic substrate potential U(|) acting
on the slip-plane atoms of the upper half, where

u;,; t'—(2+28)u, , +u;,;+g'+I'u, r;~

+»,+tg= —-', 8,t+-,'8;, t, (2.4)

Npj =0) liml;; =0,
l jl~~

u, ,; t —
I (2+2P) —(I'+Q)&'t&, o5u,; +u;,;+t

+I'u' t,g'+»*yt, —= b, pb;t(E+Q)o, (2.5)

Npj =0, lime, , =0, limu;j 0,
l~l~~

where 6;j is the Kronecker delta. Here and in what
follows, the summation convention on repeated latin
indices is employed.

r= k,/k, , ~=y/b, Q= 27''/(1 —2q). (2.6)

The solutions are found by multiplying the equations
by sj, summing over j, and introducing the new
variable (see Babuska et al. t4 and Sanders" ):

u,"=P u; 's&, Isl=1. (2.7)

This is a valid procedure provided

Static Disylacements

The displacement in the x direction of the atom in
row i column j from the reference position of Fig. 1 is
denoted by 8;;. It has a symmetric (0,; =tt, , ,')
component resulting from the application of the
external shear force 0 per atom and an antisymmetric
(4;, ;~= —u;, ) component resulting from the removal
of the forces G~. At large distances from the dislocation
the symmetric displacements must approach the
uniform shear io/ks. If the displacements are reduced
by this amount (u,;=u,; i /ok )—sand the resulting
equations divided through by ktb (u,;=u;,/b) to put
them in dimensionless form, the equations of equilib-
rium for one weak bond in terms of antisymmetric and
symmetric components become

U(f)=-:k.i-', ill&~, (2.2) lim u, =0.
l jl~~

U(f) =-;ksyb —kse(b —24) '(sb f)', —
'4 I. Babuska, E. Vitasek, and F. Kroupa, Czech. J. Phys. 10,

4» (196o&.
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The resulting difference equations in the variable I; ~

may be solved by a solution of the form u '=A' 'P'
+Bo, where A"', P, and 8 are determined by direct
substitution in the equations. The coefficients in the
Laurent expansion, Eq. (2.7), are then given by

2mg; "g—1=fg'"s ' 'ds iz~ =1. (2.8)

An identical procedure leads to the displacements of
the two-weak-bond configuration; only the antisym-
metric displacements are of interest. The general
solutions for the static displacements in integral form,
along with specific displacements needed further on in
the development, are

for one weak bond

SLIP
PLANE

~FIXED SUBSTPATE POTENTIAL,

4xm '=I' ' sin8(1 —cos8) '(P' —E')

Xsin( j8)d8, (2.9)

4srPurro 2(1 P)——P't'+—(1+P)'G sr-
2sru '= (P+Q) (u '+o)P'. -

(2.10)

us o' rsvp/ (srP' H)—— —

21r

X E' cos(j8)d8, (2.11)
0

(2.12)

and for two weak bonds,

2x'Ni j ([2ur, (P+Q)P-' —EjE'—E)
Xsin(sr8) sin(j8)d8, (2.14)

ur, p=P[-', sr —(1+P)P"'+(P'—1)G$

—:(2~P—2(P+Q)[(-*,+P)~
—(3+P)P"'—-'(3—P) (1+P)Gj), (2.15)

where

E= 1+P—cos8—[(1—co.s8) (1+2P—cos8)j"'
G = rssr+ arcsin[(1 —P)/(1+ P)),
&= (P+Q) L(1+P)( —G) —2P"'j
K= [1—2 sin'(rs8)$(1 —cos8) '

Application of the Riemann-Lebesgue lemma" veri6es
that

hm N. - ~ =0
f jI-+oo

The displacement equations of equilibrium were
solved under the assumption that the displacements of
atoms on the slip plane were less than P for all atoms

"H. S. Carslaw, Introdmctiors to the Theory of tourier's Series
oad Iwtegrats (Dover Publications, New York, 1930), p. 271.

2srPsu sr' = (P+Q) (uto'+ o )[2(1+P)Psts

+ (1+2P)(1—P)G—sr1, (2.13)

STRON Q WEAK

BOND = BOND

REGION REGI ON

FIG. 2. Force law for atoms on the slip plane and the correspond-
ing substrate potential. The slope of the potential curve in this
and Fig. 4 is shovrn as discontinuous to more clearly distinguish
weak- and strong-bond regions.

on the slip plane except the weakly bonded ones and
less than —',b —p for the latter. That this is indeed so
places a requirement on the solution here termed
compatability. With p chosen such that a one-weak-
bond con6guration is stable and compatible and a two-
weak-bond con6guration is unstable, it can be shown
that the latter must also be compatible. Compatibility
is established for one weak bond if the following
inequalities are satis6ed:

(2.16)

I jl&1, (2.17)

ur, +r &», ', I jl&1, (2.18)

ull +ull +o(7 y (2.19)

u10 +&+s |~ (2.20)

The 6rst inequality gives the compatibility limit on 7;
with urro given by Eq. (2.10) it becomes

4~qP) 2(1 P)Prt'+(1+P)'G —~. (2.21)—
Inequalities (2.17) and (2.18) follow from Eq. (2.8).
The largest value of 0 for which both of the last two
inequalities are satis6ed is the largest 0 which the
lattice can sustain in static equilibrium; it is therefore
the Peierls stress 0J for this model. For I'= j. and after
substitution from Eqs. (2.10), (2.12), and (2.13)
these inequalities become

«2(v —-') L2(1+Q)—Q~j
X[8(1+Q)—(1+3Q)sr] ' (2.22)

& -'(-', —v)[2(1+Q)-Q j. (2.23)
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IO

I i I i I i i i i the corresponding q;; the normal modes of vibration,
or eigenvectors, of the lattice. If any of the eigenvalues
are negative, the general solution contains an increasing
time exponential and the lattice is unstable. If the
lattice parameters are now altered at some point such
that the potential energy of a given configuration is
reduced, as is the case when weak bonds are introduced,
all the eigenvalues will be lowered"; some may be
displaced below the original perfect lattice spectrum
and then their corresponding eigenvector is localized. "
If no localized eigenvector exists, the lowest eigenvalue
(the criterion for stability) is equal to that of the
perfect lattice.

For the finite perfect lattice with Axed boundaries
Eq. (2.25) is

IO
q'. J—t—(2+2I')qo+q', spt+ I'q, t,s+I'q~&,;=0, (2.26)

qo~= A.~= q-~~= q»= o
~ (2.27)

The second is satisfied if the first is, so that for P=1
the Peierls stress op is given by Eq. (2.22) with the
inequality replaced by equality. The Peierls stress for
various P and p is shown in Fig. 3; it is given by
Sanders" for the complete two-dimensional model and

by Weiner and Sanders" for the linear chain.

Stability

An atom in the lattice experiences a force due to
interaction with its neighbors of —4,;~~gI, ~, where C;;J,~

is the potential matrix (q,,C';;stqst is the potential energy
of the lattice) and q;; are the displacements from equilib-

rium. Then the equations of motion are

I;;stqs i+m (d'/d t')q, ;=0. (2.24)

A solution for which all displacements are proportional
to the same periodic function of time is

q;; = qe exp( —mX/kt)'t';

if this is substituted into Eq. (2.24) and the result
divided by k&b it becomes

-5 ~
.26 .28

y

FIG. 3. Variation of the maximum shear stress ap (Peierls
stress) the lattice can sustain, with the maximum force p an atom
on the slip plane can experience due to the substrate potential.

with a solution, found by the separation of variables
q

X tt=2+2P —2 cosL(P+-', )tr/cVj

2I' cos (tx—tr/R), (2.28)

a=i, 2,

P=O, 1, 2, .1V—1

qp tt=A sin(txtri/R) cosL(p+s)sr j/Ã]. (2.29)

qt, & t L2+2P (P+Q)Sites—s—Qqts+qt s+t

+~q'+t, t+&q; t,;=0, (2.30)

qo~ =0, lln1 q;& ——0,
Iil~co

2 q;s;r=q (Pto+Q)P ' '

X P+P—alt —c!os8—Lj'cos(j&)tN, (2.31)

As the lattice becomes infinite the X t' approach a
continuous spectrum from 0 to 4(1+8).Thus instabil-
ity can only be introduced by a mode with frequency
below the continuous band, i.e., by a localized mode;
the absence of a localized mode guarantees stability.
It is characteristic of a localized mode that liml;l~q;;
=0, so that if a localized mode does exist it may be
found by the transform technique q, =p "q;;zs'

applied to Eq. (2.25) which, along with its eigenvector
(localized-mode) solution and corresponding eigenvalue
equation for one weak bond is

where

—4"sstqst+&q't= 0,

C'ij /~1s=tC' jkl y cqcj/tt qcj ~

(2.25)
2rryI' = Ld8+-,'lt —1,

0

(2.32)

The values of X for which this system has a solution
constitute the frequency, or eigenvalue, spectrum and

&6 J. H. %einer and W. T. Sanders, Phys. Rev. 184, A1007
(1964).

"Lord Rayleigh, The Theory oj Sound (Dover Publications,
New York, 1945), Vol. I, p. 111.

»A. A. Maradudin, Z. W. Montroll, and G. H. Q'eiss, in
Solt'd State Physics, edited by F. Seits and D. Turnbull (Academic
Press Inc., New York, 1963), Suppl. 3, p. 129.
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~V"=or.~ (P+Q)P ' '

)& (1+P—sX—cos8—L)' cos(j8)d8, (2.34)

2+yP = (1+cos8)Ld8+

rsvp

—sr, (2.35)

and an antisymmetric solution

~q;,'=qr, ; (P+Q)P ' ' sin(sr8)L' sin( j8)d8, (2.36)

(1—cos8)Ld8+ s)I,—s, (2.37)

and for two weak bonds,

q;,;,—L2+2P —(P+Q)(8;,&, , 1+8,,3, ,;)—) gq;;

+V', ~+r+P&' r.~+-PV'+r. ~= o (2 33)

qo;=0, lim q;, =0,
[ j)—+ao

with a symmetric solution

where

R= (1—
rsvp

—cos8)'I'(1+2P —
rsvp

—cos8) 'I (2.39)

Finally, the inequality p) p2 is seen to be identical with
Eq. (2.21), so that compatibility is also satisjmd.

III. DYNAMIC ANALYSIS

The velocity of the dislocation will now be investi-
gated under the assumption that no thermal motion of
the atoms takes place. The dislocation is assumed to
move through alternating stable and unstable configura-
tions which have one and two weak bonds, respectively.
Because the displacements of the atoms far from the
dislocation are essentially those of a perfect lattice
under a quasistatic application of shear, with respect
to which the dislocation is moving in a localized fashion,
the equations of motion will be written in terms of
displacements 8;; from the zero-stress equilibrium
con6guration that are reduced by the quasistatic
shear displacement, io/ks. The displacement at any
time t is then I„,'+io/As+8, ,(t). If F;; is the force on
the i, jth a,tom, the equations of motion for 8,, (t) are

where C,;s)8s(+—F;;=m(d'/dt')8, ;. (3.1)

0.5
1
2

0.362
0.318
0.269

V2

0.297
0.250
0.203

0.430
0.387
0.335

It will be noted that y3)y~. It follows that for y2&y
&y~, the configuration with one weak bond will be
stable with no localized mode and the con6guration
with two weak bonds will be unstable, with a single
symmetric localized mode. The eigenvector, Eq. (2.36),
corresponding to this mode may be normalized, q;,q,,= 1,
by applying Parseval's theorem' to the j summation
and then summing over i. Then

L= [(1—-', X—cos8) (1+2P——',X—cos8))'I'

The eigenvalue equations (2.32) (for one weak bond)
(2.35) and (2.37) (for two weak bonds) come from the
requirement that the expressions for the corresponding
eigenvectors be consistent for i, j=1, 0 (for 1 weak
bond) andi, j=1,—', (for 2 weak bonds); as was to be
expected, they have no solution for positive X. Let
p&, ps, and ps, respectively, satisfy Eqs. (2.32), (2.35),
and (2.37) for X=O. By Rayleigh's theorems, since the
weak-bond spring constant decreases (and therefore
all the eigenvalues decrease) with an increase in y,
these are the minimum values of y for which the
eigenvalue equations have a solution and therefore for
which a localized mode exists. Representative values of
P, y~, y2, and y3 follow:

Division by k&b and introduction of the dimensionless
time t= (kr/m)'~'t and displacement w,;=8,,/b gives

—@"Jstsst+Fo= &'~. (3 2)

The left-hand side as a function of vI, & is given by the
equations of equilibrium. In the following, quantities
referring to the stable or unstable lattice will be
distinguished by the superscripts S or U.

For the choice of parameters made in Sec. II there
exists an unstable localized symmetric mode of vibration
whose components are small everywhere except in the
neighborhood of the dislocation. Only one such mode
exists, because altering the one-weak-bond lattice by
reducing a single spring constant to produce a two-
weak-bond lattice permits only one frequency to be
displaced out of the originally continuous spectrum.
This is a consequence of Rayleigh's theorem, "which
states that under these circumstances no frequency
can be lowered more than the distance to the next
lowest unperturbed frequency. Thus, all frequencies
except the lowest are obliged to remain within the
original spectrum. The closure property' " of the
eigenvectors of a symmetric matrix then assures that
in the neighborhood of the dislocation the components
of all eigenvectors except the localized one will be small.
The displacement in the neighborhood of the disloca-
tion, when the lattice is unstable, may therefore be
approximated by"

Vr, 1'(P+Q)' cos'(-'8) (R+E ')d8 —s. =7rP' (2.38)
.U —g. UQU([) QU(() —g. , v. s .U (3.3)

"Reference 15, p. 284.
"R.L. Bjork, Phys. Rev. 105, 456 (1957).
s' J. A. Krumhausl, J. Appl. Phys. Suppl. 33, 307 (1962).
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F.j = (P+Q)v(~jo+8li)~'i,

F'l =(P+Q) v~ j08'1,

@jjkl @jj7cl + (P+Q)5~1~j,—141~1,—1

@i,j—1,1,1—1+(P+Q)8il8j14it I 11 y

(3.7)

The approximations tI "v=a" Q and tI" =a" Q
are substituted into the equations of motion (3.2). With
the use of the following relations,

USU TMEORY

UU THEORY

OC REFERENCE FOR V
)i

D=(+~-K)- U p
0
I~ p

the equations of motion for Qv s become

Qv+hvQv=F v, (3.8)

Q'+P +(P+Q)bio (~iov+~11 )jQ'=Fs, (3 9)

where a,j is the localized eigenvector and Q the
corresponding normal coordinate; a;j~ is given by Kq.
(2.36) provided the arbitrary component gi, i is chosen,
Eq. (2.38), so as to normalize g;j. It is convenient to
let a;j~ have integer subscripts, a~, ~ ——a~ ~, a~ y

=ag, o~, etc.
The potential matrices of a stable and unstable

lattice differ in only one term. Furthermore, at the
instant the lattice becomes stable, the motion of the
atoms in the neighborhood of the dislocation is given
by the unstable localized mode. It seems reasonable to
make use of the unstable localized mode in approximat-
ing the solution to the equations of stable dislocation
motion. However, the change to a stable con6guration
alters the lattice symmetry. A simple form of localized
stable motion, symmetric with respect to the stable
lattice, may then be described by the vector

u" =A(a" +a 1 ) (3.4)

From the requirement that a'j a'j =1 it follows that

A=[2(1+a;jva;,j lv)j 'I'.

The sum a;j~a, ,j &~ is found by using a Fourier cosine
series approach to sum over j.Then

irP'a;;va, j tv= qi, i'(P+Q)s W ' cos8 cos'(-', 8)d8

W cos8 cos'(-,'8)d8 —-,sir, (3.5)

Fio. 4. Progress of the atoms on the slip plane. In (A) an
unstable traverse is about to start; it ends in (8) and a stable
traverse starts which ends in (C), thus completing a dislocation
move of 1 atomic spacing. The zero-stress unstable- and stable-
equilibrium configurations are shown in (a) and (b); at a distance
o to the right of these is the reference position for dynamic
displacements. Dynamic displacements are shown for those
atoms whose position at the time of change is used to determine
the value of the normal coordinate at that instant.

where
F =2a ov(P+Q)o,
Fs=v2aio (P+Q)(1+gj,jgr, j 1) I Ir—

Now that the motion during unstable and stable
periods has been approximated by means of the
coordinates Qs and Qv; they will be used to form a
picture of the continuous motion of the dislocation
through the lattice. This requires the determination of
the initial and final values of Qv s and the relation
between Q v and Qs when going from a stable to unstable
lattice, or vice versa.

The localized vector a;j~ is not a true eigenvector of
the stable lattice (which, as was shown, has no localized
eigenvector); its use coarsens the theory somewhat
and so it is of interest to examine the situation when
the unstable mode predominates, that is, its time of
traverse is large compared to that of the stable mode.
In this case it is assumed that the motion is described
by the unstable mode even in the stable conhguration,
since the latter does not exist long enough to affect the
pattern of motion. This special case is called UU
motion; the general case, USU motion.

USU Motion

Let the periods of alternately stable and unstable
motion be t~ to t~~, k even giving the stable period and
k odd the unstable period. Initially, to, the lattice is in
a state of uniform shear strain, tI,jv=u;,'+iIr Uniform.
shear is not an equilibrium conigur ation for the
dislocation distorted lattice and so the dislocation
starts to move. The values of Qv s at the start and end
of a traverse may be found from Eqs. (3.3) and. (3.6)
if one of the v,j~ ~ are known at the time of transition.
The situation is shown in Fig. 4 for the weak-bond
atoms at 1, 0 and 1, —1. From Fig. 4

where
Q (fj'a) $10 (f START)/Iilo

(-,'y+ &i,i +v)/s—iov=— dLv, ——(3.10)

The displacernents corresponding to a,j~ are

tI .S QS(f)g. .S QS(f) g. .StI .S (3 6)

W=L(1+2P—cos8—-')I. )/(1 —cos8——')I. )j'f'
Q (4il) tIl,—1 (fEND)/Gl, —1

= (0 y+&i, t &)/bio =—d+v, —
k even, (3.11)
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Q '(t0)=a,; a,, 'Q '(tg,). (3.14)

At t~& the weakly bonded atoms change from 1, j„to
1, j„and 1, j„+1.In this case, with U" denoting the
new unstable position,

Q11"(t1,)= a; 1P'a," 'Qs'(tA+1), k odd. (3.15)

Though the subscripts change, the localized vectors
are always centered with respect to the present position
of the dislocation —that is,

. .O' . . . V . .SI . . . S . .U» . . Ut~;j. —as, ~ ~„, p ~ig —~s, y'—j„p +ij

It follows that

a "s'a "~'=ava sara , S. =B.&. 1 , . (3 .1. 6)

The symmetry of the localized vectors thus leads to
velocity transfers which are the same for stable to
unstable and unstable to stable, namely,

Q (t0) = "B'Q~(t )0, k odd, (3.17)

(3.18)Q~(tA) =B'I'Q (tq), k even.

Dislocation motion is now completely characterized

by the coordinates Qs ~, which may be thought of as
describing the motion of a series of alternating stable
and unstable asymmetric pendulums, each subjected to
a constant force and imperfectly transferring energy
from one to the next. This interpretation is illustrated in

Fig. 5. Let

MU =
i
X i Ms =X + (P+Q)a10 (a10 +a11 )/

(1+a,;~a;,; 1~), (3.19)

gU=2F p(dR p+dL~)o MU'(dL p' dR p'—), (3.20)—

M=2Fs(dRs+dLs)~+Ms'(dLs' —dRs'), (3 21)

Q (4) s1,0 (ts TART)/a10

= —(2~ U1,p~+V ——',+0)/a10' =——dLs, (3.12)

Q (t~1) V1,0 (tEND)/a10
= (2 I U1.e I+& 0—~)/a10'= dR—s,

k odd. (3.13)

These values do not change with dislocation position.
At any time t the coordinates v;;~ and e;;~ differ only

in their axed references, so that at some particular
unstable to stable transition ir;1s'(t0)=i;;~'(t0). From
this and Eqs. (3.3) and (3.6)

dLS ~d~S

0'
I

/
I

1 0t(&~)

r

as(»

Q (r~

J 1(1,3

dRU

Fxo. 5. Progress of the dislocation in terms of the pendulum
analogy of local coordinate motion.

From the above, recurrence relations may be derived
whose solution is"

S0„+1=S1+B'C (1—B'")/(1—B')

U0„+0——U0+ B4C(1 B'")/(1—B'), —
S„=B(~U+B~S)/(1—B )

U„=B(M+BAU)/(1 B'), —
where

I&0, (3.26)

e&0, (3.27)

(3.28)

(3.29)

C= (1 B')U1+B—'L6'+B 'hU.

The time of traverse of a stable (unstable) pendulum
acted on by a constant force I'z, p with initial displace-
ment dLs, 11, initial v—elocity SI,(U1), and 6nal displace-
ment dRB, p is

MS(tk+1 tk )

0+8—EB8=arcsin—
[S'aMs '+(dLs+FsMs ')']'"

+arctan[MsS0 "'(dLs+FSMs ')j k even, (3.30)

M U(4+1 4 )

FpM~ '+dRp-
=arcsinh

[VAMP ' (FPMP '—dLP—)'j"
—arctanh[M1TUg, "'(FpM p '—dLp)],

k odd. (3.31)

Since one stable-unstable cycle represents a dislocation
displacement of one atomic spacing the transient and
steady-state dislocation velocity, el, and e, are

0I=(4 —4 1+t1+1 —tA ) ', k even, (3.32)

U = [Q'(t )O', S~= [Qs(t.)7 (3.22) 0=(t t 1+t 1~ t 1—) 1— (3.33)

From the energy equation for Q~ s [derived from Eqs.
(3.2)j and Eqs. (3.17) and (3.18), Dyrlomi c Pei eris Stress

U1 MU'(dRP)0+2F PdR——g,

UA+1= U0+~U, S0+1=SA+M,

(3.23)

(3.24)

(3.25)

The dislocation fails to surmount its potential
barrier if the argument of the arctanh in Eq. (3.31) is
less than unity. UI, approaches its steady-state value
monotonically, so the minimum stress required to
maintain steady-state dislocation motion, referred to
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FIG. 6. Steady-state dimensionless dislocation velocity v as a function of applied dimensionless stress 0, comparison of the UU and
USU localized-mode theories with computer simultation for a Qnite lattice.

in Ref. 11 as the dynamic Peierls stress 0pD, is found
by solving uz(Fp~z ' dL&)(U—„) 'I'=1 for 0. Numer-
ical values of o pa are shown in Fig. 6.

UU Motion

The unstable traverse which started when the weak
bonds became 1,j —1 and 1,j ends when the weak
bonds become 1,j„and 1,j +1. The short stable
transverse is neglected. Then tI, k odd ends an unstable
traverse and tj, k even begins an unstable traverse.

Q (tl,) k even (dLU) is given by Eq. (3.10),but Q~(t&+&)
is now given by (see Fig. 4)

Q (t. )= "I . '=(-:+~+U.:.-2U—,:.--)l
ohio~= dRv, k e—ven. (3.34)

At transition from one unstable traverse to the next

QU(t&) gt/oQU(tI —i), ~ even (3.35)

where now
(3.36)

UU motion may be interpreted by the pendulum
analogy of the USU case, but with dL8= dRB= 0(see- —
Fig. 5). With co&', Uz, U&, and AU defined in Eqs.
(3.19), (3.22), (3.23), and (3.20), the energy equation
for Q~, and Eq. (3.35), become

U~~ ——UI,+AU, k even, (3.37)

U~i= &Us, k odd. (3.3jj)

These lead to the steady-state condition

U„=B(1 8) 'dU— (3.39)

o~
——(t~+~~—

tA, ~) ', k even,

—(t U t U)—1 (3.41)

Transient and steady-state velocities found from these
equations are shown in Figs. 6 and 7.

The time of traverse of the unstable pendulum is given

by Eq. (3.31).Corresponding transient and steady-state
velocities are

(3.40)

IV. COMPUTER SIMULATION

As a check on the assumptions of this analysis, nu-
merical computations on the IBM 7094 computer were
made using the equations of motion with the time
derivative in finite-difference form. The dislocation is
started from unstable rest in the center of a finite
lattice whose initial position is comprised of the
zero-stress displacements I;; and a uniform shear io..
Uniform shear satisfies the equilibrium equations of all
atoms except the weakly bonded ones and so they
start to move first. The displacements I;, are found
for the finite lattice by an iteration procedure known
as successive overrelaxation. " Both fixed and free
boundaries are easily incorporated into the numerical
procedure.

V. RESULTS AND DISCUSSION

Transient Velocities

The computer program for dislocation velocities was
run for I'= 1.00 and y=0.255, 0.275; a time increment
of 6~=0.07, and a range of applied stress. For y=0.255
the stable traverse is very small and the UU theory
should apply. For y =0.275 stable and unstable traverses
are approximately equal and the USU theory should
apply. Comparisons of computer simulation and UU
theory are given in Figs. 7(a)—7(f) which show the
velocity of the dislocation as a function of the number
of atomic spaces it has moved through the lattice.

It was assumed that the dislocation had moved one
atomic spacing when the atom on the slip plane
representing its edge had moved one atomic spacing,
i.e., had gone through a complete stable-unstable
traverse. The time for moving one atomic spacing was
Ineasured from the instant a stable traverse began to
the instant the succeeding stable traverse began. Then
the velocity in dimensionless terms at that particular
dislocation position is simply the reciprocal of the time
in question. A velocity of 1 represents the velocity in

"R. S. Varga, Aviatrix Iterative Analysis (Prentice-Hall, Inc. ,
Englewood Cliffs, New Jersey, 1962), p. 56.
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the slip direction of plane dilational waves of in6nite
wavelength (velocity of sound in the continuum). The
dislocation starts from unstable rest at the center of a
lattice which has been given a uniform shear deforma-
tion io.. All lattices in Fig. 7 are 20 rows by 120 columns
except the one noted.

Fairly good agreement is shown up to a stress 0.=0.02.
Figure 7 (a) typifIes the increasing discrepancy between
theory and computer simulation at higher stresses
and velocities. There is qualitative agreement in the
very rapid acceleration to a near steady-state velocity.
At the lower stresses the effect of the 6nite size of the
lattice becomes suspect. There is an attraction to the
free boundary. This is clearly shown in Figs. 7(e) and
7 (f). After the dislocation has moved 30 atomic spacings
(halfway to the free boundary) and reached a steady-
state velocity, there is a sharp increase in velocity.
Increasing the width of the lattice to 20&(180 showed
(Fig. 7(e)j that this was indeed a boundary effect.
For a stress of 0 =0.005 it is diKcult to discern a steady-
state velocity. An increase in lattice width for this stress,
however, gave results identical to those shown. One can
conclude that at this and higher stresses, and for the
distance travelled, increasing the lattice width had
little effect on the dislocation velocity. For 0.=0.004
and 0=0.003, not shown, a 20&(180 lattice was used
with results similar to Fig. 7(d). A test of the height
effect was made by increasing the lattice size to 30X120
for y=0.275 and 0.=0.005. This choice of parameters
was arbitrary, a systematic investigation of the height
effect being impossible because of the large computer
times involved. It was found that the dislocation moved
somewhat slower, then somewhat faster, and then after
about 10 atomic spacings the same as in a 20)&120
lattice. Halving the time increment to dr=0.035 for
the case shown in Fig. 7(d) gave identical results, so
that no signi6cant error due to the 6nite-difference
approximation to the acceleration is present in the
results. The double-precision capability (16-place
accuracy) of the IBM-7094 computer was used in these
dynamic computations.

4
v

.6-

.2

2 ~

0

0 I

2-

~ ~
~ ~ ~ ~ ~ r ~ ~ ~ r ~

UU THFORY

~ ~ COMPUTER SIMULATION

P = I.OO
y' =.255

~ 20 X 120
~ 20 V I80

r r ~

0' .02
I I I I I

8 I 2 I6 20 24 28
D

(a)

32 36 40

r ~ r ~ r r 1 ~ r ~ r r

0:—Ol

~ ~ r
~ ~

~ ~
r

r
~ ~ ~ ~ r ~ ~ ~ ~ ~ ~

~ a ~ r ~ II r
r ~

G=.OOI

0'= .005

4 8 I2 I6 20 24 28 32 36 40
D

(b)

Steady-State Velocities

From results such as shown in Fig. 7, steady-state
velocities as a function of applied stress 0- were found
and are compared with both the UU and USU theory
in Fig. 6. The UU theory is plotted for y=0.275
although the assumption of a small stable traverse
does not apply. It is seen to agree quite well with the
USU theory over a considerable range of applied stress
0-. Both theories agree fairly well with the computer
simulation for median velocities up to about 0.7 the
speed of sound waves in the direction of slip.

Dislocation motion takes place below the Peierls
stress but not at such low stresses as the theory predicts.
This is probably due to the large amount of energy
radiated from the dislocation at the very low velocities

0 I I I I I I & I I I I I I I I I I I I I I I I

4 8 I 2 l6 20 24 28 32 36 40 44
D

(c)

FIG. 7. Dimensionless dislocation velocity e& as a function of
distance D in atomic spacings. The UU (localized-mode) theory
and the computer simulation for a finite free-boundary lattice
are compared for various applied dimensionless stress cr. The
dislocation starts at rest from the center of the lattice. A velocity
of 1 corresponds to the velocity of plane dilatational (sound)
waves in the continuum in the slip direction.

which the dislocation has when starting from rest at
these stresses. Not enough of the acquired kinetic
energy remains in the neighborhood of the dislocation
to enable it to overcome its next potential barrier.
The discussion of Atkinson and Cabrera" on low-

velocity dislocation motion appears relevant here.
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Fro. 8. Distance D in atomic spacings as a function of dimensionless time t, for fixed-boundary (except as noted) lattices of various
size, as found by computer simulation. The dislocation starts at rest from the center of the lattice.

At velocities approaching the speed of sound the
1—2—1—2 weak bond sequence is disrupted and weak
bonds spread out from various points along the slip
plane. Dislocation velocity for this situation is meaning-
less. It occurs at 0.=0.2.

There is remarkably little difference in the velocity-
stress relation, for both theory and computer simulation,
between the two values of y. For the lower value of
Peierls stress, dislocation motion can take place at
lower values of stress, as one would expect. These facts
seem to indicate that a change in Peierls stress changes
only the lowest value of stress at which motion can take
place, but not the velocity distribution above this
stress.

The velocity-stress distribution given by Weiner"
for the linear chain is similar to that shown in Fig. 6
for the two-dimensional model. An exact comparison,
however, is dificult because the parameters which fix
dislocation widths, stable and unstable regions, and
normal-mode characteristics, are different because of
the difference in dimensionality.

EGect of Fixed Boundaries

Finally, as a matter of interest, some results of
fixing the boundary of the lattice are presented in Fig. 8
for various-size lattices at a value of y=0.255 and a
stress of 0-=0.01. The position of the dislocation,
starting at rest from the center of the lattice, is given as
a function of dimensionless time. With the upper
boundary 6xed, the dislocation behaves as an elastic

string 6xed at one end and with the other end con-
strained to move in a straight horizontal line under an
applied force. The free end oscillates about the equilib-
rium position under the applied force. In the 20&(60
lattice the dislocation moved further than in the 20&&120
lattice, in spite of the fact that the end boundaries of
the lattice repel instead of attract. This is because
initially, since the unstressed lattice was erst allowed
to reach equilibrium before Axing the boundaries, the
dislocation thought it was in a free-boundary lattice and
therefore was attracted more to the closer boundary of
the 20)&60 lattice, and hence acquired more kinetic
energy. Actually, a quantitative description would have
to take into account the effect of both left and right
boundaries and the variation in attraction (repulsion)
with respect to distance from these boundaries. The
static effect of Axed and free boundaries on an edge
dislocation in a discrete lattice has been found by
Southworth. "Extending the height to 30 rows gives
the expected increase in dislocation mobility. For
comparison purposes, a 20' 120 lattice with free
boundary, and a very large 60X100 lattice with 6xed
boundary, are also shown.
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