
P 8 YS I CAL REVIEW VOLUME 152, NUMBER 2 9 DECEM B ER 1966

Calculations of Small Vacancy and Interstitial Clusters
for an fcc Lattice*

R. A. JOHNSON

Brookhuven Nutionat Laboratory, Upton, New York

(Received 12 July 1966)

Binding and migration energies and atomic con6gurations have been calculated for small vacancy and
interstitial clusters in an fcc lattice with a model which should be applicable to nickel. The mathematical
model consisted of a spherical crystallite containing about 530 atoms which were treated as individual
particles surrounded by an elastic continuum with atoms imbedded in it. A two-body central force was
used to simulate the interaction between nearest-neighbor atoms in the crystallite, and the elastic con-
tinuum provided a pressure which held the crystallite in equilibrium. The binding and migration energies
for divacancies and di-interstitials were Egy =0.25, E~yM=0.90, E~l =1.16, and E21M=0.29 eV. The
binding energy of larger vacancy clusters was approximately equal to the energy in the nearest-neighbor
"bonds" between vacancies, each "bond" contributing 0.25 eV. The vacancy-cluster migration energy in-
creased slowly with the size of the cluster but was still less than the single-vacancy migration energy, El&M
=1.32 eV, for small clusters. Spherical vacancy clusters were the most stable, although an estimate was
made that a platelet on a (111)plane would collapse into a dislocation loop after absorbing somewhat more
than 180 vacancies and that this loop might be more stable than a spherical cluster which had absorbed the
same number of vacancies. Interstitial clustering was more complex, but in general binding energies were
large and migration energies increased with cluster size, although they never got as large as that for the
divacancy, the most easily migrating vacancy complex.

I. INTRODUCTION

'HE study of point defects in metals is based
primarily upon the analysis of the physically

measurable changes brought about by migration of the
defects. Whenever an unstable number of interstitials
or vacancies are present in a crystal lattice at a tem-
perature at which they are mobile, they will encounter
other such defects during their wandering as the system
proceeds to a state of equilibrium. The way in which they
interact has a strong effect upon the kinetics of their
migration and the nature of the stable or metastable
configuration to which the process eventually leads. In
order that the physical changes be large enough to be
measurable, experiments generally require a su6icient
density of defects so that such encounters are quite
common, and thus the analysis of the experiments must
be based not only on the migration characteristics of
the point defects themselves, but also on the way in
which they interact. A recent review of annealing theory
including the effect of interactions has been given by
Damask and Dienes. '

Damask and Dienes' also review theoretical calcula-
tions that have been carried out pertaining to the
stability and migration of small defect clusters. Such
calculations are based on mathematical models of the
crystal lattice which treat the lattice atomically and for
which the energy change of the lattice resulting from
the introduction of interstitials or vacancies can be
determined. All these calculations have been carried out

~W'ork performed under the auspices of the U. S. Atomic
Energy Commission.
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for an fcc lattice and in general the parameters in the
interatomic interactions have been chosen to represent
copper. A number of calculations' ~ for small vacancy
clusters based on a Morse-function interatomic inter-
action have been carried out as well as several ' which

try to account for the behavior of the electrons near the
defect in a more detailed way. Also, Vineyard and co-
workers" and Johnson" "and Brown" have investigated
small vacancy clusters and di-interstitials using a Born-
Mayer interatomic interaction. The models used in all
of these calculations are open to the objection that they
do not lead to an over-all interpretation of point defects
and small clusters which is consistent with experimental
results.

Lattice calculations for interstitials, vacancies, and
close I'renkel pairs in an fcc lattice have recently been
reported" which use a model applicable to nickel and
which yield results consistent with the experimental
data for nickel. Similar calculations have now been car-
ried out for small clusters of interstitials and vacancies
and the results are reported in the present paper.
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Fxo. 1. The di-
vacancy migration
path. The squares
represent vacancies
and the shaded circle
represents the jump-
ing atom. The curved
lines indicate the
two possible migra-
tion paths and lie
above the triangle in
the plane dered by
the divacancy and
the jumping atom.

The difference in energy between a perfect lattice and
a defect lattice was found from the change in bond
energy within the crystallite plus a term linear in the
volume change which accounts for work done in expand-
ing or contracting the crystallite against the pressure
in the elastic continuum plus a term quadratic in the
volume change which accounts for the energy stored
within the elastic Geld. Minima, maxima, and saddle
points in this energy difference were found as a function
of the coordinates of all the atoms in the crystallite
and the elastic strength variable K with the use of a
digital computer.

TABLE I. Interatomic interaction.

Range (A)

&2.40
2.40—3.00
3.00—3.44

Potential (eV)

—2.195976(r —3.097910)'+2.704060r —7.436448
—0.639230(r —3.115829)'+0.477871r—1.581570
—1.115035(r—3.066403)'+0.466892r —1.547967

"R.A. Johnson, Phys. Rev. 134, A1329 (1964).

II. MODEL

The model which was used for the present calcula-
tions has previously been described in detail" and only a
summary will be given here. Each atom within a spher-
ical crystallite containing about 530 atoms was treated
as an independent particle with three degrees of freedom.
The atoms outside this set were treated as though they
were imbedded in an infinite elastic continuum and the
displacement Geld u for the elastic continuum was taken
as u= E(r/r') .
The variable E, the so-called "strength" of the displace-
ment Geld, was used as the only variable determining the
displacement of all atoms outside the crystallite. With
such a model the volume expansion associated with a
lattice configuration, including a correction arising from
the use of Gnite boundary conditions, can be shown to
be linear in E.

A nearest-neighbor central interatomic interaction,
which has previously been discussed in detail, "' was
used between pairs of atoms in the present calcula-
tion. The analytic form of this potential energy curve
is that of three smoothly joined cubic equations for
which the numerical values are given in Table I.
Although this interaction was originally devised to
simulate the interaction between the atoms in n-iron,
a bcc structure, it should be reasonably appropriate for
describing the interatomic interaction in 7-iron or
nickel, both fcc metals. The intent of the point-defect
calculations for an fcc lattice was originally to investi-
gate the nature of the physical predictions from this
form of potential, but the model fits nickel suQiciently
well that at most minor adjustments to the results
would have to be made if an interaction specifically
designed for nickel was used.

III. RESULTS

A. Vacancies

The single-vacancy results, as reported previously, "
are: vacancy formation energy E&&~=1.49 eV, forma-
tion volume V~~~ =0.850, where 0 is the atomic volume,
activation energy for migration E&&~=1.32 eV, and
activation volume for migration V~~~~= —0.050. There-
fore, the activation energy for self-diffusion is E = 2.81
eV and the activation volume for self-diRusion is
V =0.800. The stable vacancy configuration was that
in which an atom is missing from a normal lattice site
and the saddle-point configuration for migration was
found by moving one of the 12 nearest-neighbor atoms
to the vacancy directly towards the vacancy until it is
midway between its site and the vacancy site.

The stable divacancy had a binding energy E2z~
=0.25 eV, a binding volume Vpp =0.02Q, and was
simply the configuration in which atoms are missing
from two adjacent lattice sites. The binding energy
comes primarily from "bond counting, " i.e., 24 bonds
must be broken to create two isolated vacancies, whereas
only 23 bonds must be broken to create a divacancy
with the above configuration. Since short-range forces
between the atoms are used in the present calculation,
any more separated pair of vacancies has no bond con-
tribution to the binding energy. The stress Geld con-
tributes a negligible amount to the binding energy—
never more than a few thousandths of an electron volt
and usually negative —so that two vacancies separated
by a lattice constant or greater distance essentially
do not see each other. The binding volume associated
with the divacancy is too small to be physically
important.

The divacancy migration process is somewhat com-
plicated in that the moving atom does not follow a path
with very much symmetry. The activation energy for
migration is E2~ =0.90 eV and the activation volume
for migration is V2y~= —0.41. The migration mecha-
nism is shown in I'ig. 1, where the squares represent
vacancies and the shaded circle represents the jumping
atom. The curved. lines indicate the two possible migra-
tion paths and lie above the triangle in the plane de-
fined by the divacancy and the jumping atom.

In a manner similar to that for the divacancy, the
binding energy of small vacancy clusters depends pri-
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marily on "bond counting, " i.e., the binding energy is
roughly equal to the decrease in the number of broken
bonds in the cluster relative to separated vacancies
times the bond energy 0.25 eV. This decrease in number
of broken bonds is equivalent to the number of nearest-
neighbor distances between the vacancies in the cluster,
and therefore the clustering can be thought of as caused
by a nearest-neighbor binding energy of 0.25 eU between
the vacancies. This essentially means that the most
compact clusters will be the most stable. The most
stable trivacancy had a binding energy of 0.76 eV and
consisted of vacancies in an equilateral triangle of 3
nearest-neighbor lattice sites (3 nearest-neighbor bonds).
The most stable tetravacancy had a binding energy of
1.51 eV and consisted of vacancies in a tetrahedron of
4 nearest —neighbor lattice sites (6 nearest-neighbor
bonds). Results followed this pattern for higher clusters.
The numerical results are summarized in Table II.

Care must be exercised to ensure that no con6gura-
tions exist with a higher binding energy than those
listed above for which the configuration is not simply
composed of a number of atoms missing from their
normal lattice sites. One such possibility for the tri-
vacancy consists of the tetravacancy with an atom in
the middle of the tetrahedron. This configuration had
a binding energy of 0.59 eV and was second only to the
equilateral triangle in order of stability for the triva-
cancies. No complicated vacancy cluster was found to
seriously compete with the more simple types considered
above for larger clusters.

Even though the present computer program was not
designed to investigate large vacancy clusters, some
conclusions relating to the collapse of clusters into dis-
location loops can be made. A number of calculations
were carried out to study vacancy clustering in a
{111}plane. The atoms on either side of the plane
tended to bow in and when clusters of up to 30 vacancies
were considered, it was found that the separation of the
atoms across the vacancy platelet decreased linearly
with the square root of the number of vacancies in the
plane, i.e., with the diameter of the vacancy platelet.
Kith the nickel-nickel potential used in the present
study, this line could be extrapolated to where the
atoms would start interacting strongly across the plate-
let and it was found that this would occur for a platelet
containing about 180 vacancies. Thus the platelet will
lose its identity as a vacancy cluster after absorbing
more vacancies and will be in the form of a dislocation
loop. Since there is appreciable energy regained as the
center of the platelet transforms into a stacking fault,
the dislocation loop might become energetically more
favorable than a spherical cluster. The energy barrier
for collapse of a tightly packed cluster to a dislocation
loop was not investigated.

The migration energy of trivacancies and higher
clusters was not investigated in as great detail as for
divacancies but enough calculations were carried out
to determine the pattern for cluster migration. In
effect, all clusters move with a higher migration energy

B. Interstitia1s

The single-interstitial results, as reported previously, "
are: interstitial formation energy Ejz~=4.08 eV, forma-
tion volume Vrr~=0. 70, activation energy for migra-

TAsz,E II. Summary of calculated results for vacancy and
interstitial clusters in nickel. Energies are in eV. Superscript F
means formation, M means motion, J3 means binding, and R
means reorientation. The fractions listed with interstitial clusters
are the probability that the given number-„of interstitials will be
in the correct channels to give the particular conlguration.

Vacancies
(vacancy interactions
were short-ranged)

Interstitials
(interstitial interactions

were long-ranged)

E1V
E ~M
EsD
Egl
E ~M

EBV
E ~M

E4y+
M

1.49
1.32
2.81
0.25
0.90
0.76
1.02
1.51
1.15

E1IJ'
M

E~P
E, M

E21
E31
E IM

E3I"
EBI
E31
E41

4.08
0.15

0.29
0.05
2.85
0.45 L~~

0.15
2.37 —,',
Negative ~
4.1

than divacancies. The energy for a given step in the
cluster migration process is roughly the divacancy
migration energy plus one-half the difference in binding
energy of the initial and final con6gurations for the
step. Since all cluster migration requires partial dis-
sociation, all will have a higher migration energy than
the divacancy. The trivacancy has an interesting feature
in that it can be rearranged in any of four equivalent
sites with less energy than for migration. This comes
about because for each trivacancy there is only one site
which completes a regular tetrahedron, and the tri-
vacancy can Qip to include any three of the tetrahedral
sites by passing through the trivacancy con6guration
mentioned above as second to the triangle in stability,
the tetravacancy with an atom at its center. To move
the tetrahedron in which the trivacancy is based re-
quires a higher energy. The trivacancy migration energy,
which involves passing through a configuration with
one less "vacancy bond" is about 1.02 eV, and tetra-
vacancy migration, which involves jumping to a con-
figuration with two less "vacancy bonds" is about 1.15
eU.

The two "rules" for vacancy clustering, (a) binding
energy equal to the energy in vacancy "bonds, " each
bond with 0.25 eV, and (b) migration energy for a given
step equal to the divacancy migration energy plus one-
half the dissociation energy for the step, are considered
to be su%.ciently reliable and easy to apply that a
general catalog of cluster results will not be given.
The 6rst was accurate to within 0.01 eV for clusters
including up to 30 vacancies, and the second, although
more approximate, should reQect the qualitative predic-
tions of the model.



632 R. A. JOHNSON 152

d Q e Qi;.

FIG. 2. Di-interstitial and tri-interstitial conigurations. Figures
(a) and (c) show two different but equivalent stable di-inter-
stitials, and (b) shows a metastable configuration through which a
di-interstitial passes in migration from (a) to (c). Two tri-inter-
stitials which are energetically equivalent but which have a
different orientation to their strain field are shown in (d) and (e).
These are forms of the most stable tri-interstitial and the re-
orientation energy is lower than the migration energy. Another
form of tri-interstitial is shown in (f) which cannot convert into
the most stable form by elementary steps of its component inter-
stitials. There is only a —, probability that three single interstitials
will be in the appropriate channels to give the most stable tri-
interstitial, and —„probability that it will be in the form in (f).
There is a third form with ~~ probability. The di-interstitial
shown in (a) and (c) has a q probability, and there is one other
di-interstitial form with a ~ probability.

tion E~l~ ——0.15 eV, and activation volume for migra-
tion V~y ——0.10.The most stable interstitial con6gura-
tion was the (100) split con6guration in which two
atoms are symmetrically displaced in the (100)direction
from a vacant lattice site. The migration mechanism
consisted of one end of the split jumping to form a split
at a nearest-neighbor lattice site, This involves rotation
of the axis of the split as well as migration. Another
metastable interstitial was found which gives rise to
a different migration mechanism —the (111) split —in
which two atoms are symmetrically displaced in the
(111) direction from a vacant lattice site. Again the
migration mechanism consisted of one end of the split
jumping to form a split at a nearest-neighbor lattice site.
The configuration was metastable by Eizs((111) split)
=0.16 eV arid the activation energy for migration was
Eiz~((111) split) =0.13 eV. The (110) split con6gura-
tion, the so-called crowdion, was just barely metastable
and migrated very easily: Etzs((110) split)=0. 02 eV,
and Eiz~((110) split) =0.04 eV.

There are many metastable di-interstitials and un-
like the vacancy case, interstitials were found to interact
at appreciable separation distances. The most stable
pair consisted of two parallel (100) single interstitials
at nearest-neighbor lattice sites with the line joining
their centers perpendicular to their axes, as shown in
Fig. 2(a). The binding energy was Err~=1.16 eV. The
migration energy was E21~=0.29 eV and the migration
mechanism consists of a two-step process in which,
starting from the con6guration in Fig. 2(a), one inter-
stitial 6rst jumps to form the complex shown in Fig. 2 (b)
and then either goes back to its original location or
jumps to the con6guration shown in Fig. 2(c), which is

equivalent to that in Fig. 2(a), i.e., a stable di-inter-
stitial. This migration mechanism involves motion in
a plane, and migration perpendicular to the plane re-
quires a considerably greater activation energy. The
con6guration in Fig. 2(b) is metastable by 0.07 eV and
was the second most tightly bound di-interstitial with
a binding energy of 0.94 eV. For interstitial cluster
migration, the "rule of thumb" for migration energies
is that E~ equals the single interstitial migration
energy plus one-half the decrease in binding energy for
the step. The rule for the step given above yields 0.26
eV, whereas the carefully calculated result was 0.29 eV.

Di-interstitial calculations out to fourth-neighbor
separation distances were carried out and the results
indicate a very complex pattern. Even at this separation
one con6guration (an interstitial at the origin split in the
x direction and one at L220ju/2 split in the s direction,
where a is the lattice constant) was bound by 0.45eV
and another (an interstitial at the origin split in the x
direction and one at L220]a/2 split in the x direction)
was repulsive by 0.44 eV. As pointed out earlier, "there
are four migration channels for interstitials and the
present results shown that in general interstitials in
the same channel repel one another, whereas inter-
stitials in different channels can 6nd an appropriate
mechanism for becoming tightly bound. The most
tightly bound configuration is excluded for interstitials
in the same channel, but since their interaction varies
with coniguration, there are "trapping" configurations
in which the energy to separate is greater than the
normal interstitial migration energy (one such site
involves an interstitial at the origin split in the s direc-
tion and one at (200)u/2 split in the s direction).

In summary, three-fourths of possible interstitial
encounters proceed in a normal way with a long-range
attractive interaction to a tightly bound complex which
migrates with a higher energy than a single interstitial.
The other fourth of possible encounters produces a
complex pattern within which the interstitials will
never become tightly bound, in general repel each other,
but can trap each other, or in effect be loosely bound.

The results from the study of tri-interstitials are
even more complicated. The basic features that emerge
are a very tightly bound defect, E31 =2.85 eV, a
migration energy higher than that of di-interstitial,
Esp~=0.45 eV, and a reorientation mechanism which
could, for example, give rise to stress-induced ordering
with an energy about the same as that for the single-
interstitial migrating energy, Eall=0. 15 eV. The most
stable con6guration involves an atom at L110)a/2 with
an x orientation, an atom at L000] with a s orientation,
and an atom at t 110ja/2 with a s orientation as shown
in Fig. 2 (d). An equivalent con6guration with a
different orientation is shown in Fig. 2 (e). Because of the
existence of separate channels for the split interstitials,
there is only a 8 probability that three interstitials can
form the most stable tri-interstitial. The probability is
~'~ that their most stable coniguration will be bound by
2.37 eV and involves an atom at L110)u/2, an atom at
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L000], and an atom at $110)tt/2, all with s orientations
as shown in Fig. 2(f). Although this configuration has a
strong orientation dependence, there is no mechanism
for reorientation and thus it cannot give rise to an
ordering effect. In the more tightly bound con6guration,
none of the interstitials are in the same migration
channel, whereas in this case, two interstitials are in the
same channel. There is a ~~ probability that they will
all be in the same channel, but these con6gurations give
very little binding and are analogous to the di-inter-
stitial cases in which both interstitials are in the same
channel.

Several tetra-interstitial con6gurations were run and
binding energies were in the range of 4.1 eV. Since the
interaction between interstitials is very complex, simple
patterns in the binding energy such as were found for
vacancy clusters are not seen for interstitial clusters.

In all the above interstitial clusters it was assumed
that the component interstitials were of the (100) split
type. Several trials were made to find di-interstitial
configurations based on (111)split or (110) split inter-
stitials, and although some very tightly bound con-
6gurations were found, they all tended to decay quite
easily to the most stable form discussed above.

In summary, interstitial clusters did not show a clear
pattern in con6guration or binding energy. Clusters are
tightly bound and the migration energy increases with
size of the cluster. The numerical results are listed in
Table II.

IV. DISCUSSION

Damask and Dienes' review early estimates of
divacancy binding energies and trivacancy stability
for copper. These calculations in general give results in
the range of 0.3—0.6 eV for divacancy binding energies
and indicate that the trivacancy consisting of an extra
atom centered in a tetrahedron of vacancies is more
stable than a nearest-neighbor triangle. The present
results will be compared to results using a Born-Mayer
interaction" "and to some recent calculations using a
Morse interaction. ' These two sets of results are the most
detailed and the most representative of the given
interaction.

The Born-Mayer interaction gives rise to a two-body
central repulsion between nearest neighbors, and very
little interaction for more distant neighbors. Thus
neighboring atoms to a vacancy can relax slightly in-
ward towards a vacancy, but there is little energy
change during the relaxation process. The bond-
counting contribution is also small, and in this case
negative. For divacancy binding the additional relaxa-
tion caused by the proximity of another vacancy is
slightly greater than the bond-counting contribution,
and so there is a net small binding energy. 0.06 eV.
The same trend is observed, e.g., for a trivacancy in
which the vacant sites are in a (110) tight-packed lin-
here the binding energy is negative, —0.1 eV. Vacancy
cluster con6gurations which permit atoms to get
further away from their neighbors by a large relaxation

are much more favored, how'ever; for example, the tri-
vacancy consisting of a tetravacancy with an atom
in the middle has a binding energy of 0.46 eV. This trend
also continues for larger clusters. Thus the configura-
tions and to some degree also the energies are strikingly
diferent than those found in the present report. The
same is true for divacancy migration, where the Born-
Mayer interaction gives a very small value: 0.07 eV,
whereas the value reported in the present work is 0.90
eV. The Born-Mayer models are intended to simulate
copper, whereas the present report should be applicable
to nickel; but this should not be important since the
radiation-damage annealing patterns in the two metals
are similar, and also since a Born-Mayer calculation
for nickel would give results similar to the Born-Mayer
copper results, and a copper calculation using the present
form of potential would give results similar to those
reported for nickel.

There were not many Born-Mayer calculations made
for interstitial clusters, but the interstitial results are in
better agreement since the binding does not explicitly
come from the interaction, but arises primarily from
reinforcement of the stra, in 6elds from each of the inter-
stitials. The same di-interstitial was found to be stable
and the same interstitial and di-interstitial migration
mechanisms were found, although the present work
gives binding and migration energies somewhat higher
than the Born-Mayer results. These values for nickel
should be somewhat higher than for copper.

The calculations based on a Morse interaction'
present yet another picture. They yield a tightly bound
divacancy, E&&~=0.53 eV, but also give a small
divacancy migration energy, E2& =0.03 eV. The
vacancy cluster con6gurations indicate a diferent
pattern and were reported to be tightly bound. The
trivacancy consisting of three nearest-neighbor vacan-
cies (the same one found to be most stable in the present
report) was reported as being the most stable with a
binding energy E3&~=2.23 eV. But the most stable
tetravacancy was found to consist of the above tri-
angular trivacancy plus a nearest-neighbor vacancy to
two of those in the triangle, which means it is in the
plane de6ned by the triangle. Thus the authors believe
the model, if run for larger clusters, would favor vacancy
platelets in the {111)plane right from the smallest
size. Interstitial clusters were not calculated.

These comparisons are summarized in Table III, and
the rather extreme differences in the three models are
easily seen. Again remembering that the Born-Mayer
and Morse calculations are for copper and the present
for nickel, some of the predictions of these models can
be compared with experimental values. Using the data
in two recent review papers, """one 6nds that the values
for single-vacancy migration in copper range from 0.88

~' J. W. Corbett, in Solid State Physics, edited by I'. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1966),
SuppI. 7.

"A. Seeger and D. Scbumacher, in Lattice Defects sn Quenched
3fetuls, edited by R. M. J. Cotterill, M. Doyama, J. J. Jackson,
and M. Meshii (Academic Press Inc., Nevy York, 1965), p. 15.
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TABLE III. Comparison of the clustering characteristics from
different models. Energies are in eV.

Born-Mayer Morseb Present

EivM
E vB
E vM

3 V configuration

E4vB
. 4P configuration
E ~M

B

E IM

0.43
0.06
0.07
0.46
filled

tetrahedron
0.7
complex
0.05
0.61
0.08

0.69
0.53
0.03
2.23
equilateral

triangle
3.85

{111)
0.15

1.32
0.25
0.90
0.76
equilateral

triangle
1.51
tetrahedron
0.15
1.16
0.29

See Refs. 10-12. b See Ref. 7.

to 1.08 eV and in nickel from 1.35 to 1.55 eV. Thus the
nickel calculations agree better, but not strikingly so.
The copper divacancy binding and migration energies
are thought to be about 0.1 and 0.6 eV, respectively,
while the nickel divacancy migration energy is in the
range of 0.8—1.0 eV. Especially with regard to the di-
vacancy migration energy, the Born-Mayer and Morse

results are in conflict with the data, whereas the present
calculations are in agreement. The single-interstitial
results were discussed previously, " and no reliable
interstitial-clustering data are available.

The primary difference between the present calcula-
tions and those using either Born-Mayer or Morse
interactions is that the interaction used here gives rise
to a nearest-neighbor "bond" which must be broken
if the atoms are to be separated at all. The Born-
Mayer interaction is purely repulsive and the Morse,
although it has an attractive tail binding atoms to-
gether, is long in range, so that motions of the order of
a nearest-neighbor distance do not involve making or
breaking the "bond" between atoms. It is the existence
of this bond which gives rise to reasonable values of
vacancy and divacancy migration energies in the present
calculations.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge stimulating discus-
sions with Dr. G. J. Dienes, Dr. G. H. Vineyard, and
Dr. A, . C. Damask during the course of this work.

P HYSI CAL REVIEW VOLUME 152, NUMBER 2 9 DECEMBER 1966

Dislocation Velocities in a Two-Dimensional Mope@

W. F. HARTLEY AND J. H. WEINER

Department of Mechanical Engineering, Columbia University, NeIo irorh, &eIo Z'orh

(Received 27 December 1965)

The dynamics of an edge dislocation in a two-dimensional crystal model are investigated using a localized
unstable normal mode of vibration of the model. The model used is a simple-cubic lat tice with linear central
and noncentral nearest-neighbor interactions and a piecewise linear restoring force between atoms on the
slip plane. The atoms below the slip plane are fixed. Lattice parameters are chosen to allow specific stable and
unstable configurations of the lattice, and it is assumed that the dislocation progresses by passing alternately
through stable and unstable states. It is found that there is one localized unstable ro.ode of vibration whose
components are very large in the neighborhood of the dislocation. This localized mode is used to approxi-
mate dislocation motion in the unstable state, and it is altered —by symmetrizing it with respect to the stable
lattice configuration —to approximate motion in the stable state. Two coordinates, given by harmonic equa-
tions of motion, then characterize the dynamics of the dislocation. The relation between the two coordinates
gives an energy-loss mechanism which leads to a steady-state dislocation velocity when a shear stress is
applied to the lattice. Transient and steady-state velocities and the minimum stress necessary to maintain
a steady-state velocity are calculated. The same quantities are found using computer simulation of a finite
lattice, and a comparison is made. Reasonably good agreement is found for velocities up to about 0.7 times
the velocity of sound in the continuum in the direction of slip. The analytic theory underestimates the mini-
mum stress necessary to maintain a steady-state velocity.

I. INTRODUCTION
' 'N spite of the importance of the subject, little
~ ~ theoretical work has been done on the dynamics of
dislocations in crystals from a discrete, microscopic
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viewpoint. The earliest work on two-dimensional
dislocation dynamics considered a single volterra dis-
location in an infinite elastic continuum; in this model
the dislocation may move freely at any velocity less
than the speed of sound without an applied stress. ' A
similar solution was found' ' for a modified continuum

F. C. Frank, Proc. Phys. Soc. (London) A62, 131 (1949).' J. D. Eshelby, Proc. Phys. Soc. (London) A62, 307 (1949).'R. Bullough and B. A. Bilby, Proc. Phys. Soc. (London)
B67, 615 (1954).


