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Many-Body Perturbation-Theory Calculation of Atomic Polarizabilities
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The use of many-body perturbation theory in problems involving multiple perturbations is discussed.
The perturbation theory is applied to the calculation of the dipole polarizability of the ground state and of a
number of low-lying excited states for atomic oxygen. For the. P ground state, the calculated polarizability is
0.783)&10 "cm.' The effects of electron correlations are discussed. The monopole and dipole contributions to
the polarization potential are presented for the (2P)' 4S 3s 'S state.

I. INTRODUCTION

'HE many-body perturbation theory of Brueckner'
and Goldstone' has previously been applied to

calculations of many atomic properties. Results have
been obtained for correlation energies, ' dipole and
quadrupole polarizabilities, shielding factors, transi-
tion probabilities, and photoionization cross sections
for the neutral beryllium atom. ' Recent research has
also shown that the Brueckner-Goldstone (BG) pertur-
bation expansion may be applied to open-shell atoms,
and correlation energies among all electron pairs in the
neutral oxygen atom have been obtained. '

In this paper the BG expansion is used to calculate
the dipole polarizability for the ground state and for
the low-lying excited states of the neutral oxygen atom.
For the ground-state calculation, the effects of correla-
tion terms are considered. Calculations are also given
for the polarizability potential for the (2p)' 'S'5
excited state of oxygen. A review of the BG theory and
its applicability to problems involving multiple per-
turbations is given in Sec. II. The dipole polarizability
calculations are reported in Sec. III and the polariza-
tion potential calculations are reported in Sec. IV.
Section V contains the discussion and conclusions.

II. PERTURBATION THEORY

A. Review of the Brueckner-Goldstone Expansion

The total Hamiltonian for E identical fermions in-
teracting through two-body potentials e;; is

N N

H=PT+Pr„

atoms
T,= (A—'/2m) VP Ze—'/r;,

where Ze is the nuclear charge. The states P„are deaned

by
HP =EP.

The effect of the E interacting fermions may be ap-
proximated by a single-particle potential V and P„
is now approximated by C„, where

II,C„=a„«)c„

Ho ——Q (T,+V;).

The states 4 are determinants composed of single-
particle states p;, which are obtained from the equation

(T+ V) p;= e,y;.

It is also possible to consider unperturbed states C„
which are a linear combination of determinants. ' The
states q; occupied in 4 are called unexcited states.
The remaining solutions of Eq. (6) are called excited
states. An unoccupied unexcited state is called a hole
and an occupied excited states is called a particle.

The BG result is

assuming that the energy denominators (E &'& —Ho)
do not vanish. The gz means that only "linked"
terms are to be included' and

The term T; is the sum of the kinetic-energy operator
and all one-body potentials for the ith fermion. For

~ Work supported in part by the U. S. Atomic Energy Com-
mission and the National Science Foundation.' K. A. Brueckner, Phys. Rev. 97, 1353 (1955); 100, 36 (1955);
The 2lfany-Body Problem (John Wiley R Sons, Inc. , New York,
1959).' J. Goldstone, Proc. Roy. Soc. (I.ondon) A239, 267 (1957).

3 H. P. Kelly, Phys. Rev. 131, 684 (1963).
4 H. P. Kelly and H. S. Taylor, J. Chem. Phys. 40, 1478 (1964).' H. P. Kelly, Phys. Rev. 136, B896 (1964).

H. P. Kelly, Phys. Rev. 144, 39 (1966).

B. Multiple Perturbations

We now suppose that the atom is perturbed by a
small external potential

&ex ri
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This treatment may also be used when there is more
than one type of perturbing potential V, present.
The BG perturbation theory may still be used to cal-
culate the exact nonrelativistic energy and wave func-
tion in the presence of V, with the single-particle
states y, used as a basis set for the expansion. We now

have a double perturbation expansion starting from the
unperturbed state 4„.The perturbation is

N N N
H'= Q &&;,

—P V~+ P V. (r;), (10)

and the usual BG linked-cluster expansion is carried
out with this H .The shift in energy due to V, is given

by all energy diagrams in which an interaction with V,
occurs at least once.

for the eth state in the absence of the perturbing Z'

and P„,i&~& is the function f„&"perturbed once by the
interaction

N

V. &"& = —P re&, (cos8,) . (17)

Note that f„&'& corresponds to &&t„of Eq. (3). In the
BG expansion &&t

&'& is given by all diagrams starting
from C„with interactions with the perturbation H'

of Eq. (8) but with no interactions with the external
perturbation of Eq. (17). The term f i&"& is given by
all diagrams in which V, &~~ acts once and only once
and for which 4„is the unperturbed state.

The 2~-pole polarizability a2L for the state P„&o&

may be de6ned by~

III. POLARIZABILITIES

A. Linked-Cluster Exyansion

n2L=2(lt„, i&z&
~ g r zPr(cos8, ) ~f„&o&)/

(18)

Among the more useful applications of multiple per-
turbation theory is the calculation of atomic polariza-
bilities and shielding factors. An extensive discussion of
these quantities may be found in a review article by
Dalgarno. In such calculations we consider an atom
perturbed by a small charge Z' located a distance r'
from the nucleus of charge Z. We choose r' to be along
the s axis. The interaction energy between the charge
Z and the atom is given in atomic units (a,u.) by

V;g=
ZZ'

ZI

Vi„]=
ZZ' co (—Z' P P ~

P&, (cos8,), (12)
i=1 &)&:=0 ~r ~+~

where

for ri(r', and
(r k/r &+1) r k/r &&+1

(r lh/r @+1) .—r~k/r. k+1

(13)

(14)

Z'(Z —X)
V; i(r;(r')=

N oo—Z' P P P&,(cos8,). (15)
i=]. k ),r 0+1

If V;„t(r,(r') is taken as V,„in the multiple perturba-
tion expansion, then

f &o&+Z Q P, ,&~&/r &'+i+0(Z 2)
k=1

(16)

where P„&'& is the exact nonrelativistic wave function

7 A. Dalgarno, Advan. Phys. 11, 281 (1962).

for r;) r'.
In calculating polarizabilities and shielding factors,

we assume r')ri for all i. However, in calculating
polarization potentials we calculate a shift in energy due

to Z' as a function of r' and the possibility r;) r' must
also be considered. When ri&r' always,
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FIG. |.Lowest order diagrams contributing to E„,2(~)(t). (a)

Second-order diagram. Diagrams (b), (c), and (d) are third-order
and contain one correlation interaction. The diagram obtained by
inverting (c) should also be included in addition to the exchange
of (c). When the Hartree-Fock potential is used to calculate the
single-particle states, it is possible to have m=n in diagram (d).

The terms contributing to n&l. may be represented by
diagrams. ' Factorization of diagrams contributing to
the numerator of Eq. (18) yields a factor (P &o&

~P &0&)

which cancels the denominator. It is important to note
that there are exclusion-principle-violating (EPV)
diagrams resulting from this factorization. ' The defj.ni-

tion of n&L in Eq. (18) is equivalent to defining

ngL= —2E„,2&~& (&!),

where E„i&z&(f) is the sum of all linked-cluster energy

diagrams with two interactions with V,„(~' for the un-

perturbed state C„. The number of interactions with
H' in Eq. (8) is unrestricted. The symbol E„,2&~& will

be used for the second-order contribution to E„2&~&(t).

In calculating shielding factors, r, in Eq. (18) is

replaced by ri ' +".
Second- and third-order diagrams contributing to

E„,~&~&(t) or to n2L are shown in Fig. 1. The lowest

order diagram, shown in Fig. 1(a), does not include any
correlations among electron pairs. There is one correla-
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tion interaction in each third-order diagram shown in
Figs. 1(b), 1(c), and 1(d). Note that these third order
diagrams are second order in V, (~~ and 6rst order in
the correlation interaction H'. It is possible to include
the effects of repeated correlation interactions in dia-
agrams like that of Fig. 1(c) by the methods of summing
diagrams used for correlation energies. ' These diagrams
were previously evaluated in a calculation of the dipole
and quadrupole polarizabilities and shielding factors
of the beryllium atom. ' The diagrams of Fig. 1(d)
with m=n enter only when the Hartree-Fock potential
is used to calculate all single particle states and these
terms are then large. When the states q; are deter-
mined as for the present work, these diagrams with
m=e do not occur or in effect have been summed. The
beryllium calculation also included effects from dia-
grams with two or more correlation interactions.
Typical diagrams are shown in Fig. 2. Diagrams (f),
(g), and (h) of Fig. 2 are rearrangement diagrams' and
contain KPV effects when two or more hole lines refer
to the same state.

factors depend on M~ and should be averaged over Ml, .
They are independent of 358, since in these cases

tS,V. )=0. (20)

TABLE I. Unperturbed (2p)' wave functions for oxygen. '

Unperturbed wave functions for the (2p)' con6gura-
tion for atomic oxygen are given in Table I. The nota-
tion +1+ refers to a 2p electron with mq=+1 and
m, =+-', ; 0+ refers to a 2p electron with m~ ——0 and
m„=+-„etc. In calculating the dipole polarizability
O,g for the 'I' and 'D states of oxygen, the average over
Mz, was carried out as required. In calculations for the
'I' state, an average over Mq was also made and it was
found explicitly that o,~ is independent of 3fq as required
byEq (20)

C. Single-Particle States

The single-particle states y, used in the present cal-
culations are the same q; calculated previously for the

B. The Open-Shell Case

In the case of atomic states with un6lled shells, there
is an energy degeneracy in MJ. and Mz. However, the
BG theory may still be applied provided the perturba-
tion does not lead to excited states which cause the
energy denominators in the perturbation expansion to
vanish. ' The correlation-energy results are independent
of Ml, and Sf'. However, polarizabilities and shielding

State

sz (ul, =+1;ma=+1)
'P (MI, =O; Ms=+1)
'P (Mz, =—1;Ms=+1)
iD (Mz=+2)
'D (Mz, =+1)

1D (M, =O)

&D (Ml. ———1)

'D (Mz= —2)
lg

Unperturbed wave function

(+1+0+—1++1 )
(+1+0+—1+0-)
(+1+0+—1+—1 )
(1+0+0 +1 )
(1/v2) L(+1+—1+0-+1-)

+(+1+0+—1 +1 )j
(1/V'6)L(o' —1+0 +1 )

+2(+1+—1+—1 +1 )
+(+1+0+—1 0 )j

(1/~) E(0"—1"—1 +1 )
+(+1+—1+—1-0-)j

(0+—1+—1 0 )
(1/g3) L(0+—1++1-0-)

+(+1+0+0 —1 )
—(+1+—1++1 —1 )g

(b) a The wave functions show the assignment of m1 and ms values to the 2p
electrons. For example, +1+refers to a 2p state with m1 = +1 and res = +$;
0+ refers to m~=0 and ms =+).

(e)

(g)

Fxc. 2. Typical fourth-order diagrams contributing to E„,2(L)
or to n2~. The heavy dot represents an interaction with U,„(~)
given by Eq. (17).Higher order terms may be obtained by includ-
ing the e8ects of further correlations among electron pairs in
these diagrams. In diagram (b) the lower dot interaction may also
come between the two correlation interactions. In diagram (d)
either or both dot interactions may be associated also with the
particle line on the right. Diagrams (f), (g), and (h) are called
rearrangement diagrams. Diagram (i) is a typical 6fth-order term.

K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
(1960) .

determination of correlation energies in oxygen. '
The /=1 wave functions were calculated in the field
of neutral oxygen minus one 2p electron. The exchange
coeKcients with 1s, 2s, and 2p states were such that
the lowest /=1 solution is the Hartree-Fock (HF)
2p solution for the 'I' ground. state. The 1=2 states
were also calculated in the field of neutral oxygen minus
one 2p electron. The l=0 states were calculated in the
6eld of neutral oxygen minus one 2s electron. The
remaining 2s state is the restricted HF 2s solution for
the 'I' state. Further details may be found in Ref. 6.

If was pointed out in Ref. 5 that it is desirable to
have the excited p s correspond approximately to
physical single-particle excitations of the atom. When
the ground-state HF potential is used to calculate all

y s, then the excited states are calculated in the 6eld
of the nucleus and E electrons rather than in the 6eld
of the nucleus and S—1 electrons, which is the case for
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true excitations. ' In the case of neutral oxygen and
beryllium all excited q, 's (in the BG sense) are in the
continuum if calculated with the HF potential. ' ' As a
result of using the HF potential, the perturbation ex-
pansion may converge slowly. ' In calculating polariza-
bilities and shielding factors there are important con-
tributions from diagrams of the type shown in Fig.
1(d) with hole lines m and m referring to the same state
when the HF potential is used. ' In the present calcula-
tion with excited states y; corresponding to. physical
single particle excitations of the atom, the diagrams
of Fig. 1(d) with m= n do not contribute.

Since the present calculations used a fixed set of
single-particle states to calculate polarizabilities for
various excited states of the atom, there are contribu-
tions from diagrams with interactions with passive un-
excited states' as shown in Fig. 3. Diagrams (a), (b),
and (c) of Fig. 3, and their corresponding higher
iterations, were summed as in Ref. 6 to give the

(o) (b) (c)

FIG. 3. Interactions with passive unexcited states. The heavy
dot represents an interaction with V, (~). The cross in (b)
represents an interaction with the potential V which is used to cal-
culate the single-particle states. Diagrams (a), (b), and (c) and
higher iterations may be summed to obtain corrections to the
single-particle energies e; used in calculating the second-order
diagram of Fig. 1(al.

second-order term shown in Fig. 1(a), with the original
single-particle energies replaced by the more accurate
appropriate energies for the hole line and the particle
line. Contributions from diagrams of the types (d) and

(e) of Fig. 3 were not included but are expected to be
relatively small compared to the second-order term for
the states considered, since the net eQ'ect of interactions
with the passive unexcited states and with the potential
V is small for the outer electron in these cases.

D. Numerical Results for the Ground State

The contributions from the diagrams of Fig. 1(a) are
given by

TAIf Lz II. Radial contributions to —E,z(') for 'P oxygen
from 2p —+ md excitations. '

3

5
6
7
8
9

Z
m=10

Continuum
Total

E„,2&'& ie a.u.

0.08555
0.04175
0.02229
0.01313
0.00834
0.00562
0.00396

0.01583

1.65209
1.84856

& Values given are for a single 2p electron. The contribution to —Ee,e&»

from a single electron is the product of the radial contribution and. the
angular factor, which is 3j15 for 2p (m& = &1) and 4/15 for 2p (m& =-0).

TAIlx.E III. Radial contirbutions to —E„,2(') for 'P oxygen
from 2p —+ ms excitations. '

—E„,2(') in a.u.

0.6194
0.0792
0.0260
0.0119
0.0065
0.0039

contributions to —E„,q&'& (in a.u.) from excitations of a

single 2p electron into t= 2 states are given in Table II.
The values given do. not include the angular factors
which are 3j15 for a 2p. electron with m~=+1 and

4/1S for rN~=O. Note that the perturbation r cos8

commutes with t, and so conserves m~ in the excitation.
The most important 2p excitations are into continuum

states. The radial contributions to —E„,2(" from ex-

citations of a 2p electron into l=0 states are given in

Table III. The angular factor of —', is not included.

Table IV contains the radial contributions to —E,~("
from excitations of a single 2s electron; the angular

factor is ~~. The sums over the infinite number of bound

excited states may be carried out by the n ' rule. '
Sums over the continuum are evaluated by numerical

integration. ' '
In calculating the polarizability 0.~ for the 'P state,

we average over Ml„. It is necessary then to calculate
O.g for Ml, =+1, 0. The calculation is carried out for

Ms=+1, but the results are independent of MB
because of Eq. (20). This was also checked by carrying

out the sum over Mq explicitly. From Table I it is ob-

served that for Ml. ——+1 there are three 2p electrons

with nz~= +1 and one with m&=0. The angular factor

[ (k /
r cos8

/ m) [
'

g„2(&i —Q (21) » 9

Continuum
Total

0.0122

0.2548
1.0138

The sum over m includes all single-particle states
occupied in 4„. The sum over k includes all excited
states. For the 'P ground. state of oxygen, radial

a Values given are for a single 2p electron. The contribution to —B~,u&»

from a single electron is given by the above radial contribution times the
angular factor which is $.
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TABLE IV. Radial contributions to —E„(2( ) for P oxygen
from 2s —+ mp excitations, '

—E1,2('& in a.u.

2.1403b
0.0068
0.0023
0.0010
0.006
0.003
0.0002

0.007

Continuum
Total

0.0942
2.2464

& Values are for a single 2s electron. The contribution to -Ee,u&» is given
by the values in the table times the angular factor $.

b This value also includes sums of higher order terms as shown in Figs.
3(a), 3(b), and 3(c). Summing these terms modifies the single-particle
energies used in calculating the diagram of Fig. 1(a).

is 3/15 for m~= &1 and 4/15 for m~= 0, and for all four
electrons it is 13/15.9 The total second-order contribu-
tion to nq in this case from 2p ~ ed excitations is ob-
tained by multiplying the value 1.8486 from Table I
by the angular factor 13/15 and by 2 since in second.
order

n2L= —2E„2&i).

The result is aq equals 3.2042 atomic units (a.u.).
However, it is customary to give n~ in A' (10 "cm').
Then u~ in a.u. is multiplied by 0.14818 to convert
to A'. For Mr, ——+1, the contribution tonq from 2p ~ nd
excitations is 0.4748 A . There is also a contribution to
eq from 2p (m~ ——0) —+ ms as shown in Table III equal to
0.10015 A'. Contributions to nq from 2s electrons are
given in Table IV. The 2s electron may be excited
into all np (m~=0) states including the unoccupied
2p (m~=0) state. The 2s+ electron, however, cannot be
excited. into the 2p (0+) state which is already occupied.
For 2s electrons the angular factor is —,'and the total
contribution to nq (Ml, =+1) is 0.2324 A3. There is also
a small contribution of 0.00034 A' from the two is
electrons. The sum of all these contributions to O.g

for the Mr. ——+1 state is 0.8077 A'.

TAsx, z V. Total second-order contributions to the dipole
polarizability in A3 for oxygen 'P.'

Excitationsl'

2p ~ kid

2p~ ns
2s-+ np'
is —+ np
Total

3',=~i
0.47479
0.10015
0.23250
0.00034
0.80768&

351,=O

0.51131
0.20030
0.02097
0.00028
0.73286 A'

~ 1 A=10-8 cm.
b Excitations into the continuum are included.
& Higher order diagrams of Figs. 3(a), 3(b), and 3(c) are included.

9 E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England, 1957),
p. 178.

For the 'P (Mi, ——0) state the contribution to nq
from 2p —+ed excitations is 0.5113 A' because the
total angular factor is now 14/15. There are now two
2p (m& ——0) electrons which may be excited into es
states resulting in a total 2p-+ms contribution of
0.2003 A'. The 2s-+ eP result is only 0.02097 A' since
both 2p (m~ ——0) states are occupied. The 1s —+mp
result is 0.00028 A'. The sum of these contributions to
n& (ML, ——0) is 0.73286 A'. A summary of the various
contributions for Mr, =+1 and Ml, ——0 is given in
Table V. The value for aq (Mr, = —1) is the same as for
aq (Mr, =+1) and the average over Mr, is 0.78274 A'.

Third-order contributions to o.q include correlations
as shown in Fig. 1(b), 1(c),and 1(d).The total calculated
result for diagrams (b) and (c), when either state m
orris 2I and the other hole is a 2p+ state, is —0.153 A'
for Ml. ——&1.For MI, =O, the result is very small since
2s excitations into 2p states through U, ~" cannot
occur because of the exclusion principle. Correlations
among the 2s and 2p states have been omitted since
diagrams (b) and (c) are expected to be essentially can-
celled by exchange diagrams such as shown in Fig. 1(d).
The average of these third-order terms over Ml. is
—0.1018 A'. Diagrams (b) and (c) have also been cal-
culated when both hole states are 2p. The total result is
—0.0394 A' for Ml. =+1 and —0.0525 A' for Mr, =0;
the average over ML, is —0.0438 A'. Third-order
diagrams then reduce the second order result by ap-
proximately —0.1456 A'. Fourth-order diagrams shown
in Fig. 2 should also be considered and the largest
effects come from diagrams (a) through (e), which in-
crease 0.~. Estimates of the magnitudes of the fourth-
order diagrams indicate that they approximately cancel
the reduction in aq due to the third-order terms. The
value 0.7827 A' calculated in second order is then taken
as the value for o,~ in this case.

E. Numerical Results for Excited States

Calculations of nq for the (2p) 4 'D and (2p) 4 'S states
of oxygen have also been carried out. Single-particle
energies used in these second-order calculations were
modified to include effects of diagrams of Fig. 3(a), 3(b),
and 3(c). The 2s and 2p energies were obtained from
the Hartree-Fock calculations of Clementi, Roothaan,
and Yoshimine. '0 The assignment of vs~ and m, values
to 2p electrons is given in Table I.The resultis 0.7633 A'
for 'D (Mr, ——&2), 0.7946A' for 'D (Mr, =+1), and
0.8330 A' for 'D (Mr, ——0). The average over Mr, is
0.7898 A' for the 'D state in second order. For the 'S
state, the second-order value for uq is 0.8357 A'.

The dipole polarizability has also been calculated for
a number of additional excited states in which one elec-
tron is in an excited. 3s, 3p, or 4s state outside of a
(2p)' 4S core. In such cases aq is determined almost

~0K. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys.
Rev. 127, 1618 (1962).
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TAni, E VI. Contributions to as for oxygen {2pls 4S Bs 'S.

Excitation Contribution to nd (3.'}
47.06896
0.06700
0.00349
0.00046
0.00009
0.00003

Qp

Continuum
Total

0.02690
47.16696&'

A charge Z' at a distance r' from the nucleus has an
interaction with the atom given by Kq. (11) or (12) if

TxsLK VII. Calculated polarizabilities ~d for oxygen.

State

(2p)4 sp
(2p)' 'D
(»)"S
(2p)"53s 'S
(2p)34S3. 3S
(2p)' 4S 4s 'S
(2p)' 'S 4s 'S
(2p)"»p'&

Ad in%,

0.7827
0.7898
0.8357

47.17a
50.63~

800.97~
831.73.
69.50'

a Contributions from the outermost electron only.

completely by the contributions from the outer elec-
tron. The lowest of these states is the (2p)' 'S 3s 'S
state and the contributions to o.g for this case are given
in Table VI. The largest contribution comes from the
"resonance" transition 3s~3p, unlike the ground-
state case where the greatest contribution of 2p ex-
citations into d states comes from the continuum. A
summary of all calculated polarizabilities is given in
Table VII. The (2p)' 'S 3s 'S results differ from the
3s55 results because of the single particle energies being
modified to include the diagrams of Fig. 3(a), (b), and
(c). For the 4s'S state, the 4s —+4p transition con-
tributes 84'/. 95 A' and the 4s~3p transition con-
tributes —49.43 A . The remaining excitations, al-
though included, are small.

Most of the result for the 3p'P state comes from'

3p~wd excitations which contribute 6430 A'; the
3p ~3d excitation contributes 61.60 A'. There is also
5.204 A' from 3p ~ tts excitations. The 3p ~ 4s value
of 49.43 A' is almost cancelled by —47.0I As from the
3p —+ 3s transition.

In calculations for more highly excited states than
those listed, the cancellation between diferent contribu-
tions becomes large and it is necessary to determine the
separate excitations to great accuracy. For example, the
large 4p ~ 4d contribution to ns is nearly cancelled, by
the 4p ~ 3d negative result.

the Legendre expansion is used. This energy may be cal-
culated by multiple perturbation theory and in Grst
order it is, for the unperturbed state 4,

Z„,,=(C„iV;„,i C.). (22)

%e may use the BG expansion to calculate the resulting
shift in energy for the state C„ in the same way that
E~,t'"(t) and ns were calculated in the previous sec-
tion. However, we do not restrict r' to be greater than
all r, as we do for the o.~ calculation, and so the k=0
term Z'/r—& contributes, in general, to the energy
shift. The second order terms are shown in Fig. 1(a),
with the external potential being Z'V„(~) where

N r(
V„&~&= —P Pt(cos8;) .

1 r k+1
(24)

The second order terms of Fig. 1(a) should be calculated
for each V„&" starting with 0=0. The resulting shift
in energy for the state C„ is dependent on the distance
r'. The second-order energy terms for the external
potential Z' ps p V„t"& are proportional to Z".
Higher order terms in the correlation interaction but
second order in Z'V„(~' are shown in Pigs. 1, 2, and 3.
This second order shift in energy as a function of r'
gives a polarization potential Vn, i,(r ).It is an approxi-
mation to the second order term of the optical potential
'U, s(r') as discussed, for example, by Goldberger and
Watson" and by Mittleman and %atson. i2

As r' ~~
'U, s(r')——nsZ "/2r",

with n~ in atomic units. "As pointed out by Goldberger
and watson, it has been customary to use a "cutofI'"
to avoid the singularity as r' ~ 0.

'U, r(r') ~ U„(r')= nsZ"/2(r"+S'—)'—, (26)

where 5 is a length related to the atomic size, and
Mittleman and %atsoni2 estimate

/4~ & Z—1/3—

gould

When V„i,(r') is used to approximate 'U, s(r'), there
is no need to insert a cutoff since V~,i,(r') remains
finite as r'-+ 0. This is because in Kq. (24) we use r(
and r~ rather than r'& r;. An important application of
polarization potentials is in scattering calculations as
discussed by LaBahn and Callawayi3 and by Stone. '4

"M. L. Goldberger and K. M. Watson, COIHs~oe Theory
(John Wiley k Sons, Inc. , New York, 1964), p. 853.

12 M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198
(1959)."R. W. LaBahn and J. Callaway, Phys. Rev. 135, A1539
(1964}.

'4 P. M. Stone, Phys. Rev. 141, 137 (1966).

There are second order and higher perturbations due
to the terms

oo ( r(—Z' P P~ Es(cos8;).
;-is-o(r)&+i
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TABLE VIII. Polarization potential —U~, i.(r) for
oxygen (2p)34S3d 5S in a.u.

Monopole Dipole Total
contribution contribution —Vp, l, (r)

0.00
0.10
0.20
0.40
0.60
0.80
1.00
1.40
2.00
2.40
3.00
3.40
3.80
4.20
4.60
5.00
5.96
7.00
9.00

11.00
15.00

0.1196
0.1069
0.954
0,0871
0.0811
0.0726
0.0644
0.0533
0.0450
0.0404
0.0317
0.0254
0.0193
0.0142
0.0101
0.0070
0.0027
0.0009
0.0001
0.0000
0.0000

0.0000
0.0005
0.0023
0.0109
0.0187
0.0228
0.0255
0.0330
0.0544
0.0719
0.0939
0.1023
0.1052
0.1032
0.0978
0.0901
0.0684
0,0473
0.0220
0.0106
0.0031

0.1196
0.1074
0.0977
0.0980
0.0998
0.0955
0.0899
0,0863
0.0994
0.1123
0.1256
0.1277
0.1245
0.1175
0.1079
0.0971
0.0711
0.0482
0.0221
0.0106
0.0031

1.592 X10'
9 947X104

6217.0
1228.1
388.6
159.2
41.43
9.947
4.797
1.965
1.1910
0.7633
0.5115
0.3555
0.2546
0.1261
0.0663
0.0243
0.0109
0.0031
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FIG. 4. The polarization potential+ l p, i, (r) from excitations
of the 3s electron in the (2p)' 4S 3s 5S state of oxygen. The mono-
pole (k=O) and dipole (%= 1) contributions from the interaction
of Eq. (23) are shown separately.

The polarization potentials may be particularly im-
portant in the scattering of electrons from excited
states of atoms since in such cases the polarizabilities
are large.

In this work~the polarization potential for Z'= 1 has
been calculated for the (2p)' 4S 3s 'S excited state of
oxygen. Only k = 0 (monopole) and k = 1 (dipole)
interactions of Eq. (24) have been included. These
were calculated to second order for the 3s electron.
Contributions from the (1s)' (2s)' (2p)' core have been
omitted. Since these core electrons contribute little to
O.q for the 3s'S state, it is expected that their contribu-
tions to Vn, i,(r') are small except for small values of r'
where V„i,(r') is relatively small compared to the
Hartree-Fock potential. However, a more accurate
calculation of Vn, i,(r') would include effects from all
electrons and from all values of k in Eq. (24).

Results of the calculations of Vo, i,(r) are listed in
Table VIII along with the approximate potential
aq/2r' The comparison is improved when 'U„(r) of
Eq. (26) is used. For example, 'U„(r) is —0.4956 at
r=3.00. The monopole and dipole contributions to
V,. i(r) from the 3s electron and their sum are plotted
in Fig. 4.

For large r most of the monopole and dipole terms
come from the 3s —+ 3p excitations. For small r, other
excitations, especially to the continuum, become im-

portant. Continuum excitations give approximately
one-half of the monopole term and 15%%uq of the dipole
term as r —+0.

V. DISCUSSION AND CONCLUSIONS

In Sec. III, n& for the oxygen ground state was cal-
culated to be 0.783 A' in second order. The third-order
result reduces this value by approximately 0.146 A'.
However, the estimated contribution of the fourth-order
terms is approximately equal and opposite to the third-
order result. The estimates may be made from a know-
ledge of the sizes of matrix elements already calculated
for lower orders and from the sizes of the oxygen
correlation energy diagrams. ' Although the numerical
work is fairly lengthy, these terms could be calculated
exactly as shown previously. '

The present second-order result of 0.783 A' may be
compared with the experimental value 0.77+0.06 A'
obtained by Alpher and White. "A calculated value of
0.89 A' was obtained by Dalgarmo and Parkinson using
the Sternheimer method"; and a value of 0.829 A'
was obtained by Klein and Brueckner using a semi-
empirical approach. "Although the second-order result
is this case is in good agreement with experiment, it was
not so in the previous beryllium calculation' of n~ where
third-order terms reduced the second order result of
12.15 A' by a factor of 0.470 to a value 5.57 A' The
calculated fourth-order terms only partially compen-
sated for this reduction bringing the total to 6.93 A'.
Explicit calculation of third-order terms in the oxygen
'P case shows that the second-order result is reduced
only by a factor of 0.813. The increased relative size of
the fourth-order oxygen result so that it approximately
cancels the third-order terms is partially due to the
fact that both /=1 and l=2 excitations are important
in calculating correlations among 2p electrons in
oxygen. ' For Be the correlations among the outer 2s
electrons come mostly from l= j. excitations. ' The
diagrams of Fig. 2(d) with each particle line having one
interaction with V,„~'& are more important for oxygen
since the matrix elements (2p2p~ n

~

kdk'd) and (kpk'p~ ti

X I 2p2p) are now both significant.

"R. A. Alpher and D. R. White, Phys. Fluids 2, 153 (1959).
"A. Dalgarno and D. Parkinson, Proc. Roy. Soc. (London)

A250, 422 (1959).
"M. M. Klein and K. A. Hrueckner, Phys. Rev. 111, 1115

(1958).
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The polarizability nz of the oxygen 'D state was cal-
culated in second order to be 0.790 A' and ns for 'S
was found to be 0.836 A'. The correlation contributions
from third- and fourth-order terms in these cases were
omitted. There is a possible source of error in the 'D
and 'S calculations because of the use of 2s and 2P
orbitals appropriate to the 'P state. However, the dif-
ferences between single particle orbitals for these three
states are relatively small. "Effects due to differences
in single-particle energies for these states have been
included.

Polarizabilities were also calculated in second order
for excited states of oxygen in which one of the original
2p electrons is in an excited 3s, 4s, or 3p state outside of
a (2p)' 'S core. In these cases ns is much greater than.
for the (2p)s configuration. Only contributions to as
from the outer electron were considered and the con-
tributions from the core electrons are estimated as less
than one percent of ng. Third- and fourth-order terms
are expected to be small relative to the second-order
term since the outer electron is at a large distance
from the core electron and so correlation effects should
be small.

In the calculations of this paper, perturbation terms
are evaluated by explicit sums over intermediate states.
An alternative approach is to solve the equivalent
perturbation equations. Sternheimer" and others have
solved numerically the first-order equation

(Hs —Es)C, t&"&= —V. &"&C„(28)
for a number of atoms. The solutions are, of course,
dependent on the choice of Ho. Then for

(~.l~" "')=o,

nsL=2(C
i Q r;nI'r(cose;)iC, t&i&)

in the lowest order approximation. Equations (28) and
(29) are equivalent to Eq. (21) (to within the factor
—2) provided Hs of Eq. (28) is used to calculate
the single particle states used in Eq. (21). When Hs
is the Hartree-Fock Hamiltonian, ' use of Eqs. (28)
and. (29) is referred to as the uncoupled Hartree-Fock
method. 7 It was pointed out by Kelly and Taylor4
that second-order calculations of 0.2L by the pertuba-
tion technique of Eq. (21) when Hs is the Hartree-Fock
Hamiltonian are equivalent to the uncoupled Hartree-
Fock method.

Use of Eqs. (28) and (29), however, does not include
correlations. It has been shown' that the uncoupled
HF method may give poor results because of important
contributions to nsl. from terms shown in Fig. 1(d)

"R.M. Sternheimer, Phys. Rev. 96, 951 (1954).

with m =n. When single-particle states are chosen as in
the work of this paper, diagram 1(d) with m=l does
not occur as discussed previously. ' An improvement over
the second-order values may be made by explicit cal-
culation of the higher order diagrams shown in Figs. 1
and 2 or by use of the coupled Hartree-Fock method"
or the variational methods discussed by Dalgarno. ~

The coupled Hartree-Fock method is equivalent to
calculating all the diagrams of Fig. 1 and all higher
iterations of these basic diagrams. For example, the
diagram of Fig. 2(a) is included in the coupled HF
method, but the remaining diagrams of Fig. 2 are not
included. Applications of the variational method have
been limited to atoms with few electrons. ' The coupled
HF method has been successfully applied to closed-
shell atoms with up to ten electrons. '~22 A more
detailed comparison of these methods is included in a
forthcoming review article. "

In Sec. IV it was shown how BG perturbation theory
may be used in calculating V~,~„ the polarization
potential. The Hartree-Fock potential plus V~,~, for a
given state may be used to give an appropriate optical
potential which may then be used in scattering calcula-
tions. Numerical results were obtained for V~,y. for the
(2p)"S3s 'S excited state of oxygen. Only the monopole
and dipole contributions from the 3s electron were in-
cluded and correlation effects were omitted. However,
it is possible with the BG theory to calculate contribu-
tions for all electrons and to include correlations and
higher multipole terms.

One of the advantages of the Brueckner-Goldstone
perturbation approach is its Qexibility in coping with
many different physical problems. For example, the
single-particle wave functions used in a previous cor-
rection energy calculation were used in this work to cal-
culate polarizabilities and a polarization potential. Also,
information about electron correlation energy diagrams
was used in estimating fourth order terms for the
polarizability. Future applications of these methods
will include a calculation of the polarization potential
for the oxygen ground state.
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