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Energy Band Structure of Lithium by the Tight-Binding Method*
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The energy band structure of lithium has been calculated by the tight-binding method. The crystal po-
tential used in the Hamiltonian is the "mufIjn-tin" version of the Seitz potential. Bloch functions are con-
structed from the 1s, 2s, and 2p Hartree-Fock functions of the free atom and are used to set up the secular
equation for the energy of a given point in the Srillouin zone. The matrix elements may be expressed as the
sums over the crystal lattice points of a series of multicenter integrals with varying distances between the
centers of the two atomic orbitals. For the majority of the matrix elements, in order to achieve convergence,
all the integrals for which the two centers are separated by less than six times the lattice constant must be
included. The multicenter integrals are evaluated by the technique of Gaussian transformation and the
method for computing the matrix elements of the potential energy is described. The calculated energies
along the L100$, L1107, and L1117axes of the Brillouin zone agree well with those calculated by a Green's-
function method, by a modi6ed plane-wave method, and by the composite-wave variational method of
Schlosser and Marcus.

INTRODUCTION

LTHOUGH the tight-binding method for studying

~

~

~

~

~ ~

~

energy bands in solids was proposed as early as in
1928,' detailed applications of this method to obtain
band structure have hitherto been mostly of a qualita-
tive or semiempirical nature. The immense difBculties
connected with the evaluation of the multicenter inte-
grals made it necessary to introduce certain rather
strenuous approximations. For example, one of the most
common approximations is to ignore all multicenter
integrals except those which involve nearest neighbors, '
or next-nearest neighbors. ' In some cases these integrals
are treated as parameters using an interpolative
scheme, ' while in others they are evaluated directly. '
It is also a common practice to omit all three-center
integrals from consideration. ' While the approximation
of neglecting all integrals except the nearest or next-
nearest neighbors is applicable for core states and the
d bands of some of the transition metals where overlap
between neighboring orbitals is small, 3 it is not valid for
the general case as is demonstrated by Nran'yan~ for
diamond and by Corbato for graphite. Thus, only
qualitative results could be expected if this approxima-
tion were to be used in tight-binding calculations for
crystals where there exists a substantial overlap be-
tween neighboring orbitals. Indeed, the lack of quantita-
tive success has aroused the suspicion that the method
of tight binding is incapable of providing more than a
qualitative picture for crystals with strong overlap. '
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The recent developments of the technique of numeri-

cal integration have made it possible to evaluate the
multicenter integrals arising in molecular and solid-

state problems by means of electronic computers. With
these new' devices we have performed a detailed calcula-

tion of the band structure of lithium using the method of

tight binding. No approximations need be made for

computing the integrals. The results of this work, as will

be shown, agree very well with those obtained by
the Green's-function method, " the composite wave

(CW) method, " and a method of modi6ed plane

waves (MPW)."

CRYSTAL POTENTIAL

The crystal potential used to form the one-electron

Hamiltonian is the "muon-tin" version of the Seitz
potentiaP' as corrected by Kohn and Rostoker. '4 To con-

struct such a "muon-tin" potential, the Wigner-Seitz

cell is divided into two regions by an inscribed sphere.
Within the inscribed sphere the Seitz potential is used.

In the region external to the inscribed sphere but
internal to the cell boundary a potential of constant
value is employed, this constant being chosen equal to
the average value of the Seitz potential within this

region. It should be mentioned that the method of cal-

culation presented here is not restricted to such a
muon-tin form; this particular potentia1 was chosen so

that comparison with the largest number of other

methods could be made. To facilitate the numerical

computation, the tabular form of the Seitz potential

given by Kohn and Rostoker" was replaced by the

'0 F. S. Ham, Phys. Rev. 128, 82 (1962).
"H. C. Schlosser and P. M. Marcus, Phys. Rev. 131, 2529

(1963); H. C. Schlosser, Ph.D. thesis, Carnegie Institute of
Technology, 1960 (unpublished)."E.Brown and J. A. Krumhansl, Phys. Rev. 109, 30 (1958).

~3 F. Seitz, Phys. Rev. 47, 400 (1935).
&' gl'. Kohn and J. Rostocker, Phys. Rev. 94, 1111 (1954).
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following least-squares curve fit:

V (r) = —2.92586710r '+2.70181570+1.6756787r
—6.82306300r'+6.83237350r' —3.48727250r4

+0.98854560r' —0.14795717r

+0 00.91263185rr .(1)

kinetic energy, and potential integrals,

5;,;(k)= b; (k,r)b;(k, r)dr

=LQ;(k)Q;(k)$-'t' P e'" R y,*(r)y (r—R„)tlr

Unless otherwise designated, Hartree's atomic units are
used for all formulas. The average value of the Seitz
potential between the inscribed spheres was taken as

V(r) =V= —0.3248.

= t:Q'(k)Qt(k) j '"2 e" "(@'(o)I et(R.)),

2';, (k) = b;*(k,r) (——',V')b;(k, r)dr (7)

Analogous with the work of Ham, "we have replaced
the cell boundary by that of the equivalent volume
sphere in calculating V Lwith ttp=6. 65 atomic units
(a.u.)$. For convenience of calculations, we shall
introduce V'(r) defined by

V(r) = V'(r)+V,

so that V'(r) is zero in the region between the inscribed
spheres.

ENERGY-BAND CALCULATlONS

The Hartree-Fock self-consistent-field (SCF) atomic
wave functions for the is, 2s, and 2P states of the lithium
atom" are used as the constituents of the Bloch sums.
Analytic expressions were devised to Gt these numerical
functions,

Pr, = 1.91049 exp (—2.4423r)
+0.701005 exp( —4.5531r),

gs.=0 36748 exp. (—2.222r)

0 12000—3r .exp (—0.6632r), (3)

tlbs&, =xL0.107199exp( —0.5166r)
+0.0757334 exp( —1.9662r)j, etc.

The 81och functions are then constructed in the usual
manner as

= LQ;(k)Q;(k) g- t' P e*& (y, (0)
~

——;V (y;(R„)),

V;, (k)= b;*(k,r) V'(r)b, (k,r)dr

=$Q;(k)Qs(k)) 't'P e'" "(tb;('0)
i V'~y;(R„)).

V'(r) =Q„V.' cosK„rc,

where the summation is over all sites in the reciprocal
lattice and |'z is the radius vector measured from any
given lattice site of the crystal. Thus the integral of
V'(r) between two 1s orbitals situated at points
A andBis

The overlap and kinetic-energy integrals occur fre-
quently in molecular physics and many scient
methods of calculation have been devised. "" The
potential-energy integrals are far more dificult to
evaluate and it is the intractability of these potential
integrals which has heretofore imposed such drastic ap-
proximations in applying the method of tight binding.
We have devised a scheme for the evaluation of these
potential integrals using the technique of Gaussian
transformation. We first expand V'(r) as defined in
Eq. (2) by the Fourier series

(1s(A) i
V'i is(B))=Q„V„'(1s(A)

i
cosK„rc)1s(B)). (9)

b.t (k,r)=)XQ.t (k)$ "' „e'~ ay„t„r—R„, 4

iH„t„,„.t (k) —ES.t„,„t „(k)i
=0, (5)

where H is the one-electron Hamiltonian

H= ——',V'+V(r). (6)

The matrix elements are composed of the overlap,

~' V. Fock and M. J. Petrashen, Physik. Z. Sowjetunion 8, 54'?
(1935).

where E is the number of lattice sites in the crystal and
the summation is carried out over all S of these sites.
To 6nd the energy band, the 6ve Bloch functions are
used as basis for the secular equation,

Upon expressing the 1s orbitals in a Laplace transform'9
as

e
—ogre = (&$2/sr) sr

—'t' exp (—trr'/4sr —r~'s )dsrr,

' M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimura, Tables
of Moleesdar Irttegrats (Maruzen Company Ltd. , Tokyo, Japan,
1963l.

~7 I. Shavitt, in Methods in Computational Physics, edited by
B. Alder, S. Fernbach, and M. Rotenberg (Academic Press Inc. ,
New York, 1963), Vol. 2, p. 1."M. P. Barnett, in Methods ie Computational Physics, edited by
B. Alder, S. Fernbach, and M. Rotenberg (Academic Press Inc. ,
New York, 1963), Vol. 2, p. 95.

re Tables of Imtegra/ Transforrrts, edited by A. Erddlyi (McGraw-
Hill Book Company, Inc. , New York, 1954).
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cosK~'ra.„,is(B)&

2 S22 S1 &Q2
3P exp —4C1S1S2

,K .ra(1$(B)&(K ra)dr dsld$2's rA' —S2ra'

= ( E1Qr2/4)r)

—a2r Bdg
—~)'Acos(R r& arAe

(1$ A
a „~„,K .„~1 (B)&

8C11

—amrBd g~)fA cos(KFxAe

)) „K .ra~is(B)&~, a, 8Am
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'—$2r))2) cos(K„ra)drexp( SlrA $2rB '(B)&Q s(A)
i
cosK„rA

i

=exp — ' $1 s2)j cos(K„rag))=exp —s1s2rAgg s1 s2 '.-(fg) '" "'3=22r QP; y, (u)[P p;, g
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TABLE T Coeiiicients for (iP (A) tcosK„rAtp (8)).

yS @S

1$ 1$
2$ 1$

2pg 1$

2$ 2$

2p~ 2$

2p~ 2pg

n1agf gB
a1 a2~AB

aNAB
Qln2(E. )*rAB

nl n2r AB (rAB)

a1 a2 ~AB

~AB +
~AB

nln2 (+v)xrAB
nln2 (rAB)*rAB

nl (&.)*rAB2

QlrAB (rAB)x

l n2(n+ )* rAB

a1a2~AB

nln2(+ )*rAB (rAB)*
nln2rAB(rAB)z

—nlnsr AB'(E„),(Z„)„
ala2~AB

3 —QlnlrAB(rAB)~(rAB)„ f

f
f2/22

f
f'
f'/u
f
f
f
f'/(& u)—
f2
f2
f2/22

f3
f2
(2N —1)f2

f
f3
{t (E,)~(rAB)2+ (Ev)r(rAB)z)22

—(z„)„(rAB),&f2

Pi, 0 Pi, 1 Iji, 2 Ili, 3 Pi, 4 Pi, 5 I/Ii, 6 Pi, ?

0 0
0 0
0 0
0 0
0 0

105 105
0 0
0 0

105 105
0 0
0 0
0 0

105 105
0 0
0 0
0 0

105 105
0 0

0 0 3 3
15 15
0 0 3 3

15 15 6 1
0 0 3 3

45 10 1 0
15 15
0 0 12 12

45 10 1 0
15 15 6 1
15 15 6
0 0 3 3

45 10 1 0
15 15 6 1
15 15 6 1
0 0 3 3

45 10 1 0
15 15 6 1

1 0
0 0
1 0
0 0
1 0
0 0
0 0
5 1
0 0
0 0
0 0
1 0
0 0
0 0
0 0
1 0
0 0
0 0

gi21 pi2 2

1 0
1 0
1 0
0 1
1 0
1 0

0
1 0
0 1
1 0
0
1 0
1 0
1 0
0 1
1 0
1 0
0 1

0 0 0 0 3 3 1 0 1 0

(y, ~

—-,'v'~y, ')= g; g;( )

where

xPP p;,.(fG)—:"-'j
n=O

&& expt —(fG)' )du, (20)

G =2222/(1 —u)++22/u.

Tables II and III list all the coeS.cients appearing in
Eqs. (19) and (20), respectively.

The above-mentioned integrals are now inserted in
Eqs. (7) to obtain the matrix elements. It is interesting
to examine the convergence of the summation over the
crystal lattice site 2 in Eqs. (7), for this is the point at
which the customary nearest-neighbor approximation
was introduced. For the purpose of illustration, we have

taken the matrix element Vss„2,' with k=(22r/as)
X (0.85,0,0) as an example and truncated the summation
over v at various distances from the origin correspond-
ing to the inclusion of more and more sites. Values of the
truncated sum are shown in Table IV. As can be seen,
the summation does not begin to approach convergence
until all sets of equivalent atoms up to the 25th nearest
neighbor have been included. We can also see a certain
loss of significant figures in going from the basic inte-
grals to the matrix elements. This difhculty was first
pointed out by Parmenter, "but in our case this cancel-
lation is not serious and appears to become significant
only for the higher energy bands.

The energy bands were calculated by solving the 5X5
secular equation with the Bloch functions as basis. All
summations (over the lattice sites) in the matrix ele-

TABLE TI. Coefilcients for (ps(A) jp (B)).

1$
2$

2P.
2$

2P

1$
1$

1$
2$

2$

a12&AB

aPa2~AB
—agf gB
nlnsrAB(rAB)2
a1 a2 ~AB

&AB

nlnprAB'(rAB)2
nlrAB(rAB)x-

a12~AB
nlQ'2rAB (rAB)*
a 12~AB (~AB)x {~AB)y

q;(u)

f
f2/22

f
f2/u

f
f
f2
fs/22

f
f'
f'

A,;,p

0
0
0
0

105
0
0
0
0
0
0

0
0
0
0

105
0
0
0
0
0
0

0
15
0
0

45
0

15
0

15
0
0

0
15
0
0

10
0

15
0

15
0

A,;,4

3
6
3
3
1

12
6
3
6
3
3

3
1
3
3
0

12
1
3
1
3
3

X;, 6 X;,7

1 0
0 0
1 0
1 0
0 0
5 1
0 0
1 0
0 0
1 0
1 0

» R. H. Parmenter, Phys. Rev. 86, 552 (1952).
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TABLE III. Coefficients for Q B(A)
~

——22V2 )ps(B)).

1$
2$

2p
2$

2p

1$
1$

1$
2$

2$

~1Ol2~AB

~1 ~2~AB

&2~AB

&1%2(rAB) /rAB
al aPt'AB

~AB

ppl&2 (rAB)*&AB

ppl (rAB)g/rAB
~12~A B

o1op(rAB) /"AB

P21P22 (rAB)*(&AB)2/&AB

ph (I)

f
f'/I
f
f2/I
f2

f
f2
fp/I
f'
f2
f2

Pi, o

0
0
0
0

45
0
0
0
0
0
0

Pi, 1

0
0
0
0

45
0
0
0
0
0
0

pi, 2

0
9
0
0

15
0

15
0

15
0
0

pi, e

0
9
0
0
0
0

15
0

15
0
0

pi, 4

3
2
3
5

—1
6
4
5

7
7

pi, 5

3
—1

3
5
0
6

—1

5
—1

7

7

pi, 6

—1
0

—1
—1

0
3
0

—1
0

—1
—1

pi, 7

0
0
0
0
0

—1

0
0
0
0
0

TABLE IV. Values of truncated summation of Vo„,2,
'

for k = (22r/ap) (0.85,0,0), ap=6.65 a.u.

Last set of
nearest neigh- Number of
bors included equivalent

in sum atoms in set

Distance
from
orlglIl

Truncated
sum'

V2~, 2.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1
8
6

12
24
8
6

24
24
24
24
8

12
48
24
6

24
24
24
8

24
24
24
48
24
48

6
24
24
24
12
24

0.000
5.759
6.650
9.404

11.028
11.518
13.300
14.493
14.870
16.289
17.277
17.277
18.809
19.671
19.950
19.950
21.029
21.803
22.055
23.036
23.745
23.745
23.977
24.882
25.540
25.540
26.600
27.216
27.419
27.419
28.213
28.213

0.0000
0.8632
0.1681-1.3572
0.8624
0.0581—0.1877
0.8531
0.0935—0.4678—0.2325—0.0746—0.1799
0.8531—0.0706—0.0784—0.1149—0.0442—0.0781—0.0944—0.0711—0.0717—0.0875—0.1144—0.1006—0.0944—0.0933—0.0903—0.0957—0.0939—0.0947—0.0941

ments were carried to convergence. The calculations
were performed for two values of the fundamental
lattice constant a0=6.65 and 6.5183 a.u. which were
used in the previous works reported in the literature.
Comparison of our energy values along the [100),
[110),and [111)directions with Ham's calculation by
a Green's-function method" (ap ——6.65 a.u.) is shown in

Table V, and with the results of CW" and of MPW"
calculation is shown in Table VI. In all cases the agree-
ment is seen to be very good.

TABLE V. Comparison of the energies (in rydbergs) of the con-
duction band of lithium calculated by the tight-binding method
and by the method of Green's functions. (ap ——6.65 a.u.)

apk, /22r

L100) h1
0.0000
0.2500
0.5000
0.6250
0.7500
1.0000

Energies
Tight-binding Green's-function'

—0.674—0.629—0.500—0.407—0.290—0.065

—0.681—0.640—0.512—0.414—0.294—0.061

LIIGHT

Z1
0.2500
0.3750
0.5000

LI11$ A1

0.1250
0.2500
0.3125
0.3750
0.5000

—0.587—0.485—0.399

—0.641—0.545—0.478—0.395—0.190

—0.598—0.497—0.411

—0.651—0.556—0.486—0.400—0.191

For points of high symmetry, the secular equation
factorizes into smaller blocks. For example, at the I"

point only the mixing between 1s and 2s Bloch functions
need be considered, whereas along the 6 line of [100]
symmetry, the secular equation is a 3)&3 one with 1s,
2s, and 2p, basis functions. For an arbitrary point in the
k space, the complete 5X5 secular equation must be
solved. However, once all the basic integrals have been
evaluated, the energy for any point in the Brillouin
zone can be obtained as readily as that for a point of
high symmetry. We have also computed the energies
for points along the [221], [310), and [311]directions
and the results agree will with those of Schlosser and
Marcus "

To examine the effect of the 1s core on the band
structure, we have calculated the energy of the 1 point
using two separate approximations. The erst is to com-

pletely ignore the 1s Bloch function and gives
8= —0.896 Ry. The second is to leave out the 1s basis

& Since P'z&~, z&' is an imaginary number, the values listed are Vaq„s&'/i. & See Ref. 10.



E. E. LAFON AND C. C. LI N 152

TAnLE VI. Comparison of the energies (in rydhergs) of the
conduction band of lithium calculated by the tight-binding method
and by the methods of modi6ed plane waves and the method of
composite waves. (as ——6.5183 a.u. )

pendence of the 1s-2s and 1s-2p mixing coefficients
causes considerable complication in the computations.
Instead of using the properly orthogonalized 2s Bloch
functions, we introduceModified'

plane
ask, /2s waves

Tight-
binding Simplified

Composite 5)&5 4&&4
waves secular Eq. using b2,

'

Tight-
binding'

4X4
using b2,

bs, '(k, r) =
t XQs, (k)]—'~' Q„e'~'""

&& Lys, (r—R„)+qyt, (r—R„)j,
L100$ Ar

0.0 —0.683
0.2 —0.652
0.5 —0.495
0.8
0.9
1.0

L110$ Zr
0.1
0.3
0.5

—0.683—0.656—0.510—0.233—0.119—0.046

—0.669-0.562—0.410

—0.672—0.643—0.494—0.223—0.106—0.044

—0.657—0.545—0.393

—0.676—0.642—0.487—0.222—0.106—0.044

—0.657—0.537—0.393

—0.896—0.556—0.452—0.219—0.106
0 044

—0.508—0.451—0.393

$111]Ar

0.1
0.2
0.3
04
0.5

—0.590

—0.336—0.175

—0.663

—0.500-0.358—0.184

—0.650—0.587—0.485—0.346—0.177

—0.649—0.582—0.473—0.342—0.177

—0.536—0.509—0.413—0.324—0.177

a See Ref. 12.
h See Ref. 11.
& There is a slight difference in the choice of V used by the authors and

that used in Refs. 11 and 12. An approximate perturbation-type calculation
has been performed to remove this difference. It is found that using the
value of 7 of Schlosser and Marcus and of Brown and Krumhansl, the tight
binding eigenvalues are all shif ted to the negative by approximately 0.001 Ry.

function and orthogonalize the 2s Bloch sum to the is
one, l.e.,

b»"'s(k=0, r)=bs, (k=0, r)+debt, (k=0, r). (21)

This gives E= —0.6756 Ry in very close agreement with
—0.6721 Ry obtained by including the 1s function.
Since there is no mixing at the I' point between basis
functions of s and p symmetry, the wave function at the
F point corresponding to this stage of approximation is
simply bs,"'~(k=0, r) To carry th. is scheme of approxi-
mation outside the F point, one finds that the k de-

where q has the same value as that appearing in Eq,
(21).The bs, ' and the three bs~ functions then form the
basis of 4)&4 secular equations which yield an alter-
native set of energy values as shown in Table VI. Near
the I' point the deviations of this set of energies from
the corresponding solutions of the 5&5 secular equa-
tion increase with k since bs, is not orthogonal to bt,
except for k=O. Although one may expect to obtain
better energy values using the properly orthogonalized
2s bloch functions, the numerical computation is much
simplier with bs, '(k, r) which proves to be more useful
from the practical standpoint. As one approaches the
edges of the Brillouin zone, the band functions become
more p-like and better agreements are thus found be-
tween the energy solutions of the 4X4 and of the 5/5
secular equations. Included in the last column of Table
VI, are the energy solutions of the 4X4 secular equation
with b~, in place of b2, ', neglecting the 1s core com-
pletely. The results are rather poor except near the edge
of the Brillouin zone where the wave functions have
primarily p character.
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