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The energy band structure of lithium has been calculated by the tight-binding method. The crystal po-
tential used in the Hamiltonian is the “muffin-tin” version of the Seitz potential. Bloch functions are con-
structed from the 1s, 25, and 2p Hartree-Fock functions of the free atom and are used to set up the secular
equation for the energy of a given point in the Brillouin zone. The matrix elements may be expressed as the
sums over the crystal lattice points of a series of multicenter integrals with varying distances between the
centers of the two atomic orbitals. For the majority of the matrix elements, in order to achieve convergence,
all the integrals for which the two centers are separated by less than six times the lattice constant must be
included. The multicenter integrals are evaluated by the technique of Gaussian transformation and the
method for computing the matrix elements of the potential energy is described. The calculated energies
along the [1007, [110], and [1117] axes of the Brillouin zone agree well with those calculated by a Green’s-
function method, by a modified plane-wave method, and by the composite-wave variational method of

Schlosser and Marcus.

INTRODUCTION

LTHOUGH the tight-binding method for studying
energy bands in solids was proposed as early as in
1928 detailed applications of this method to obtain
band structure have hitherto been mostly of a qualita-
tive or semiempirical nature. The immense difficulties
connected with the evaluation of the multicenter inte-
grals made it necessary to introduce certain rather
strenuous approximations. For example, one of the most
common approximations is to ignore all multicenter
integrals except those which involve nearest neighbors,?
or next-nearest neighbors.? In some cases these integrals
are treated as parameters using an interpolative
scheme,* while in others they are evaluated directly.?
It is also a common practice to omit all three-center
integrals from consideration.® While the approximation
of neglecting all integrals except the nearest or next-
nearest neighbors is applicable for core states and the
d bands of some of the transition metals where overlap
between neighboring orbitals is small? it is not valid for
the general case as is demonstrated by Nran’yan?” for
diamond and by Corbatd® for graphite. Thus, only
qualitative results could be expected if this approxima-
tion were to be used in tight-binding calculations for
crystals where there exists a substantial overlap be-
tween neighboring orbitals. Indeed, the lack of quantita-
tive success has aroused the suspicion that the method
of tight binding is incapable of providing more than a
qualitative picture for crystals with strong overlap.®
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The recent developments of the technique of numeri-
cal integration have made it possible to evaluate the
multicenter integrals arising in molecular and solid-
state problems by means of electronic computers. With
these new devices we have performed a detailed calcula-
tion of the band structure of lithium using the method of
tight binding. No approximations need be made for
computing the integrals. The results of this work, as will
be shown, agree very well with those obtained by
the Green’s-function method,’® the composite wave
(CW) method,* and a method of modified plane
waves (MPW).22

CRYSTAL POTENTIAL

The crystal potential used to form the one-electron
Hamiltonian is the “muffin-tin” version of the Seitz
potential® as corrected by Kohn and Rostoker.** To con-
struct such a “muffin-tin”’ potential, the Wigner-Seitz
cell is divided into two regions by an inscribed sphere.
Within the inscribed sphere the Seitz potential is used.
In the region external to the inscribed sphere but
internal to the cell boundary a potential of constant
value is employed, this constant being chosen equal to
the average value of the Seitz potential within this
region. It should be mentioned that the method of cal-
culation presented here is not restricted to such a
muffin-tin form ; this particular potential was chosen so
that comparison with the largest number of other
methods could be made. To facilitate the numerical
computation, the tabular form of the Seitz potential
given by Kohn and Rostoker* was replaced by the

10 F, S. Ham, Phys. Rev. 128, 82 (1962).

11 H, C. Schlosser and P. M. Marcus, Phys. Rev. 131, 2529
(1963); H. C. Schlosser, Ph.D. thesis, Carnegie Institute of
Technology, 1960 (unpublished).

12 E, Brown and J. A. Krumhansl, Phys. Rev. 109, 30 (1958).

13 F. Seitz, Phys. Rev. 47, 400 (1935).

14 W, Kohn and J. Rostocker, Phys. Rev. 94, 1111 (1954).
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following least-squares curve fit:

V(r)=—2.92586710r"'+2.70181570+41.6756787r
—6.8230630072+6.832373507%—3.48727250r*
+0.98854560r°—0.14795717/8

+-0.0091263185+7. (1)

Unless otherwise designated, Hartree’s atomic units are
used for all formulas. The average value of the Seitz
potential between the inscribed spheres was taken as

V(r)=V=—0.3248.

Analogous with the work of Ham,!9 we have replaced
the cell boundary by that of the equivalent volume
sphere in calculating V [with ao=6.65 atomic units
(a.uw.)]. For convenience of calculations, we shall
introduce V’(r) defined by

VEO)=V'®+7V, (2)

so that V() is zero in the region between the inscribed
spheres.

ENERGY-BAND CALCULATIONS

The Hartree-Fock self-consistent-field (SCF) atomic
wave functions for the 1s, 2s, and 2p states of the lithium
atom!® are used as the constituents of the Bloch sums.
Analytic expressions were devised to fit these numerical
functions,

1s=1.91049 exp(—2.4423r)
~+0.701005 exp(—4.55317),

¢2,=0.36748 exp(—2.222r)
—0.1200037 exp(—0.66327), (3)

695, =%[0.107199 exp(—0.51667)
+0.0757334 exp(—1.9662r)7], etc.

The Bloch functions are then constructed in the usual
manner as

bnzm(k,l‘) = [NQnZM(k):I-— 172 zv eik'R"anlm(r" Rv) ) (4)

where IV is the number of lattice sites in the crystal and
the summation is carried out over all N of these sites.
To find the energy band, the five Bloch functions are
used as basis for the secular equation,

| H i, v (B) = ES pim, v (B) | =0, )

where H is the one-electron Hamiltonian
H=—3V*+V(r). (6)
The matrix elements are composed of the overlap,

15V, Fock and M. J. Petrashen, Physik. Z. Sowjetunion 8, 547
(1935).
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kinetic energy, and potential integrals,
S;,j(k)=fb;*(k,r)b,-(k,r)d'r
=[2:0% W T et / ¢ (1)¢;(x—R,)dr
~ 00T 5 o3, 0] 65(R),
Tast¥ = [ 5 Gen) (— 475, (i 0
~ 0.0 T £ e (g, 0)] ~ 47| ,(R.),
Ve (k)= f b (k1) V' (0B (k)
=[99I Z o6, 0)] V| 4,(R).

The overlap and kinetic-energy integrals occur fre-
quently in molecular physics and many efficient
methods of calculation have been devised.'*~'® The
potential-energy integrals are far more difficult to
evaluate and it is the intractability of these potential
integrals which has heretofore imposed such drastic ap-
proximations in applying the method of tight binding.
We have devised a scheme for the evaluation of these
potential integrals using the technique of Gaussian
transformation. We first expand V'(r) as defined in
Eq. (2) by the Fourier series

Vi(r)=>,V, cosK,-rg, 8)

where the summation is over all sites in the reciprocal
lattice and r¢ is the radius vector measured from any
given lattice site of the crystal. Thus the integral of
V'(r) between two 1s orbitals situated at points
4 and B is

{(Is(A) | V'|1s(B))=2_, V,'(1s(4) | cosK,-x¢| 15(B)). (9)

Upon expressing the 1s orbitals in a Laplace transform'®
as

e ara= (a1 /20/m) / s%2 exp(—a?/4s1— 7 4251)ds1,
' (10)

16 M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimura, Tables
% élsl) olecular Integrals (Maruzen Company Ltd., Tokyo, Japan,

17]. Shavitt, in Methods in Computational Physics, edited by
B. Alder, S. Fernbach, and M. Rotenberg (Academic Press Inc.,
New York, 1963), Vol. 2, p. 1.

18 M. P. Barnett, in Methods in Computational Physics, edited by
B. Alder, S. Fernbach, and M. Rotenberg (Academic Press Inc.,
New York, 1963), Vol. 2, p. 95.

19 Tables of Integral Transforms, edited by A. Erdélyi (McGraw-
Hill Book Company, Inc., New York, 1954).
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and a similar expression for ¢~22"3, we have
(1s(4) | cosK,-r¢| 15(B))

= (awtz/‘l’n‘)/ (Slsz)_3lz €xXp (— %a12/81_ %azz/sz)
0

X[ / exp(— s a®—sop?) cos(K,-rg)dr:ldsldsz. (11)

The product of two Gaussians situated at centers 4 and
B is proportional to a third Gaussian situated at a point
D along the line 4B, i.e.,
exp(— s 42— sor5?)

=exp[ —s152745%/ (s1+52) ] exp[— (s1t+s2)7p%], (12)
where 745 is the distance between the two centers, and

rp is the radius vector originated from D. The coordi-
nates of D are related to those of 4 and B as

D= (s14i+s2B3)/ (s1+52), i=x,79, 3.
Writing

(13)

re¢=rp+rcep,

we can perform the spatial integral in Eq. (11),
/ exp(—s17a®—sar5?) cos(K,-r¢)dr
=exp[ — 515274 5%/ (s1+52) ] {cos (X,-rep)
X / exp[— (s1+s2)7p?] cos (K, rp)dr
—sin(Rre) | expl— (sesir T sin(K, ro)ie)

=[x/ (s1+52) /2 exp[— s1507 4 5%/ (s1F52) ]
Xcos(K,-rep) exp[—1K,2/ (s1+52)].

By means of the substitution

(14)

z=S511>52,
u=s1/(s1ts3),
f=u(l—u)ras®,
g=K +a?/(1—u)+ai’/u,
Eq. (11) can be simplified into?
(15(4)| cosK,-r¢| 1s(B))

1
= 11000 / [#(1—2)1%2 cos (K, tepn)du
0
X / 7771% exp(— fa—%g/2)dz
[

= e as® / ST3(fR)~5-+3 (g 2+ (Jg)]

Xexp[— (fg)"*] cos(K,rcp)du,
2 See p. 145 of Ref. 19.

(15)
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which is then easily evaluated by numerical methods.
The potential integrals containing unnormalized Slater
25, 2pa, 2Py, and 2p, orbitals can be obtained from the
above by performing the proper partial differentiations
with respect to ey, as, Az, Ay, 4., By, By, B,, e.g.,

(25(4) | cosK,-r¢| 15(B))
= / rae~174 cos(K, - r¢)e 2 Bdr
= —a—a—(ls(A)lcosK,-rgl 1s(B)),
- (16)
(2p,(4) | cosK,-r¢|15(B))

= / xae—r4 cos(K, - re)e—rBdr

ar1 o
=2 Dty leos ol 153 |
8011 a1 aAz

In general the integrals of cosK, rs may be written in
the form

(¥5(4)|cosK, 14|¢5(B))
=2} ﬁ.-/ ’Y;‘(u)[éop,im(fg)—%(!?—n)]

Xexp[— (fg)2]{&:,1 cos[ (1—u)K,- 145

+Easinf(1—w)K rap }du, (17)
where the summation over ¢ may include one, two, three,
or four terms depending on the orbitals ¢8 and ¢5. The
superscript .S appearing in ¢ and ¢ stands for the
unnormalized Slater-type orbitals. These integrals are
then compiled together according to Eq. (9) to form the
integrals of V’. The coefficients for Eq. (17) are given
in Table I.

The overlap integrals can be evaluated in a similar
manner. Detailed discussions have been given by
Shavitt.”” The kinetic-energy integrals are obtained by
applying the operator

17 92 92 02
T=—1Vgi= ——( + } ) (18)
2\dB,* 94B,2 0B2

to the corresponding overlap integrals. These two kinds
of integrals are reduced to the general form

WaS|¢psS)=27 Z ?e/ 7:(u)

XIS AenlfG)16-]

n=0

Xexp[— (fG)"*Jdu, (19)
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Tasie 1. Coefficients for (¢5(4)|cosK, r4|pS(B)).
ySs oS i B: vi () M0 Mi1 o M2 M3 Mi4 M5 Mie Mit £ Eie
1s 1s 1 aiaras® f 0 0 0 0 3 3 1.0 1 0
2s 1s 1 alfaras® */u 0 0 15 15 6 1 0 0 1 0
2  —araB® f 0 0 0 0 3 3 1. 0 1 0
2p 1s 1  —aiea(K,)oras® Vi 0 0 15 15 6 1 0 0 o0 1
2 ouaaB(raB)z 2lu 0 0 0 0 3 3 1.0 1 0
2s 2s 1 alaras’ 12 105 105 45 10 1 0 0 0 1 o0
2 rag’K? bid 0 0 15 15 6 1 0 0 1 0
3  —raB® f 0 0 0 0 12 12 5 1 1 0
2p, 25 1 —ae?(K,).ra8 £/ (1—u) 105 105 45 10 1 0 0 O 0 1
2 @1a?(raB).74B® 12 0 0 15 15 6 1 0 0 1 O
3 ai1(K,)raB® f* 0 0 15 15 6 1 0 0 0 1
4 —awrap(rap): flu 0 0 0 0 3 3 1 0 1 0
20z 2p: 1 —aias(K,)PraB® 12 105 105 45 10 1 0 0 0 1 O
2 aiaras® Vil 0 0 15 15 6 1 0 0 1t o0
3 awaa(K,)r a8 (r4B)z Qu—1)f2 0 0 15 15 6 1 0 0 o0 1
4  —ooera(rap)s? 12 0 0 0 0 3 3 1.0 1 0
20 2py 1 —aiawras®(K,). (K))y Vi 105 105 45 10 1 0O 0 0 1 0
2 aiaas® {L(K))z(raB)y+ (Kb)y(raB)sJu 0 0 15 15 6 1 0 0 0 1
- (Kv)y(fAB)z}f2
3  —awaB(raB)(ran)y f? 0 0 0 0 3 3 1 0 1 0

45| =3V 655 =7 3 s / 7e(a0)

XLE pin(fE)H70]
Xexp[— (fG)"]du, (20)
where
G=a22/(1 ——u)—l—af/u.

Tables II and III list all the coefficients appearing in
Egs. (19) and (20), respectively.

The above-mentioned integrals are now inserted in
Egs. (7) to obtain the matrix elements. It is interesting
to examine the convergence of the summation over the
crystal lattice site » in Eqgs. (7), for this is the point at
which the customary nearest-neighbor approximation
was introduced. For the purpose of illustration, we have

taken the matrix element Vap, .’ with k= (2r/ao)
X (0.85,0,0) as an example and truncated the summation
over » at various distances from the origin correspond-
ing to the inclusion of more and more sites. Values of the
truncated sum are shown in Table IV. As can be seen,
the summation does not begin to approach convergence
until all sets of equivalent atoms up to the 25th nearest
neighbor have been included. We can also see a certain
loss of significant figures in going from the basic inte-
grals to the matrix elements. This difficulty was first
pointed out by Parmenter,?! but in our case this cancel-
lation is not serious and appears to become significant
only for the higher energy bands.

RESULTS

The energy bands were calculated by solving the 5X5
secular equation with the Bloch functions as basis. All
summations (over the lattice sites) in the matrix ele-

TasLE II. Coefficients for (¢5(4) [¢5(B)).

¥ ¢S 7 Si i (%) Aio0 A1 Nz Az s Ms Ae Ais
1s 1s 1 a1 AB® f 0 0 0 0 3 3 1 0
2s 1s 1 alasaB® A u 0 0 15 15 6 1 0 0
2 —aaB® f 0 0 0 0 3 3 1 0
20z 1s 1 1097 4B(7 AB)z Flu 0 0 0 0 3 3 1 0
2s 2s 1 a®as® A8° Vi 105 105 45 10 1 0 0 0
2 —7ra8® f 0 0 0 0 12 12 5 1
2ps 2s 1 1027 4B (7 4B)z f? 0 0 15 15 6 1 0 0
2 —a17AB(T4B)z I*u 0 0 0 0 3 3 1 0
2ps 2ps 1 airoo? AB® 12 0 0 15 15 6 1 0 0
2 —aiasr 487 4B)> Vi 0 0 0 0 3 3 1 0
2 2py 1 —aia aB(raB)s aB)y Vi 0 0 0 0 3 3 1 0

21 R, H. Parmenter, Phys. Rev. 86, 552 (1952).
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TaBLE III. Coefficients for (¢S(4)|—3v2|¢S(B)).

ys ¢S i w; n: (1) pi,0 pi 1 pi,2 Pi,3 i 4 pi,5 pi,6 pi 1
1s 1s 1 Qiag AB f 0 0 0 0 3 3 —1 0
25 1s 1 alayss /u 0 0 9 9 2 -1 0 0
2 —QrAB f 0 0 0 0 3 3 —1 0
2p5 1s 1 aras(raB)z/7aB 12 u 0 0 0 0 5 5 —1 0
2s 2s 1 a?a?rAB® f? 45 45 15 0 —1 0 0 0
2 —7AB f 0 0 0 0 6 6 3 —1

2%, 2 1 aw?(as)oan 7 0 0 15 15 4 1 0 0
2 —a1(748)z/r4B 2w 0 0 0 0 5 5 -1 0

2pz 2pz 1 Q1027 AB 12 0 0 15 15 4 —1 0 0
2 —ayaz(74B)2/rAB 12 0 0 0 0 7 7 —1 0

2ps 2py 1 —a105(r4B)z (r4B)y/7 4B Vid 0 0 0 0 7 7 —1 0

ments were carried to convergence. The calculations
were performed for two values of the fundamental
lattice constant @p=6.65 and 6.5183 a.u. which were
used in the previous works reported in the literature.
Comparison of our energy values along the [100],
[110], and [111] directions with Ham’s calculation by
a Green’s-function method' (¢,=6.65 a.u.) is shown in
Table V, and with the results of CW™ and of MPW2
calculation is shown in Table VI. In all cases the agree-
ment is seen to be very good.

TasLE IV. Values of truncated summation of Vap,, 25"
for k= (27 /a,) (0.85,0,0), ap=6.65 a.u.

For points of high symmetry, the secular equation
factorizes into smaller blocks. For example, at the T
point only the mixing between 1s and 2s Bloch functions
need be considered, whereas along the A line of [100]
symmetry, the secular equation is a 3X3 one with 1s,
2s, and 2p, basis functions. For an arbitrary point in the
k space, the complete 5X5 secular equation must be
solved. However, once all the basic integrals have been
evaluated, the energy for any point in the Brillouin
zone can be obtained as readily as that for a point of
high symmetry. We have also computed the energies
for points along the [2217, [310], and [311] directions
and the results agree will with those of Schlosser and
Marcus.!t

Last set of
nearest neigh- Number of Distance Truncated To examine the effect of the 1s core on the band
bors included equivalent from sum® 1 .
insum  atoms in set origin Vapg, o' structure, we have calculated the energy of the I' point
0 1 0.000 0.0000 using tW(') separate approximations. Th(? first is to com-
1 8 5.759 0.8632 pletely ignore the 1s Bloch function and gives
g lg 8282 _?%g% E=—0.896 Ry. The second is to leave out the 1s basis
4 24 11.028 0.8624
5 8 11.518 0.0581 TasLE V. Comparison of the energies (in rydbergs) of the con-
6 6 13.300 —0.1877 duction band of lithium calculated by the tight-binding method
7 24 14.493 0.8531 and by the method of Green’s functions. (2o=06.65 a.u.)
8 24 14.870 0.0935
9 24 16.289 —0.4678 .
10 24 17.277 —0.2325 Energies
11 8 17.277 —0.0746 aoky/2m Tight-binding  Green’s-function®
12 12 18.809 —0.1799
13 48 19.671 0.8531 [100] A,
14 24 19.950 —0.0706 0.0000 —0.674 —0.681
15 6 19.950 —0.0784 0.2500 —0.629 —0.640
16 24 21.029 —0.1149 0.5000 —0.500 —0.512
17 24 21.803 —0.0442 0.6250 —0.407 —0.414
18 24 22.055 —0.0781 0.7500 —0.290 —0.294
19 8 23.036 —0.0944 1.0000 —0.065 —0.061
20 24 23.745 —0.0711
21 24 23.745 —0.0717 [110] 2,
22 24 23.977 —0.0875 0.2500 —0.587 —0.598
23 48 24.882 —0.1144 0.3750 —0.485 —0.497
24 24 25.540 —0.1006 0.5000 —0.399 —0.411
25 48 25.540 —0.0944
26 6 26.600 —0.0933 (g
27 24 27.216 —0.0903 0.1250 —0.641 —0.651
28 24 27.419 —0.0957 0.2500 —0.545 —0.556
29 24 27.419 —0.0939 0.3125 —0.478 —0.486
30 12 28.213 —0.0947 0.3750 —0.395 —0.400
31 24 28.213 —0.0941 0.5000 —0.190 —0.191
s Since V2p;,2 is an imaginary number, the values listed are Vap,,2//%. a See Ref. 10.
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TaBLE VI. Comparison of the energies (in rydbergs) of the
conduction band of lithium calculated by the tight-binding method
and by the methods of modified plane waves and the method of
composite waves. (¢p=0.5183 a.u.)

Tight- Tight-
Modified» bindinge Simplified binding®
plane Composite® 5X5 4X4 4X4
aoks/2w  waves waves secular Eq. using bs,’ using bss
[1007 A
0.0 —0.683 —0.683 —0.672 —0.676 —0.896
0.2 —0.652 —0.656 —0.643 —0.642 —0.556
0.5 —0.495 —0.510 —0.494 —0.487 —0.452
0.8 —0.233 —0.223 —0.222 —0.219
0.9 —0.119 —0.106 —0.106 —0.106
1.0 —0.046 —0.044 —0.044 —0.044
[110] =,
0.1 —0.669 —0.657 —0.657 —0.508
0.3 —0.562 —0.545 —0.537 —0.451
0.5 —0.410 —0.393 —0.393 —0.393
[1117 A
0.1 —0.663 —0.650 —0.649 —0.536
0.2 —0.590 —0.587 —0.582 —0.509
0.3 —0.500 —0.485 —0.473 —0.413
04 —0.336 —0.358 —0.346 —0.342 —0.324
0.5 —0.175 —0.184 —0.177 —0.177 —0.177
2 See Ref. 12.

t See Ref. 11. _

o There is a slight difference in the choice of V used by the authors and
that used in Refs. 11 and 12. An approximate perturbation-type calculation
has been performed to remove this difference. It is found that using the
value of V of Schlosser and Marcus and of Brown and Krumhansl, the tight
binding eigenvalues are all shifted to the negative by approximately 0.001 Ry.

function and orthogonalize the 2s Bloch sum to the 1s
one, i.e.,

b2,7th (k=0, 1) = b3, (k=0, 1)+¢b1,(k=0, ). (21)

This gives E=—0.6756 Ry in very close agreement with
—0.6721 Ry obtained by including the 1s function.
Since there is no mixing at the I" point between basis
functions of s and p symmetry, the wave function at the
I" point corresponding to this stage of approximation is
simply be,* (k=0, r). To carry this scheme of approxi-
mation outside the I' point, one finds that the % de-
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pendence of the 1s-2s and 1s-2p mixing coeflicients
causes considerable complication in the computations.
Instead of using the properly orthogonalized 2s Bloch
functions, we introduce

bao’ (l,1) = [N Q25 (k) ]2 3, e™R>
X [¢28 (1"— Rv) + q¢1! (1'— RP):] )

where ¢ has the same value as that appearing in Eq.
(21). The bss’ and the three b2, functions then form the
basis of 4X4 secular equations which yield an alter-
native set of energy values as shown in Table VI. Near
the T' point the deviations of this set of energies from
the corresponding solutions of the 5X3 secular equa-
tion increase with k since b2, is not orthogonal to &1,
except for k=0. Although one may expect to obtain
better energy values using the properly orthogonalized
2s bloch functions, the numerical computation is much
simplier with b, (k,r) which proves to be more useful
from the practical standpoint. As one approaches the
edges of the Brillouin zone, the band functions become
more p-like and better agreements are thus found be-
tween the energy solutions of the 4X4 and of the 5X5
secular equations. Included in the last column of Table
VI, are the energy solutions of the 4X4 secular equation
with by, in place of b/, neglecting the 1s core com-
pletely. The results are rather poor except near the edge
of the Brillouin zone where the wave functions have
primarily p character.
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